
DFSP: A new algorithm for a swift computation of

formal concept set stability

Ilyes DIMASSI, Amira MOUAKHER and Sadok BEN YAHIA

University of Tunis El Manar, LIPAH, Faculty of Sciences of Tunis, Tunis, Tunisia.

sadok.benyahia@fst.rnu.tn

Abstract. Concept lattices are very useful for the task of knowledge discovery in

databases. However, the overwhelming number of drawn formal concepts was al-

ways an actual hamper towards their effective use. In the aim of filtering out, such

endless lists of formal concepts, the stability metric is the most worth of mention

one. In this respect, the stability computation of large concepts has been shown

to be infeasible due to exponential number of object sets to be processed. The lit-

erature only witnesses approaches for the stability computation that heavily rely

on the existence of the Galois lattice. In this paper, we introduce a new efficient

algorithm, called DFSP, for computing the stability of a set of formal concepts

without having at hand the underlying partial relation. The main thrust of the

introduced algorithm stands in the smart detection of non generators and their

pruning owe to their fulfilment of monotony property within a given equivalence

class. To the best of our knowledge, DFSP is the first algorithm that tackled such

tough issue. Carried out experiments showed that DFSP efficiently computes the

scalability of very large formal concepts extracted from benchmark datasets of

the Data Mining field.

Keywords: Formal concept analysis, stability, generators,pruning, tidset.

1 Introduction and motivations

Concept lattices are very useful for the task of knowledge discovery in databases. How-

ever, this field is hampered by the overwhelming size of formal concept lists drawn from

even moderately sized contexts. In this respect, the stability index has been shown to be

efficient for throwing away ”bad” concepts. Nevertheless, the computation of such sta-

bility index is very consuming and has been shown to be NP-Complete task. Thus, the

FCA community paid much attention to the computation of exact and/or approximative

of the stability as could witness the recent publications on such issue [1, 2]. At a glance,

the recent proposals of approximations of stability computations unveil the actual com-

plexity of such a task. Roughly speaking, the computation of the stability of a concept

C = (A,B) comes back to the exploration to a huge space made of the power set of the

extension part. In this space, we have to record all the elements in snugness connection

with the corresponding part. Clearly, even for an extent with dozens of objects, it does

not exit a primitive type for storing the value of a stability1.

At a glance, the related work flags out approaches that compute the stability of a set

of formal concepts organized through the Galois lattice. Doing so, they start computing

1 The GMP library, https://gmplib.org/, could be of use, in such a case, to store huge values.

2 I. Dimassi et al.

the stability of smallest formal concept (in extent’s size terms) and exploit this result

for the subsumer concepts until reaching the top formal concept.

In this paper, we introduce a new algorithm, called DFSP, that aims to an efficient

straightforward computation of a set of formal concepts. The main thrust of the intro-

duced algorithm stands in the smart detection of non generators and their pruning owe

to their fulfilment of monotony property within a given equivalence class. Indeed, we

introduce the notion of saturation of non-generators through the detection of the max-

imal set of a non-generators. Given that each subset of a non generator is also a non

generator, the DFSP algorithms sweeps the search space in depth first manner and only

stresses on the generators by avoid squandering its efforts on useless non-generators

subspaces.

The carried out experiments highlight that DFSP easily handles formal concepts

having thousands of objects in their extent part. To the best of our knowledge, DFSP is

the first algorithm that handles efficiently and straightforwardly formal concepts for the

stability computation.

The remainder of the paper is organized as follows: The next section recalls key

notions used throughout this paper as well as the pioneering approaches of the related

work. Then, we present in section 3 our algorithm for computing the stability of a set

of formal concepts, called DFSP. Section 4 describes the experimental study and the

results we obtained. Section 5 concludes the paper and points out our future work.

2 Stability computation: Scrutiny of the Related work

Before scrutinizing the related work that paid attention the stability computation, we

provide a simplified definition of some concepts used throughout in this paper, by sup-

posing that the the reader is familiar with FCA basic settings.

Definition 1. (MONOTONIC / ANTI-MONOTONIC CONSTRAINT) Let Q be a con-

straint,

• Q is anti-monotonic if ∀I ⊆ I, ∀I1 ⊆ I : I fulfils Q ⇒ I1 fulfils Q.

• Q is monotonic if ∀ I ⊆ I, ∀ I1 ⊇ I: I fulfils Q⇒ I1 fulfils Q.

Definition 2. (EQUIVALENCE CLASS) An equivalence class is a set of itemsets with

same closure (and same image). Let C=(A, B) be a formal concept, for any subset

X ⊆ O, A = X ′′ is the largest tidset w.r.t. set inclusion in its equivalence class.

Precisely, A ⊆ O is closed iff ∄X such as X ⊂ A with X ′ = A′; X ⊆ O is a

generator iff ∄U ⊂ X with U ′ = X ′. GA = {X ⊆ A|X ′ = B} is the set of all

generators in the equivalence class.

Definition 3. (EXTENT FULL SPACE) Let K = (O, I, R) be a formal context, B(K)
its concept lattice and C = (A,B) a concept from B(K) where |A| = n. P(A) =
{X |X ⊆ A} is the set of all A’s subsets and P(A) = 2|A|.

Stability has been introduced probably for the first time by Kuznetsov [3] and later

revisited in [4, 5]. This measure seems to be the most widely used around the FCA

community and is applied in numerous applications [6], e.g. biclustering, detection of

scientific subcommunities, to cite but a few. Formally, it is defined as follows:

DFSP: A new algorithm for a swift computation of formal concept set stability 3

Definition 4. (STABILITY) The stability index of a given concept describes the pro-

portion of subsets of its objects whose closure is equal to the intent of this concept.

This metric reflects the dependency of the intent on particular objects of the extent [4].

Let K = (O, I,R) be a formal context and C = (A,B) a formal concept of K. The

stability index, σ, of C is defined as follows:

σ(A,B) =
|{C ⊆ A|C′ = B}|

2|A|
=

|GA|

2|A|
(1)

The authors of [7] highlighted that a concept that covers fewer objects is normally less

stable than do a concept covering more objects.

However, the main hamper towards its intensive use mainly for large datasets, is the

complexity of its computation. In fact, it’s shown to be a #P-complete problem [3, 5]. In

order to compute it for large concept lattices, several works proposed to use estimates

and approximations however others tried to find an exact solution using the concept

lattice in computing stability.

Roth et al. [8] paid attention to concept’s stability as well as other metrics to reduce

the size of large concept lattice. They proposed an exact and polynomial algorithm

COMPUTESTABILITY that computes the stability indices for every concept of the lat-

tice using the covering graph of a concept lattice. The algorithm traverses the covering

graph from the bottom concept upwards. A concept is processed only after the stability

indices of all its sub-concepts have been computed. The main drawback of this algo-

rithm that it is essentially quadratic in the number of concepts in the lattice, which may

be prohibitively expensive for large lattices. In addition, this algorithm inputs a Galois

lattice and such a requirement could not be easily available for very large datasets may

be impractical.

Kuznetsov [5] introduced a polynomial algorithm for computing stability using var-

ious methods of estimating scientific hypotheses. This algorithm is considered as op-

timal in the sense that its time complexity is linear and polynomial in the size of the

context. Nevertheless, this approach only gives an approximate assessment about the

stability index and could not be efficient in exact studies.

Later, Jay et al. [9] applied the concept of stability and iceberg lattices in social

network analysis. They used the stability metric to reduce the complexity of the lattice,

by filtering out all unstable concepts w.r.t. a given threshold. In this respect, the authors

introduced a new definition of the stability using the equivalence classes. Given a con-

cept (A,B), the stability metric measures the number of elements of G that are in the

same equivalence class of A where an equivalence class is defined as follows:

Property 1. Using Definition 4, the authors proved the following property:

σ(A,B) = 1−
∑

X⊂A,X=X′′

σ(X,X ′)2|X|−|A|

So, once the lattice concept is given, it is possible to compute quickly the stability of

concepts using an ascending algorithm.

Roth et al. [10] proposed an algorithm, based on a polynomial heuristic for comput-

ing stability index for all concepts using the concept lattice. This algorithm was quite

4 I. Dimassi et al.

good in practical applications so far, but in the worst case its complexity is quadratic in

the size of the lattice.

Later, Babin and Kuznetsov [1] also suggested a method for approximating con-

cept stability based on a Monte Carlo approach. Their approximate algorithm can run

in reasonable time. In their approach, they specified a new parameter called stability

threshold to reduce the number of the concepts. The results show that the approxima-

tions are better when stability threshold is low.

Recently, Buzmakov et al. [2] introduced an efficient way for finding a ”good” as-

sessment of concept stability. The authors combined the bounding method [9] as well

as the Monte Carlo method [1] in a complementary way. Once the stability bounds are

computed in the lattice, the method that should be applied is chosen according to the

most tight of each them.

The main criticism that can be made about the literature’s approaches stands in

the fact that they are unable to compute stability of concepts in absence of order rela-

tion. In fact, the lattice structure is a sine qua non condition to proceed with the com-

putation. Beside that, such computation of concept’s stability requires visiting all its

sub-concepts, i.e., direct and non direct ones. Clearly, doing so is very greedy in com-

putations and memory usage. Nevertheless, building concept lattice is very far from

being an easy task [11] and sometimes impossible. Furthermore, the cost of generating

a lattice concept remains high as far as the context is composed of a large number of

objects [12] and/or a dense incidence relation.

Thus, we introduce a new efficient algorithm, called DFSP that allows computing

the stability for a given set of concepts. The latter doesn’t need any partial relation be-

tween the concepts. The main thrust of the introduced algorithm stands in the smart

detection of non generators and their pruning owe to their fulfilment of monotony prop-

erty within a given equivalence class.

3 DFSP : Depth First Stability Processor algorithm

Before, thoroughly describing the DFSP algorithm, we start by introducing some useful

notations that are used in the remainder.

Let C = (A,B) be a formal concept for which the stability index needs to be

processed. DFSP algorithm organises P(A) according to a tidset prefix tree. Each ex-

ploration node in the tree is specific to a tidset and represented by the TSNode data

structure. TSNode is a recursive structure that keeps track of useful informations about

its associated tidset such as its suffix, itemset and a set of immediate supersets. As for

the current tidset, its immediate supersets are themselves represented each by a TSNode

instance and so on.

Definition 5. (SUFFIX OF TIDSET) Let ts = {t1, t2 . . . tk} be an ordered sequence of

objects and nts its associated exploration node. Suff(ts) = tk is the last object in ts.

TSNode.s is the member property of the data structure TSNode in which Suff(ts) is

maintained ; nts.s = tk.

DFSP: A new algorithm for a swift computation of formal concept set stability 5

a b c d e f g h

1 × ×
2 × × ×
3 × × × × ×
4 × × × × × ×
5 × × × × ×
6 × × ×
7 × × ×
8 × × ×
9 × × × × × × × ×

Table 1. Formal context

Definition 6. (CHILDREN’S NODE) TSNode.ss is a member of the TSNode structure

that holds a set of TSNode instances. TSNode.ss is the set of a TSNode immediate chil-

dren.

Definition 7. (NODE INTENT) Let ts be a tidset and nts its associated node. TSNode.is

is a TSNode member that holds the tidset image. nts.is = ts′.

Unlike nts.s which only holds the tidset suffix Suff(ts), nts.is integrally main-

tains ts′.

Example 1. With respect to the formal context depicted in Table 1, we have ts = {123}
and n123 its associated node, then n123.s = 3. In addition, we have : n123.ss={n1234,

n1235, n1236, n1237, n1238, n1239}. Besides, we also have n123.is = ts′ = {123}′ =
{g}.

In the following, we present a detailed description of DFSP algorithm. Let us re-

mind that the main idea of our new approach is to provide a simple and very efficient

strategy for computing stability through generators enumeration. The DFSP algorithm,

whose pseudo-code is sketched by Algorithm 1, operates mainly as follows:

Initially, the sizes of the extent and the intent are stored respectively into n and m

(lines 2,3). The root node is then built and it’s root.s and root.is members are set to ∅
(line 4). Then, the objects ai of A are scanned in order to build the first level nodes. For

each object ai, a child node is created, its member child.s is set to ai and its member

child.is is set to the intent of ai (line 6, 7). If the size of the intent a′i is different from

m the size of B, then child is a non generator and is added to root.ss the set of the

root node immediate children (c.f lines 8, 9). Then the first level generators count is

determined using the generators counting formula (line 10). After that, the exploration

of space of tidset through the EXPLORETIDSET function updates gc one last time to

obtain the final count of generators (line 11). The stability index is determined when

the generators count gc is divided by the overall tidset count (line 12).

In the following part, we will explain the fundamental step of the algorithm which

is the recursive exploration of tidset’s space.

6 I. Dimassi et al.

Algorithm 1: Depth First Stability Processor (DFSP)

Data: TSNode

-TSNode.s: the tidset suffix

-TSNode.is: the tidset intent

-TSNode.ss: the set of immediate children nodes.

Input:

-K = (O, I,R): a formal context.

-C = (A,B): a formal concept.

Results:

-S : the stability of C.

Begin1

n := |A|;2

m := |B|;3

root.i := root.is := ∅;4

For i = 1 . . . n do5

nchild.s := ai;6

nchild.is := a′
i;7

If |nchild.is|! = m then8

root.ss∪ = nchild;9

gc :=
∑n−1

i=|root.ss| 2
i;10

gc := gc+ EXPLORETIDSET(root.ss,K,m);11

S := gc

2n
;12

Return S ;13

End14

3.1 Depth First exploration of the Tidset space

The main goal of EXPLORETIDSET which pseudo-code is sketched through Algorithm

2 is counting generators while minimizing as much as possible the visited tidsets. This

is achieved by pruning generators and most importantly by detecting ”prunable” non

generators. The first invocation for EXPLORETIDSET (c.f line 11 of DFSP) is applied

on the root node immediate children.

The tidset space exploration pattern The exploration mechanics are straightforward.

To harness this process, lets ignore any possible optimisation that leads to nodes prun-

ing. On the first invocation of EXPLORETIDSET in DFSP, ss contains the nodes {na1,

. . . , nan} associated to unitary first level tidsets {a1},. . . , {an} for which EXPLORETID-

SET builds immediate children as follows: na1a2 the first immediate child of na1 is

built by adding the suffix of na2 to na1. More generally, naiaj the jth immediate child

of nai (line 12) is obtained by adding to nai the suffix of na(i+j) the jth node fol-

lowing nai (line 15). For the tidset {aiaj} associated to naiaj , only Suff({aiaj})
is stored in naiaj .s (line 16). Since, {aiaj} = {ai}|Suff({aj}) then {aiaj}′ =
{ai}′

⋂
Suff({aj})′. {aiaj}′ is stored integrally in naiaj .is (line 17). After building

nai.ss from nai followings, EXPLORETIDSET is recursively applied on nai.ss (line 22)

which only makes sense when |nai.ss| has at least 2 elements (line 21). After process-

DFSP: A new algorithm for a swift computation of formal concept set stability 7

ing the nai subspace, EXPLORETIDSET moves to the next node na(i+1) (line 12). The

last node is nan is not processed as it has no followings.

Counting and pruning generators As described above, the generation process builds

a child node by adding an object to its parent node. A child node is therefore always

a superset of its parent. Otherwise, it is known that a superset of a generator is also

a generator. Therefore, applying the exploration process on a generator node will in-

evitably produce generators. The exploration branch starting from that node is said to

be monotonous and since we are able to count the population induced from that branch

we can save processing power by dismissing these nodes (line 8 in DFSP and line 18

in EXPLORETIDSET). Let’s find out how it is possible to count generators that are in-

ferred from a given generator without the need of exploring them. Let ni be the ith

node in ss and ni is a generator. Building the ni subspace by exploring its immediate

children then its children’s children and so on recursively is equivalent to generating all

possible supersets of the tidset associated to ni using the suffixes of ni following nodes

{n(i+1).s,. . . , n(i+1).s}. The count of all generators in ni branch (including even ni) is

equal 2(n−i−1).

We have to also consider supersets of ni that are not part of ni branch but rather

in nk branches {k >= 1 and k < i} the branches of all nodes that precedes ni in

ss. To avoid locating these nodes and simplify calculations, let’s virtually move ni

to the start of ss. All supersets of ni are now confined in ni branch and the updated

count of ni supersets is 2(n−1). Let nj be another generator in the same cluster. It

is important to count all nj supersets while avoid including elements that are already

counted as part of the ni branch. By virtually moving nj after ni in ss and counting

all elements in the nj branch, it is possible to fulfil both conditions. nj branch count

is 2(n−2) and the same process is applied to the remaining generators in the cluster.

Doing so leads us to the generalized generators counting formula gc =
∑|gs|

k=|ss|−1 2
k

where |gs| is the generators count and |ss| is cluster size (line 10 in DFSP and line 20

in EXPLORETIDSET).

Detecting non generators monotony The most significant mop up mechanism in

DFSP is non generators pruning. In order to also eliminate non generators, EXPLORETID-

SET looks for nodes in ss that when combined together, the resulting clique superset

will still be a non generator. Those nodes are said to form a non generator monotonous

clique. Suppose, we’re building the branch of a node from this clique. If we use exclu-

sively nodes from the clique, all nodes in the branch are guaranteed to be subsets of

the clique superset. Since a subset of a non generator is also a non generator then all

branches in the clique will only contain non generators. Nodes in the clique are pushed

at the end of the ss set to insure that the generation process will only use nodes from

the clique. Nodes outside the clique are moved away to the beginning of ss. Nodes in

the clique are not expanded, since no generator could be found in their branches but are

still used to build branches outside the clique.

8 I. Dimassi et al.

Algorithm 2: EXPLORETIDSET

Input:

-K = (O, I,R): a formal context.

-ss=a set of TSNode siblings.

-m: the size of the intent.

Results:

-gc : the generators count.

Begin1

i := ssc := |ss|;2

ingpc := gc := 0;3

ingpi := I;4

While i < 1 do5

If |ngpi ∩ ss[i].is| = m then6

MOVETOHEAD(i, ss);7

ingpc := ingpc+ 1;8

Else9

i := i− 1;10

ngpi := ngpi ∩ ss[i].is;11

For (i = 1 . . . ingpc) do12

nleft := ss[i];13

For (j = i+ 1 . . . ssc) do14

nright := ss[j];15

nchild.s := nright.s;16

nchild.is := nleft.is ∩ f(nchild.s);17

If (|nchild.is|! = m) then18

nleft.ss∪ := nchild;19

gc+ =
∑ssc−i−1

k=|nleft.ss| 2
k;20

If (|nleft.ss| > 1) then21

gc+ = EXPLORETIDSET(nleft.ss,K, m);22

Return gc;23

End24

3.2 Illustrative example

To illustrate our approach, let us consider the formal concept C1 = (A1, B1) from the

formal context depicted by Table 1 such that A1 = {3, 4, 5, 6, 7, 9} and B1 = {f, g}.

As shown in figure 1, the DFSP algorithm operates as follows:

During the first step (1), the root node is created and initialized though the function

BUILDTREEROOT (gc=0). Initially, root.s = ∅ and nodes n3, n4, n5, n6, n7 will be

created through individual elements of {3, 4, 5, 6, 7, 9} (steps (2), (3), (4), (5), (6) and

(7)). These nodes are prospective direct children to the root node. Given that all these

nodes are non generators, they become in step (8) as effective direct children of root and

are decreasingly sorted with respect to their support value. In step (9), non generators

forming monotone clique are placed at the end of the list and marked by (*). However,

DFSP: A new algorithm for a swift computation of formal concept set stability 9

Fig. 1. Illustrative example

instable generators are placed at the beginning of the list and marked by (+). After that,

in steps (10), (11), (12), (13) and (14) prospective direct children of node n3 are created

which are, respectively, n36, n39, n34, n35 and n37. The count of generators is updated

in step (15) (gc = 24+23 = 24). Only nodes n34, n35 and n39 are left as effective direct

children of n3. The latter are also sorted decreasingly. In step (16), all these effective

direct children form a monotone clique and exploration of this branch is stopped. After

that, nodes n69, n64, n65 and n67 are created and count of generators is also updated

in step (21) with the tree generators of n64, n65 and n67 (gc = gc + 23 + 22 + 21 =
24 + 14 = 38). Only the node n69 is kept in the list of effective direct children of n6.

Indeed, the latter does not fulfil the condition of EXPLORETIDSET to be launched.

4 Experimental results

In this section, we put the focus on the evaluation of the DFSP algorithm by stressing on

two complementary aspects : (i)Execution time; (ii) efficiency of search space pruning.

Experiments were carried out on an Intel Xeon PC, CPU E5-2630 2,30 GHz with 16

GB of RAM and Linux system. During the lead experiments, we used some benchmark

datasets commonly of extensive use within Data mining. The first three datasets are

considered as dense ones, i.e., yielding high number of formal concepts even for a

small number of objects and attributes, while the other ones are considered as sparse.

The characteristics of these datasets are summarized by Table 2. Thus, for each dataset

we report its number of objects, the number of attributes, as well as the number of

all formal concepts that may drawn. In addition, we also reported the respective sizes

of the smallest and the largest formal concepts (in terms of extent’s size). For these

considered concepts, we kept track of the number of the actually explored nodes as

well as the execution time (the column denoted |explor.|).
At a glance, statistics show that the DFSP algorithm is able to process dozens of

thousands of objects in a reasonable time. Indeed, the 15596 (respec. 16040) objects

10 I. Dimassi et al.

composing the extent of the largest formal concept extracted from the RETAIL (re-

spec. T10I4D100K) dataset are handled in only 27.27 (respec. 68.85) seconds. Even

though, the respective cardinalities are close (15596 vs 16040 objects), the difference

in execution time is not proportional to this low gap. A preliminary explanation could

be the difference in density of both datasets (RETAIL is dense while T10I4D100K is

a sparse one). A in-depth study of these performances in connection to the nature of

datasets is currently carried out. The most sighting fact is the low number of visited

nodes in the associated search space. For example for the MUSHROOM dataset, DFSP

algorithm actually handled only 83918 nodes from 21000 potential nodes of the search

space, i.e., in numerical terms it comes to only explore infinitely insignificant part equal

to 7.8× 10−297 of the search space. The case of RETAIL and T10I4D100K datasets is

also worth of mention. For the respective smallest extracted concepts, DFSP algorithm

only explores, 1.14× 10(−45) and 1.5× 10(−90) parts of the respective search spaces.

Datasets # Attr # Obj # concepts
smallest concept largest concept

|ext| |explor.| time (sec.) |ext| |explor.| time (sec.)

CHESS 75 3196 3316 2630 2362233 0.12 3195 5855899 0.64

MUSHROOM 119 8124 3337 1000 83918 0.10 8124 76749955 11.32

RETAIL 16470 88162 3493 150 164 0.10 15596 64847191 27.27

T10I4D100K 1000 100000 4497 300 306 0.11 6810 19719991 12.77

T40I10D100K 1000 100000 3102 1800 1495324 1.39 16040 92154598 68.85

Table 2. Characteristics of the considered benchmark datasets

These highlights are also confirmed by Figures 2-11. Indeed, Figures 2, 4, 6, 8 and

10 stress on the variation of the Execution time, while Figures 3, 5, 7, 9 and 11 assess

what we call the workload which means the efficiency of search space exploration. At

a glance, the execution time is in a snugness connection with the reduction of search

space, i.e., the variation of the workload has the same tendency as the performance

since we consider the visited tidset in the search space as the processing unit. Worth

of mention, the performance is rather correlated to the extent’s size rather than the

exponential nature of the search space.

0.1

1

10

1 10

Ti
me

 (
se
c)

Extent size (x103)

Scaleup Trend (Scaleup)

Fig. 2. Mushroom scaleup

0.01

0.1

1

10

100

1000

1 10

Ti
ds

et
s
(x

10
6)

Extent size (x103)

Workload Trend (workload)

Fig. 3. Mushroom workload

DFSP: A new algorithm for a swift computation of formal concept set stability 11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2.6 2.7 2.8 2.9 3 3.1 3.2

Ti
me

 (
se
c)

Extent size (x103)

Scaleup

Trend (Scaleup)

Fig. 4. Chess scaleup

0.4

2.4

4.4

6.4

8.4

10.4

2.6 2.7 2.8 2.9 3 3.1 3.2

Ti
ds

et
s
(x

10
6)

Extent size (x103)

Workload

Trend (Workload)

Fig. 5. Chess workload

0.1

1

10

100

1000

1.5 15 150

Ti
me

 (
se
c)

Extent size (x102)

Scaleup

Trend (Scaleup)

Fig. 6. Retail scaleup

0.001

0.01

0.1

1

10

100

1000

10000

1.5 15 150

Ti
ds

et
s
(x

10
5)

Extent size (x102)

Workload Trend (workload)

Fig. 7. Retail workload

5 Conclusion and future work

Through the DFSP algorithm, we gaped in the combinatorics of lattices by the show-

ing that most of this sear space could be smartly explored thanks to the saturation of

generators. The swift computation of stability encouraged us to integrate the stability

as a on-the-fly pruning strategy during mining closed itemsets. We are currently work-

ing on a new algorithm for the stability computation given the Galois lattice. The new

algorithm only relies on the direct sub-concepts to compute the stability of a concept.

Outside the FCA field, the strategy of DFSP would be of benefit for very efficient ex-

traction well known problem of combinatorics : minimal transversals.

References

1. Babin, M.A., Kuznetsov, S.O.: Approximating concept stability. In: Proceedings of the 11th

International Conference on Formal Concept Analysis(ICFCA), Dresden, Germany. (2012)

7–15

2. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Scalable estimates of concept stability. In: Pro-

ceedings of the 12th International Conference on Formal Concept Analysis(ICFCA), Cluj-

Napoca, Romania. (2014) 157–172

12 I. Dimassi et al.

0.1

1

10

100

3 30

Ti
me

 (
se
c)

Extent size (x102)

Scaleup

Trend (Scaleup)

Fig. 8. T10I4D100K scaleup

0.0001

0.001

0.01

0.1

1

10

100

3 30

Ti
ds

et
s
(x

10
6)

Extent size (x102)

Workload

Trend (workload)

Fig. 9. T10I4D100K workload

1

10

100

1.8 18

Ti
me

 (
se
c)

Extent size (x103)

Scaleup

Trend (Scaleup)

Fig. 10. T40I10D100K scaleup

0.5

5

50

1 10

Ti
ds

et
s
(x

10
6)

Extent size (x103)

Workload

Trend (workload)

Fig. 11. T40I10D100K workload

3. Kuznetsov, S.O.: Stability as an estimate of the degree of substantiation of hypotheses de-

rived on the basis of operational similarity. Automatic Documentation and Mathematical

Linguistics 24 (1990) 62–75

4. Kuznetsov, S.O., Obiedkov, S.A., Roth, C.: Reducing the representation complexity of

lattice-based taxonomies. In: Proceedings of the 15th International Conference on Con-

ceptual Structures (ICCS), Sheffield, UK. (2007) 241–254

5. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49 (2007) 101–

115

6. Buzmakov, A., Kuznetsov, S.O., Napoli, A.: Is concept stability a measure for pattern selec-

tion? Procedia Computer Science 31 (2014) 918 – 927

7. Klimushkin, M., Obiedkov, S.A., Roth, C.: Approaches to the selection of relevant concepts

in the case of noisy data. In: Proceedings of the 8th International Conference(ICFCA) ,

Agadir, Morocco. (2010) 255–266

8. Roth, C., Obiedkov, S.A., Kourie, D.G.: Towards concise representation for taxonomies of

epistemic communities. In: Proceedings of the 4th International Conference on Concept

Lattices and Their Applications (CLA), Hammamet, Tunisia. (2006) 240–255

9. Jay, N., Kohler, F., Napoli, A.: Analysis of social communities with iceberg and stability-

based concept lattices. In: Proceedings of the 6th International Conference(ICFCA), Mon-

treal, Canada. (2008) 258–272

10. Roth, C., Obiedkov, S.A., Kourie, D.G.: On succinct representation of knowledge community

taxonomies with formal concept analysis. Int. J. Found. Comput. Sci. 19 (2008) 383–404

11. Qiao, S.Y., Wen, S.P., Chen, C.Y., Li, Z.G.: A fast algorithm for building concept lattice.

(2003)

12. Demko, C., Bertet, K.: Generation algorithm of a concept lattice with limited object access.

In: Proceedings of the 8th International Conference Concept Lattices and Their Applications

(CLA), Nancy, France. (2011) 239–250

