

Proceedings of the DEMONSTRATIONS track of the
ACM/IEEE 17th International Conference on Model Driven

Engineering Languages and Systems (Models 2014) !

Valencia, Spain, October 1st and 2nd, 2014

Edited by

Tao Yue, Simula Research Laboratory

Benoit Combemale, IRISA, University of Rennes1, France

Table of Contents

Preface 3
Tao Yue and Benoit Combemale

Bridging Java Annotations and UML Profiles with JUMP 5
Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer and Gerti Kappel

DPLfw: a Framework for the Product-Line-Based Generation of ! Variable Content
Documents 10
Abel Gómez, Pau Martí, Ma. Carmen Penadés, José H. Canós

Combining Textual and Web-Based Modeling 15
Martin Haeusler, Matthias Farwick and Thomas Trojer

Tool support for Collaborative Software Quality Management 20
Philipp Kalb and Ruth Breu

DSLFORGE: Textual Modeling on the Web 25
Amine Lajmi, Jabier Martinez and Tewfik Ziadi

Umple: An Open-Source Tool for Easy-To-Use Modeling, Analysis, and !Code
Generation 30
Timothy Lethbridge

Automatic Generation of Consistency-Preserving Edit Operations for MDE Tools 35
Michaela Rindt, Timo Kehrer and Udo Kelter

From Pen-and-Paper Sketches to Prototypes: The Advanced Interaction !Design
Environment 40
Harald Störrle

Concern-Driven Software Development with jUCMNav and TouchRAM 45
Nishanth Thimmegowda, Omar Alam, Matthias Schöttle, Wisam Al Abed,
Thomas Di’Meco, Laura Martellotto, Gunter Mussbacher, Jörg Kienzle!

Preface

Model-driven engineering (MDE) and modeling in general has matured substan-
tially over the past decade and is increasingly finding its way into industrial
practice. As a consequence, it is now more important than ever to demonstrate
the value of modeling and MDE through research prototypes as well as polished
tools covering a broad variety of modeling-related activities.

Therefore, MoDELS 2014 features a track of tool demonstration sessions,
in parallel with other conference sessions, to serve as a channel for recognizing
and appreciating teams building tools and also a venue for sharing experience
of building and applying tools both in academia and industry. This track con-
stitutes the premier venue for researchers and practitioners to showcase their
projects and tools in areas that are relevant to the MODELS community. We
encouraged submissions, which are either early research prototypes or mature
tools not yet been commercialized. Innovative uses of existing tools and tool
chains from industrial practice were also included in the scope of this year’s
demonstration track.

The track welcomed any submission within the scope of the topics of interest
of the main conference, including (but not limited to) modeling tools supporting
one or more model-based activities in di↵erent phases of software/system devel-
opment lifecycles, domain specific language modeling environment, automated
solutions for integrating di↵erent modeling tools.

Demonstrations were selected on the basis of technical merit, novelty, and
relevance to the MoDELS community. All the submitted proposals were peer-
reviewed by at least three reviewers. Nine accepted demonstrations were indi-
vidually presented by technical members of the team, and focused on technical
content and practical issues of modeling tools and environment, analysis and
model management. Each paper in this volumn contains a link to a video giving
a small insight into the actual demonstration.

We would like to thank the authors for submitting their papers to the demon-
stration track. We are also grateful to the members of the Selection Committee
for their e↵orts in the reviewing process and to the MoDELS 2014 organizers for
their support and assistance during the demonstration organization.

September 2014 Tao Yue (tao@simula.no),
Simula Research Laboratory,

Oslo, Norway
Benoit Combemale

(benoit.combemale@irisa.fr),
University of Rennes 1 and
Research Scientist at Inria,

France

v

Program Committee

Shaukat Ali Simula Research Laboratory
Benoit Baudry INRIA
Benoit Combemale IRISA, Université de Rennes 1
Juan De Lara Universidad Autonoma de Madrid
Robert France Colorado State University
Sebastien Gerard CAE LIST
Je↵ Gray University of Alabama
Jörg Kienzle McGill University
Bran Selic Malina Software Corp.
Juha-Pekka Tolvanen MetaCase
Antonio Vallecillo Universidad de Málaga
Marc-Florian Wendland Fraunhofer Institut FOKUS
Tao Yue Simula Research Laboratory
Ste↵en Zschaler King’s College London

vii

Bridging Java Annotations and UML Profiles

with JUMP

⇤

Alexander Bergmayr1, Michael Grossniklaus2, Manuel Wimmer1, and Gerti Kappel1

1 Vienna University of Technology, Austria
{bergmayr,wimmer,kappel}@big.tuwien.ac.at

2 University of Konstanz, Germany
michael.grossniklaus@uni-konstanz.de

Abstract. UML profiles support annotations at the modeling level. However,
current modeling tools lack the capabilities to generate such annotations required
for the programming level, which is desirable for reverse engineering and for-
ward engineering scenarios. To overcome this shortcoming, we defined an effec-
tive conceptual mapping between Java annotations and UML profiles as a basis
for implementing the JUMP tool. It automates the generation of profiles from
annotation-based libraries and their application to generate profiled UML mod-
els. In this demonstration, we (i) compare our mapping with the different rep-
resentational capabilities of current UML modeling tools, (ii) apply our tool to
a model-based software modernization scenario, and (iii) evaluate its scalability
with real-world libraries and applications.

1 Introduction

The value of UML profiles is a major ingredient for model-based software engineer-
ing [3] as they provide features supplementary to the UML metamodel in terms of
lightweight extensions. This powerful capability of profiles can be employed as an-
notation mechanism [9], where stereotypes show similar capabilities as annotations in
Java. In the ARTIST project [1], we exploit these capabilities, as we work towards
a model-based engineering approach for modernizing applications by novel cloud of-
ferings, which involves representing platform-specific models (PSM) that refer to the
platform of existing applications, e.g., the Java Persistence API (JPA)3, when consid-
ering persistence, and the platform of “cloudified” applications, e.g., Objectify4, when
considering cloud datastores. Clearly, the modernization process relies on the availabil-
ity of the profiles that correspond to the used Java libraries.

Manually developing a rich set of profiles demands a huge effort when consider-
ing the large number of possible annotations in Java. To automate the generation of
UML profiles requires an effective conceptual mapping of the two languages. In recent
work, we defined such a mapping [2] based on which we implemented the JUMP tool.
Hence, we continue with the long tradition of investigating mappings between Java and
⇤ This work is co-funded by the European Commission, grant no. 317859.
3 http://oracle.com/technetwork/java/javaee/
4 https://code.google.com/p/objectify-appengine/

UML [7, 8], though in this work we also consider Java annotations in the mapping.
The JUMP tool is intended to be used by (i) developers that produce platform-

specific profiles to support transformations for reverse engineering and forward en-
gineering scenarios or to enable platform-independent profiles abstracted from such
platform-specific profiles and (ii) modelers that directly use the produced profiles to
document important design decisions at the modeling level or to easier understand Java
libraries by visualizing provided annotations in terms of UML profile diagrams.

In this demonstration, we discuss the benefits of JUMP compared to existing solu-
tions of modeling tools that support annotations. Furthermore, we emphasize the unique
capabilities of the JUMP tool to automatically generate profiles from annotation-based
libraries, which are collected in the UML-Profile-Store. It leverages the generation of
profiled models from applications. To report on the scalability, we measured the perfor-
mance of JUMP tool by applying it to large Java code bases.

2 Bridging Java Annotations and UML: Profiles to the Rescue

UML profiles enable systematically introducing new language elements [5] without the
need to adapt the underlying modeling environment, such as editors, model transfor-
mations, and model APIs [6]. UML provides a dedicated language to precisely define
profiles and how stereotypes are applied on models. Similarly, Java provides an anno-
tation language to declare annotation types that can be applied on the targeted code
elements. Figure 1 demonstrates the relationship between the two languages based on
the Objectify framework. On the left side, the application of annotation types, among
them Cache, to the Customer class and the respective declaration of the Cache
annotation type is shown. The corresponding UML-based representation shown on the
right side demonstrates the stereotype application to the Customer class and the dec-
laration of Cache by a Stereotype, which is part of the Objectify profile. To ensure
that the Cache stereotype provides at least similar capabilities as the corresponding
annotation type, the extension relationship references the UML meta-class Type. The
Objectify profile generated by the JUMP tool enables modelers to refine UML class di-

«metaclass»
Type

«stereotype»
Cache

expirationSeconds:Integer =�0�

«profile»�Objectify

petstore.domain

«cache,�index»
Customer

«id»�custId :�Integer

«cache»
expirationSeconds =�600

«apply»

/*�Declaration�of�Cache�*/
package com.googlecode.objectify.annotation;
import java.lang.annotation.*;

@Target({ElementType.TYPE})
public @interface�Cache {

int expirationSeconds()�default 0;
}

/*�Application�of�Objectify�annotations�*/
package petstore.domain;
import com.googlecode.objectify.annotation.*;

@Cache(expirationSeconds=600)
@Index
public class Custmer {�

@Id�Integer�custId;
}

JUMP

JUMP

Fig. 1: JUMP in Action

Mapping�(Java�Ͳ>�UML)
UML�Profile
GenerationModeling�Tool Annotation

Application
Annotation
DeclarationName Ver

Altova UML
http://altova.com/umodel.html 2013 Generic

Java�Profile Interface Ͳ
ArgoUML
http://argouml.tigris.org 0.34 Generic�

Java�Profile Interface Ͳ
Enterprise�Architect
http://sparxsystems.com 9.3 BuiltͲin�

Tool�Feature Interface Ͳ
Magic�Draw
http://nomagic.com 17.0.4 Generic�

Java�Profile Interface Ͳ
Rational�Software�Architect
http://ibm.com/developerworks/rational 8.5.1 Specific�Profiles Stereotype Ͳ
Visual�Paradigm
http://visualͲparadigm.com 10.2 BuiltͲin�

Tool�Feature Class Ͳ

JUMP�Tool 1.0.0 Specific�Profiles Stereotype +

Table 1: Comparison of Modeling Tools

agrams towards the Google App Engine (GAE) and supports developers to realize code
generators that produce richer program code.

Mapping Java Annotations to UML. Currently, three significantly different solu-
tions exist to support Java annotations for UML models: (i) built-in annotation feature
of modeling tools, (ii) generic profile for Java, which enables capturing annotations
and their type declarations, and (iii), profiles which are specific to a Java library or
even an application with custom annotation type declarations. The first solution is cer-
tainly the most tool specific one as it goes beyond Java and UML. It facilitates to cap-
ture Java annotations, though the type declaration of an annotation and its applications
are not connected. A generic profile for Java emulates the representational capabilities
of Java’s annotation language. Although with this approach the connection of anno-
tation type declarations and their applications can be ensured, the native support of
UML for annotating elements with stereotypes is still neglected. However, stereotypes
specifically defined for annotation types would facilitate their application in a controlled
UML standard-compliant way as they extend only the required UML metaclasses. From
a language engineering perspective, such stereotypes facilitate defining constraints and
model operations, such as model analysis or transformations, because they can directly
be used in terms of explicit types similar to a metaclass in UML. Therefore, the JUMP
tool is based on a mapping between Java’s annotation language and UML’s profile lan-
guage [2], which enables the generation of specific stereotypes for corresponding anno-
tation types that in turn leverage platform-specific profiles.

Existing Modeling Tools. Several commercial and open-source modeling tools sup-
port Java annotations at the modeling level as summarized in Table 1. While all evalu-
ated modeling tools support the generation of annotated UML class diagrams from Java
applications, none of them is capable of generating profiles for Java libraries, and so
exploiting the powerful capabilities of stereotypes and profiles.

3 JUMP Tool

The JUMP tool envisages two main scenarios: UML Profile Generation and Profiled
UML Model Generation. The first scenario is executed on a Java-based Eclipse project
that covers the library from which a profile with the corresponding stereotypes is gen-
erated. Optionally, the generated profile is added to a local copy of the UML-Profile-

Store, which exposes frequently used profiles as plug-ins to facilitate their reuse, thereby
avoiding to regenerate them again and again. The practical application of profiles is
employed in the second scenario, which is integrated into the generation of UML class
diagrams from Java applications. Annotation applications are replaced by the corre-
sponding stereotypes applied to the reverse-engineered UML elements. The applied
stereotypes are imported from the UML-Profile-Store. If user-defined annotation types
are declared in the application, the respective profile is generated in a pre-processing
step as they need to be defined prior their application. Such application-specific pro-
files are provided together with the generated UML class diagram rather than added by
default to the UML-Profile-Store. Similarly to the first scenario, the second scenario is
also executed on Java-based Eclipse projects.

Prototypical Implementation. To realize JUMP, we developed three transforma-
tion chains, i.e., JavaCode2UMLProfile, JavaCode2ProfiledUML, and ProfiledUML2-
JavaCode. For injecting Java code to our chains, we reuse MoDisco [4], which gen-
erates a Java model that is considered as input for the JUMP tool. Hence, it can be
considered as a specific model discoverer to extract annotation types from Java libraries
in terms of profiles. To generate Java code from such models we extended the code
generator provided by Obeo Network5. The prototype and the collected profiles from
20 Java libraries with over 700 stereotypes are available at our project web site6.

Scalability Evaluation.To report on the scalability of the JUMP tool, we measured
the execution time of applying the JavaCode2UMLProfile and JavaCode2ProfiledUML
transformation chain to real-world libraries and applications. For obtaining the mea-
sures, we executed them in Eclipse Kepler SR2 with Java 1.7 on commodity hardware:
Intel Core i5-2520M CPU, 2.50 GHz, 8,00 GB RAM, Windows 7 Professional 64 Bit.

Library
Code

Elements
Declared

Stereotypes
Execution
Time�in�Sec

JPA1 20K 84 2.362
Objectify2 40K 18 1.842
Spring6 500K 63 10.292
EclipseLink7 700K 127 29.614

Application Applied
Stereotypes

Petstore8 10K 287�(12�Profiles) 4.581
DEWSͲCore9 30K 253�(2�Profiles) 3.116
Findbugs10 100K 1808�(3�Profiles) 26.620
EclipseLink 700K 7117�(3�Profiles) 199.028

Table 2: Performance Measures

Table 2 summarizes our obtained
results by emphasizing (i) the num-
ber of code elements in the inter-
mediate Java model, (ii) the num-
ber of declared and applied stereo-
types and (iii) the measured exe-
cution times. The rationale behind
our selection of libraries (JPA, Ob-
jectify, Spring7, and EclipseLink8)
and applications (Petstore9, DEWS-
Core10, Findbugs11, and once more
EclipseLink) is to consider small-
sized to large-sized libraries and applications with varying number of declared and
applied stereotypes. Clearly, the size of the input models passed to the transformation

5 http://marketplace.eclipse.org/content/uml-java-generator
6 http://code.google.com/a/eclipselabs.org/p/uml-profile-store
7 http://projects.spring.io/spring-framework
8 https://www.eclipse.org/eclipselink
9 http://oracle.com/technetwork/java/index-136650.html

10 Distant Early Warning System (DEWS), a use-case of the ARTIST project [1]
11 http://findbugs.sourceforge.net

chains has a strong impact on the execution time of the JUMP tool as they are tra-
versed throughout the generation of profiles and profiled models. Regarding the profile
generation, the number of generated stereotypes is another main factor that impacts on
the execution time. The more stereotypes are generated the more extensions to UML
metaclasses need to be created. For instance, even though the JPA is compared to Ob-
jectify smaller in size the execution time is higher because a lot more transformation
rules are applied when considering the number of declared stereotypes. Similarly, the
number of applied stereotypes and their respective profiles impacts on the execution
time. For instance, in the Petstore application, stereotypes are applied from 12 differ-
ent profiles, which explains the higher execution time compared to DEWS-Core, even
though the latter is larger in size. Finally, the execution time of generating profiled mod-
els is generally higher compared to profiles because the class structure of the former is
much larger in size compared to the latter. For instance, considering EclipseLink and
the number of generated stereotypes compared to classes the factor is almost 30.

4 Future Work

The JUMP tool aims at closing the gap between programming and modeling concern-
ing annotation mechanisms. Still, open challenges remain to further integrate the two
areas. For instance, with the latest Java version (1.8) we have repeating annotations that
enable the same annotation to be repeated multiple times in one place which is currently
not supported by stereotypes in UML. Furthermore, we plan to incorporate the produc-
tion of UML activity diagrams for Java method implementations in JUMP in order to
represent also annotation applications on the statement level in UML. Another line of
research we plan to investigate is to further evaluate the JUMP tool in the context of
the ARTIST project by empirical studies with our use case providers to determine the
practical benefits for understanding and migrating legacy applications.

References

1. A. Bergmayr et al. Migrating Legacy Software to the Cloud with ARTIST. In Proc. of CSMR,
pages 465–468, 2013.

2. A. Bergmayr, M. Grossniklaus, M. Wimmer, and G. Kappel. JUMP—From Java Annotations
to UML Profiles. In Proc. of MODELS, 2014.

3. M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in Practice.
Morgan&Claypool, 2012.

4. H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. MoDisco: A Generic and Extensible Frame-
work for Model Driven Reverse Engineering. In Proc. of ASE, pages 173–174, 2010.

5. L. Fuentes-Fernández and A. Vallecillo. An Introduction to UML Profiles. European Journal
for the Informatics Professional, 5(2):5–13, 2004.

6. P. Langer, K. Wieland, M. Wimmer, and J. Cabot. EMF Profiles: A Lightweight Extension
Approach for EMF Models. JOT, 11(1):1–29, 2012.

7. U. Nickel, J. Niere, and A. Zündorf. The FUJABA Environment. In Proc. of ICSE, pages
742–745, 2000.

8. R. F. Paige and L. M. Rose. Lies, Damned Lies and UML2Java. JOT, 12(1), 2013.
9. B. Selic. The Less Well Known UML: A Short User Guide. In Proc. of SFM, pages 1–20,

2012.

DPLFW: a Framework for the

Product-Line-Based Generation of

Variable Content Documents

Abel Gómez1, Pau Mart́ı2, M. Carmen Penadés2, and José H. Canós2

1 AtlanMod team (Inria, Mines Nantes, LINA)
4 rue Alfred Kastler. 44307 Nantes, France

abel.gomez-llana@inria.fr

2 ISSI – DSIC, Universitat Politècnica de València.
Cno. de Vera, s/n. 46022 Valencia. Spain.
{pmarti,mpenades,jhcanos}@dsic.upv.es

Abstract. Document Product Lines (DPL) is a document engineering
methodology that applies product-line engineering principles to the gen-
eration of documents in high variability contexts and with high reuse of
components. Instead of standalone documents, DPL promotes the defi-
nition of families of documents where the members share some common
content while di↵er in other parts. The key for the definition is the avail-
ability of a collection of content assets which can be parameterized and
instantiated at document generation time.
In this demonstration, we show the features of the DPL framework
(DPLfw), the tool that supports DPL. DPLfw implements the domain
engineering and application engineering stages of typical product line
engineering approaches, supports di↵erent asset repositories, and gener-
ates customized documents in di↵erent output formats. We use the case
study of the generation of customized emergency plans in a University
campus [http://youtu.be/ueKGfmfkyI0].

1 Motivation

The concept of document has changed in last decades from the classical printed
artifact to a purposeful and self-contained collection of information in a technolo-
gy-neutral way [1]. In more and more domains, documents are the central pieces
of the business processes; moreover, in most cases the generation of customized
documents has become the final milestone. Examples are customized emergency
plans for organizations, customized learning objects based on students’ profiles,
or customized book catalogs made according to customers’ preferences.

Customization can be made in three dimensions, namely content, structure
and presentation. Specifically, content customization has been tackled from two
di↵erent perspectives. On the one hand, proposals on Variable Data Printing
(VDP) use variables within documents that are used as placeholders for con-
tent that are replaced with values to generate customized documents. These
approaches are mostly XML-based [5, 8, 10]: document components are defined

mailto:abel.gomez-llana@inria.fr
mailto:pmarti@dsic.upv.es
mailto:mpenades@dsic.upv.es
mailto:jhcanos@dsic.upv.es
http://youtu.be/ueKGfmfkyI0

in XML, and the customized document is generated using XSLT, XPath, and
other related technologies. In these proposals, the variability model is implicit
(that is, it is embedded in XML, XPath and XSLT expressions), forcing docu-
ment engineers to have a high knowledge about the XML world. On the other
hand, more recent proposals such as [4,9] use a product line approach to model
the variability explicitly. These proposals use feature models to identify the vari-
ability points from a domain-oriented perspective, hiding the XML complexity.

The Document Product Lines approach (DPL) [2, 7] is an example of the
latter. DPL was created with a twofold goal: first, to make variable content
documents creation a↵ordable to non-expert users by including a domain engi-
neering process previous to document generation; and second, to enforce content
reuse at domain level following principles of Software Product Line Engineering
(SPLE). We implemented a tool, DPLfw [3], to provide the methodological and
technological background to creating variable content documents by the DPL
approach. DPLfw implements a true product line engineering process where
the content variability is represented using document feature models and di↵er-
ent variants of the document may be generated by defining di↵erent document
configurations. DPLfw was developed following the MDE and Model Driven
Architecture (MDA) paradigms, which allowed us to take advantage of code
generation techniques for the implementation of the tool prototype.

2 The Document Product Lines methodology

DPL is a method for the generation of variable content documents. As in SPLE,
the DPL process is the concatenation of two main subprocesses, namely Domain
Engineering and Application Engineering. Fig. 1 shows the most relevant tasks
and artifacts in each subprocess using the BPMN notation.

The goal of the Domain Engineering is to define a family of documents and
related artifacts. A family is a set of documents that share some mandatory
content while di↵er in other optional content. To enforce reuse, the content of a

Fig. 1. DPL-based Document Generation Process

family of documents is structured via a document feature model. In the Analyse
Document Family task, a domain engineer specifies the documents in terms of
features and feature attributes. The result is a document feature model including
mandatory, optional, alternative features and their corresponding attributes (if
applicable). In the Design Document Family task, the generic document archi-
tecture is defined by identifying the document components (called core assets

in the SPLE terminology and InfoElements in DPL) required according to the
feature model built in the previous stage. These InfoElements may define a set of
variables corresponding to a set of placeholders, i.e., parts of their content that
may be instantiated at later stages of the document generation process. Specific
instances of the architecture are created later in the process, after the variabil-
ity points and document variable have been fixed for a specific document. DPL
assumes the existence of a Repository where InfoElements are stored and orga-
nized for reuse. Metadata are attached to each InfoElement in order to support
retrieval processes in the Develop Core Asset task to find existing components.
Finally, in the Generate Document Line task, a production plan is obtained; it
is a process that specifies how the components are integrated according to the
di↵erent relationships defined between the document features.

In the Application Engineering subprocess, a member of the document fam-
ily is generated. The process starts with the Characterize Document task by
selecting in the configuration the specific document features and variable values
to be included in the final document. Next, the core-assets associated to the
selected document features are retrieved and put together to Generate a Doc-

ument Creation’s Workflow model that it is used to generate a set of Custom
Document Editors. The editors provide guidance for Enacting the Document’s

Creation Workflow by giving both a task-oriented and user-centered view of the
document based on editing task and permissions producing the final document.

3 The DPLfw Framework

Figure 2 describes how a (simplified) DPL process is carried out in DPLfw. The
Domain Engineering stage is an iterative process. For the sake of simplicity no
specific order is enforced to execute its tasks as far as there is a fully populated

DPLFW

Application EngineeringDomain Engineering

<placeholder>

<placeholder>
;
;

:
:

value
selection

var
criterion

Domain
Engineer

Feature
 definition

Document
component
definition

Feature
Editor

Configuration
editor Custom

Document
Editors

Document
Generator

Final
Document

Document
 Component
 with variable data

Repository

Document
Engineer

Component
Editor

Document
characterization

Candidate
InfoElements

Fig. 2. DPLfw overview

document feature model describing the domain at the end of the stage. The
Feature Editor is used by the Domain Engineer to characterize the variability
of the domain as a document feature model. The Feature Editor interfaces with
the Repository, which contains the InfoElements that will later be reused. All
these elements support the Analyse Document Family task (cf. Figure 1).

It is noteworthy that, for the sake of simplicity, the Reference Architecture

matches the structure of the feature model, and thus, the Design Document

Family task does not require user-interaction. The Component Editor supports
the Develop Core Assets task and is used to create new InfoElements and add
them to the Repository. The Generate Document Line, which will describe how
to retrieve and integrate the di↵erent components to obtain the final product, is
also hidden from the user-point of view.

Regarding the Application Engineering subprocess, the Configuration Editor

supports the Characterize Document task through the selection of variability
points. Once a document feature model configuration is defined, the Enact Doc-

ument Creation’s Workflow task starts and the Custom Document Editors are
generated by composing the InfoElements. These editors are used to fill in any
remaining variable data. Finally, the Document Generator (a DITA-based [6]
document generator engine) integrates the di↵erent components to obtain a fully
instantiated document generated in a specific format (printed, hypermedia, etc.).

4 Demonstration: The UPV Campus Emergency Plans

Emergency plans development is the field we selected for our case study. An
emergency plan is a document that contains all the knowledge required to re-
spond to any incident in an organization. Emergency plans development is a
domain that brings together a set of requirements that makes it an interesting
real case study. In our demonstration we will show how a family of emergency
plans is modeled, and how a customized emergency plan is generated. The UPV
Campus is a real case study, and its document feature model represents the
family of emergency plans of the university campus; where each building of the
campus has its own emergency plan obtained as a configuration of the family.

Prior to the adoption of the DPL methodology in the UPV, new emergency
plans were manually created using a text editor (MS Word). Applying DPL to
the development of emergency plans requires that a set of document fragments
(i.e. InfoElements) need to be created to be combined in the final document and
a Document Feature Model describing the family of plans. However, sometimes
an InfoElement needs some small parts to be changed from one emergency plan
to another (e.g. the building name or the specific maps or warning systems,
etc.). This scenario allows us to show how both approaches for document cus-
tomization (variability-based customization and Variable Data Printing) have
been combined in DPL and DPLfw.

5 Conclusions

DPLfw supports the generation of variable content documents in a product-line
style. Such an approach has several advantages. On one hand, a domain-oriented
variability specification helps to hide the complexity intrinsic to document de-
scription languages such as XML. On the other hand, the definition of generic
content components increases the reusability of content significantly. DPLfw
supports the generation of customized documents with high levels of reuse. Its
foundation, DPL, aims at raising the level of abstraction in comparison with pre-
vious approaches, helping domain engineers and document engineers to develop
families of documents without knowledge of the underlying document represen-
tation techniques such as XML, XPath, DITA or DocBook.

We have illustrated the use of DPLfw with an example taken from our
collaboration with the emergency planning team at the Universidad Politècnica

de València. The DPLfw documentation and prototype are publicly available
for download in [3].

References

1. Glushko, R., McGrath, T.: Document Engineering: Analyzing and Designing Doc-
uments for Business Informatics & Web Services. MIT Press (2005)

2. Gómez, A., Penadés, M.C., Canós, J.H., Borges, M.R., Llavador, M.: A framework
for variable content document generation with multiple actors. Information and
Software Technology 56(9), 1101 – 1121 (2014), special Sections from “Asia-Pacific
Software Engineering Conference (APSEC), 2012” and “Software Product Line
conference (SPLC), 2012”

3. ISSI Research Group: DPLfw (2014), http://dpl.dsic.upv.es/, (spanish only)
4. Karol, S., Heinzerling, M., Heidenreich, F., Assmann, U.: Using feature models for

creating families of documents. In: Proceedings of the 10th ACM symposium on
Document engineering. pp. 259–262. ACM, New York, USA (2010)

5. Lumley, J., Gimson, R., Rees, O.: A framework for structure, layout & function in
documents. In: Proceedings of the 2005 ACM symposium on Document engineer-
ing. pp. 32–41. ACM, New York, USA (2005)

6. OASIS: Darwin Information Typing Architecture (DITA) Version 1.2 (Dec 2010),
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.html

7. Penadés, M.C., Canós, J.H., Borges, M.R., Llavador, M.: Document product lines:
variability-driven document generation. In: Proceedings of the 10th ACM sympo-
sium on Document engineering. pp. 203–206. ACM, New York, USA (2010)

8. Piccoli, R.F.B., Chamun, R., Cogo, N.C., de Oliveira, J.a.B.S., Manssour, I.H.: A
novel physics-based interaction model for free document layout. In: Proceedings
of the 11th ACM symposium on Document engineering. pp. 153–162. ACM, New
York, USA (2011)

9. Rabiser, R., Heider, W., Elsner, C., Lehofer, M., Grünbacher, P., Schwanninger,
C.: A flexible approach for generating product-specific documents in product lines.
In: Bosch, J., Lee, J. (eds.) SPLC. Lecture Notes in Computer Science, vol. 6287,
pp. 47–61. Springer (2010)

10. Sellman, R.: VDP templates with theme-driven layer variants. In: Proceedings of
the 2007 ACM symposium on Document engineering. pp. 53–55. ACM, New York,
USA (2007)

http://dpl.dsic.upv.es/
http://docs.oasis-open.org/dita/v1.2/spec/DITA1.2-spec.html

Combining Textual and Web-based Modeling

Martin Haeusler, Matthias Farwick, and Thomas Trojer

University of Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
firstname.lastname@uibk.ac.at,

Abstract. Documenting large scale IT-architectures is a laborious task
that is executed by many di↵erent stakeholder types. We argue that
a major obstacle that keeps stakeholders from keeping models up-to-
date is inadequate user interfaces for specific stakeholders. In this demo
paper we present a novel modeling tool that provides adequate stake-
holder views and describe the implementational challenges. The tool
motivates users to contribute documentation by allowing textual mod-
eling for technical users and web-based modeling via forms for business
users at the same time. The tool demonstration video is available at:
https://www.youtube.com/watch?v=PaP2Sppiv7g&feature=youtu.be

1 Introduction

In the context of Enterprise Architecture Management (EAM) and systems op-
eration management, specialized tools are often used to model the dependencies
between the IT-infrastructure, deployed applications and the business functions
they support [5]. These models are used to analyze the current architecture,
assess risks and plan changes to the architecture.

In our previous empirical research [3] we showed that a major problem in
EA documentation is that the EA models become quickly outdated. Therefore
we focused on increasing automation in EA documentation and enhancing semi-
automated data collection processes [3]. However, we realized that automation
is not always applicable, especially in the case of application modeling where
human abstraction is needed to hide distracting detail.

Therefore, we argue that in order to motivate stakeholders to continuously
contribute their knowledge to the model, the data input methods need to be
adapted to the preferences of the di↵erent user types. In our previous work [4] we
presented Txture, an EA documentation tool that uses a textual domain-specific
language (DSL) as a collaborative model input method. In Txture visualizations
of the model can then be created online via a corresponding web-application.
Experience that we gained with the tool in practice showed that this textual
input method is fast and intuitive for technically skilled users and increases
their motivation to contribute to the documentation, in particular when they are
already working in a textual environment. However, for less technically skilled
users, no alternative input method was available.

In this demo paper we therefore present a proof–of–concept prototype as
part of the Txture development process that combines textual and form-based

https://www.youtube.com/watch?v=PaP2Sppiv7g&feature=youtu.be

modeling in the web. It thereby allows distinct user groups to work on the same
model in their preferred input style. Both the textual and the web-based clients
are kept in-sync.

There exists some related work in this area. For example the projectional
modeling approach of the Meta Programming System1 or the recent work of
Atkinson et al. [1] that combines graphical and textual modeling. The two major
di↵erences to our approach are that the presented systems (a) work on desktop
clients and (b) are applying a projectional editing approach in which the text can
only be edited with a specific tool and not any text editor. Other approaches, like
the work of Engelen et al. [2] only allow one-way synchronization between the
clients. For example, the authors propose a textual language for describing UML

Activity instances which are embedded in an XMI file. This file is processed by
a compiler which transforms the textual descriptions into real Activities. The
opposite direction – from object representation to textual syntax – is left as an
open issue. In our demonstration video that accompanies this paper, we explain
our use–case in more detail and demonstrate both transformation directions.
Since the combination of the two modeling paradigms is a particularly complex
task, we detail some of the key technical challenges in this demo paper that we
faced when implementing this novel approach to model management and EA
documentation.

2 Combining Textual and Web-based Modeling

The prototype consists of three main components. First, an Eclipse-based plugin
that allows textual modeling according to a pre-defined syntax and is based on
the Xtext framework2. Second, a web-application that allows to enter model
data in a form-based manner. Third, a model repository that centrally stores
the model for all clients. The di�culty of integrating the two types of modeling
lies in the two di↵erent model organization styles. Model element organization
on the textual side is governed by folders and files that contain structured text
which is parsed to build the model in memory. On the other side a multi-user web
application is employed that stores the model centrally in a model repository. As
shown in Figure 1 we tackle this problem with our tools and both, the changes
to the text model and the ones applied to the web-client synchronized via the
model repository.

2.1 Challenges in Synchronizing Textual and Web-based Models

This section gives an overview of the most significant problems and our solu-
tions. Figure 1 shows the simplified communication between attached clients in
a distributed modeling context. Every number in the figure corresponds to a
paragraph number which explains the synchronization challenges that occur.

1 JetBrains MPS Homepage: http://jetbrains.com/mps
2 Xtext Homepage: http://www.xtext.org

http://jetbrains.com/mps
http://www.xtext.org

Txture Server

1

1 Arbitrary Metamodel & Grammar

2 Assembling Model & Metadata

3 Model-To-Text Transformation

4 Dynamic UI Generation

2 3

4

Solved Key Problems:

Fig. 1. Synchronizing Model Data across multiple Clients

Problem 1: Arbitrarity of Grammars & Metamodels
The textual client uses Xtext, a parser-based framework for DSLs. In order to
suit the requirements of a given use case, our tool needs to be capable to deal
with any Xtext grammar and metamodel.
Solution: We employ a reflective approach to metamodel access by utilizing
the capabilities of EMF

3, avoiding a direct compile-time dependency to any
given metamodel. In order to deal with arbitrary grammars, we o↵er interfaces
for Language Extensions ; i.e. Eclipse Plugins that contain Xtext grammars and
Model–to–Text generators.

Problem 2: Assembling the Model & Gathering Metadata
Since the textual client relies on files containing concrete DSL syntax for storing
the model, they must be parsed and merged into a single model. Still, we later
require the source file location of any merged model element. This is important
to later re-assemble model data into the correct positions in the text files and
folders.
Solution: Xtext itself is based on EMF Ecore for representing the Abstract

Syntax Trees (AST) that result from each parser run. We assemble the AST of
each DSL file into a common model, resolving all encountered cross-references
between model elements. The result is the model that we need to commit to the
server. Xtext also o↵ers access to element-based metadata (e.g. the element file
location) which we need to send to the server as well. Please refer to Section 3
for details.

3 Eclipse Modeling Framework: http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

Problem 3: Model–to–Text Transformation & File Locations
During a checkout process, the textual client receives a serialized version of the
model. Each element in the model must be converted to concrete DSL syntax
and furthermore must be placed in the correct file at the correct position.
Solution: The Model–to–Text Transformation depends directly on the grammar
of the model at hand and therefore cannot be processed directly by the generic
part of the application. Consequently, we defer this task to a specialized Eclipse
Plugin which contains the Model–to–Text generator for the particular grammar.
After generating the concrete syntax for a model element, the tool decides upon
the file location of each resulting piece of text by taking the element file location
meta-information into account. If none is given (e.g. if the element was newly
created by the web client), it is put into a special folder for pending elements.
The user can then manually reorganize these elements into appropriate locations.

Problem 4: Dynamic UI Generation
The Vaadin4-based web clients need to process instances that adhere to a meta-
model which is unknown at compile time. Similar to the textual client, the web
client needs to treat the metamodel as arbitrary. This raises the question of how
to assemble a proper user interface in this scenario.
Solution: We employ a dynamic GUI generation approach which infers a UI
widget for every element and property in the metamodel. For example, the in-
ference mechanism will produce a Textfield widget for every attribute of type
String with multiplicity one. For an attribute with an enumerated type, a Combo
Box will be generated that contains the literals of the enumeration as choices. In
a second step, the inferred widget receives its value directly from a given model
element, e↵ectively creating a databinding between GUI and model. When the
model changes are committed, this binding is used in the inverse direction to
apply changes made by the user directly to the model.

3 Problem Discussion: Element-based Metadata

As explained by Atkinson et al. [1], maintaining element-based metadata in an
environment based on direct editing and parser technology (such as our text-
based client) is a di�cult problem. Metadata, such as unique identifiers and
file locations, is usually not contained in the textual syntax for usability reasons.
Therefore, it must be processed and maintained by the system in the background.
Every time a file is changed by the user, a new AST is built by the parser. In
our scenario, that AST (after minor modifications) is e↵ectively the same as
the resulting model. However, we only have element-based metadata for our
current AST, not for the new one produced by the parser. Furthermore, there
are no unique identifiers in the new AST that we could utilize to match two
elements. For that reason, we have to rely on content-based matching. We use
the EMFCompare

5 framework for this purpose, which identifies pairs of elements

4 Vaadin Homepage: https://vaadin.com/home
5 EMFCompare Homepage: http://www.eclipse.org/emf/compare/

https://vaadin.com/home
http://www.eclipse.org/emf/compare/

(one from each parse tree) that refer to the same semantic object. Due to the
undecidability of the model matching problem, resulting matches are only best-
e↵ort attempts. We have to make this trade-o↵ of potentially losing element
metadata in order to preserve the user experience of true textual editing, as
opposed to indirect (“projectional”) editing employed for example by Atkinson et
al. It is important to note that the maintenance of element-based metadata across
parse processes is not a strict requirement for the current tool implementation
(the textual client is currently the sole producer and consumer of the metadata),
but will be more important once other editors are added to the tool as well, which
in turn may add more metadata to each element.

4 Conclusion & Outlook

In this paper we presented a modeling tool prototype that allows for the synchro-
nization between textual and web-based modeling via a central model-repository.
The motivation for this tool is the combination of these modeling paradigms to
allow di↵erent stakeholder types to enter data in their desired format in the
context of IT-architecture modeling. We highlighted the technical and usabil-
ity challenges we faced in the implementation. We have shown that the di↵erent
modeling paradigms like form-based and textual modeling pose a challenge in the
implementation as well, in particular when it comes to element–based metadata
in text–based environments that allow for direct editing.

The insights we gained from the here-described prototypical implementation
are currently used to extend our EA tool Txture6 with form-based modeling
capabilities. We are also extending our approach of using multiple types of mod-
eling editors. An editor e.g. using Excel spreadsheets is part of our current e↵orts.

References

1. Atkinson, C., Gerbig, R.: Harmonizing Textual and Graphical Visualizations of
Domain Specific Models Categories and Subject Descriptors. In: Proceedings of the
Second Workshop on Graphical Modeling Language Development. pp. 32–41. ACM,
New York, NY, USA (2013)

2. Engelen, L., van den Brand, M.: Integrating textual and graphical modelling lan-
guages. Electronic Notes in Theoretical Computer Science 253(7), 105–120 (2010)

3. Farwick, M., Schweda, C.M., Breu, R., Hanschke, I.: A situational method for semi-
automated Enterprise Architecture Documentation. Software & Systems Modeling
(2014)

4. Farwick, M., Trojer, T., Breu, M., Ginther, S., Kleinlercher, J., Doblander, A.:
A Case Study on Textual Enterprise Architecture Modeling. In: Enterprise Dis-
tributed Object Computing Conference Workshops (EDOCW), 2013 17th IEEE
International. pp. 305 – 309. IEEE, Vancouver, BC (2013)

5. Matthes, F., Buckl, S., Leitel, J., Schweda, C.M.: Enterprise Architecture Man-
agement Tool Survey 2008. Tech. rep., Technische Universität München,Chair for
Informatics 19 (sebis) (2008)

6 Txture Homepage: http://www.txture.org

http://www.txture.org

Tool support for Collaborative Software Quality

Management

Philipp Kalb and Ruth Breu

Institute of Computer Science
University of Innsbruck

Email: philipp.kalb, ruth.breu@uibk.ac.at

Abstract. Nowadays cloud services and complex cyber–physical sys-
tems gradually find their way into practice. As a result the need for
end–to–end software quality management across platform and organiza-
tional boundaries has become paramount. One solution proposed by the
software engineering community is the use of integrated model reposi-
tories for interchanging, interlinking and analyzing software engineering
data and coordinating actions of manifold stakeholders working on this
data. With MoVE, the Model Evolution Engine, we have developed a
model repository supporting model–based data management in hetero-
geneous tool environments. The state machine based workflow concept
allows a tight integration of data and automated and manual actions
on the repository in a change–driven way. In this paper we will present
the essential components of our MoVE Framework, starting with an in-
troduction of the most important concepts, followed by the state based
workflow language which will be contained in our demonstration 1.

1 Introduction

Modern software systems tend to consist of fragmented services across devices,
platforms and organizational boundaries. To handle the rising complexity of
such systems the consideration of end–to–end quality management is of major
importance. For example the management of security in large–scale system like
national health records requires coordinated e↵orts of heterogeneous stakehold-
ers. Ranging from security engineers tackling technical issues such as designing
secure software services to non–technical stakeholders such as compliance man-
agers, surveying legal regulations, are also involved. As a consequence these
systems demand for a consolidated treatment of data and processes in the realm
of IT management, software engineering and systems operation [1].

Standards such as ITIL [2] and the software engineering community sug-
gest the use of integrated model repositories for interchanging, interlinking and
analyzing data [3,4,5]. While repositories have a long history in software engi-
neering there exists still a huge gap in integrating di↵erent kinds of model–based
data and semi–structured data. Additionally, the support of processes for end–
to–end quality management, especially the interoperation of strictly structured

1 http://youtu.be/WKG__UnHL8U

http://youtu.be/WKG__UnHL8U

processes in IT management and agile processes in software engineering comes
with further challenges. Flexible ticket based workflow management tools, such
as IBMs Jazz platform [6] or Atlassians JIRA project management tool [7], have
reached first adoption in practice in recent years. However, they do not address
the aspect of data integration and are still weak in allying manual and automated
tasks.

With MoVE, the Model Versioning and Evolution Engine, we have conceptu-
alized and implemented a model repository referring not only to the data integra-
tion aspect but also the collaboration aspect. The MoVE–approach has a focus
on continuous model integration for software engineering. MoVE provides meth-
ods to achieve traceability across tools, by applying concepts of meta–modelling
and interlinkage. A key feature of MoVE is support for change–driven engineer-
ing, which is a novel methodology to cope with system evolution by supporting
workflows triggered by changes of the systems data artifacts. The workflow lan-
guage enables quality management to support change management as described
in standards and guidelines such as ITIL [2] or ISO/IEC 20000 [8]. Hence, system
evolution respecting data artifacts can be controlled to guaranty an integrated
quality process during the complete software systems life cycle.

In Section 2 we will summarize the important concepts of the MoVE Frame-
work. Section 3 describes the novel MoVE Workflow language, which is used to
established a change–driven process.

2 Concepts and Architecture of the MoVE Framework

Figure 1 shows the overall architecture of the MoVE framework, consisting of
the central MoVE Repository and multiple MoVE Clients connecting software
engineering and IT management tools to the repository through MoVE Adapters.

From the conceptual point of view the basis of the MoVE Framework is
the Common Meta Model (CMM). The CMM configures the data structures
used in the MoVE Repository by specifying the (meta) model elements and their
relationships. The CMM consists of a set of (partial) meta models such as the
System Model, the Security Requirements Model, the Testing Model and the
like. A full integration of all data structures of connected tools is not intended,
the language should only contain the structures necessary for stakeholder col-
laboration. The CMM is designed using an UML modelling tool 2. To enhance
the UML models with MoVE specific features a UML profile (the MoVE Exe-
cuteable Profile) defines a number of stereotypes. After its design the CMM is
uploaded to the MoVE Repository with the help of a Configuration–Service. The
Configuration Service uses the XMI representation of the CMM to configure the
repository.

At the instance level Create, Read, Update, Delete and Query (CRUDQ)
services the MoVE Repository provides to commit instances of the CMM. CRUDQ
–Services are consumed by MoVE Adapters, which are plug–ins into client–side

2 in the current implementation Magic Draw is used

Fig. 1: Conceptual Architecture of the MoVE Framework

tools. These client–side tools are not limited to UML modelling tools. In the
current environment we have developed e.g. a MoVE Adapter for Microsoft Ex-
cel to demonstrate the applicability of our concepts in a heterogeneous tool
environment. The MoVE Adapter’s main responsibility is to manage the map-
ping between the tool data representation and the representation in the MoVE
Framework. CRUDQ–Services interact with the MoVE Engine, which is the main
component of the MoVE server–side.

The major tasks of the MoVE Engine are to support versioning and per-
sistency for all model elements stored in the MoVE Repository and to provide
a Plug–in Interface. MoVE is event–driven in terms of generating an event
for each change of a model or model element (using the CRUDQ–Services for
changes). Each occurring change is analysed and then transformed into a change
event. Server–side MoVE plug–ins listen to certain types of events and can trig-
ger further actions. A Plug–in System allows users to register plug–ins for
every (partial) model separately and therefore to decide which event should re-
sult in further actions. A crucial consumer of change events is the MoVE State
Machine Engine, which allows to create state machine based workflows triggered
by change events. Due to the importance of the MoVE workflow methodology it
be described in Section 3 in more details.

3 The MoVE State Machine Workflow Language

The general idea of our state machine based workflow approach is that a model
element can evolve during the operation of a system and typically undergoes a
dedicated life cycle which is represented as a UML state machine.

Fig. 2: System Model In Magic Draw with Updates for the Security Model in
MS Excel

Each model element in the CMM can be attached with states and state

machines. The states determine the quality gates in the quality lifecycle of
the model element, like a Security Requirement being in the states ADDED,
COMPLETE or EVALUATED. Transitions between states may be triggered
in an automatic way by internal events stemming from other state machines,
a timer or change events created by the MoVE Engine. Alternatively, manual
transitions need user interaction which is implemented via systems such as mail
3. Each transition can be guarded by conditions defined in OCL or the Hibernate
Query Language (HQL).

Figure 2 shows two screenshots from our demonstration. The underlying
CMM links a System Model with security requirements. The configured work-
flows control that on change of elements of the System Model, the linked security
requirements have to be be re–evaluated. On the left side one can see a System
Model designed with Magic Draw. On the right side, a spreedsheet–view in MS
Excel contains the linked security requirements. Figure 2 shows the situation af-
ter an update of the System Model. The state of the linked security requirement
changes from EVALUATED to ADDED and thus causes a re–evaluation of the
security requirements.

In case a state has changed, it is possible to define a number of actions
onEntry of the new state and onExit of the current state. These actions e.g.
may involve external systems such as mail to notify stakeholders. Actions can
be defined with two options: (i) The MoVE Executeable Profile contains several

3 in our implementation we use Mylyn

predefined actions that can be composed in standard UML activity diagrams.
Using this option it is possible to trigger predefined actions in a certain order
but with limited expressiveness. (ii) Alternatively it is possible to use the fUML
standard to create rich activity diagrams. FUML supports not only the actions
defined in the MoVE Executeable Profile but a huge subset of UML activity
diagrams. This enables users to create complex model changes on state changes.

4 Conclusion

In this demonstration paper we have sketched the MoVE framework which is a
powerful model repository that integrates model storage capabilities.

The MoVE framework has been developed within the EU-IST project Se-
cureChange [9] and has been employed as a central model repository for security
policy interlinkage within the EU-IST project PoSecCo [10]. The has been evalu-
ated in several case studies, both from applicability in industrial context, but also
performance perspective. Within PoSecCo, the MoVE environment included six
connected tools, using more than 4000 instances and about 15 state machines.
The tool is available open source under Eclipse EPL license.

References

1. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., Innerhofer-
Oberperfler, F.: Living models - ten principles for change-driven software engi-
neering. Int. J. Software and Informatics 5(1-2) (2011) 267–290

2. APM Group Ltd: ITIL o�cial website, accessed on february 19, 2014.
http://www.itil-o�cialsite.com/home/home.aspx.

3. Sztipanovits, J.: Cyber physical systems - convergence of physical and information
sciences. it - Information Technology 54(6) (2012) 257–265

4. Atkinson, C., Stoll, D., Bostan, P.: Supporting view-based development through
orthographic software modeling. In: ENASE. (2009) 71–86

5. Bruegge, B., Creighton, O., Helming, J., Kogel, M.: Unicase an ecosystem for uni-
fied software engineering research tools. In: Third IEEE International Conference
on Global Software Engineering, ICGSE. (2008)

6. IBM: Jazz – rational team concert; project web side, accessed on february 20,
2014. https://jazz.net/products/rational-team-concert/.

7. Atlassian: Jira – project web side, accessed on march 20, 2014.
https://www.atlassian.com/software/jira.

8. ISO/IEC: ISO/IEC20000. Information technology – Service management.
ISO/IEC (2011)

9. SecureChange: EU project, accessed on june 30, 2014.
http://www.securechange.eu/.

10. PoSecCo : EU project, accessed on june 30, 2014 http://www.posecco.eu/.

DSLFORGE: Textual Modeling on the Web

Amine Lajmi1, Jabier Martinez2,3, and Tewfik Ziadi3

1 Software Architect, Paris, France, amine.lajmi@dslforge.com
2 SnT, University of Luxembourg, Luxembourg, jabier.martinez@uni.lu

3 LIP6, Université Pierre et Marie Curie, Paris, France, tewfik.ziadi@lip6.fr

Abstract. The use of Model-Driven Engineering in software develop-
ment is increasingly growing in industrial applications as the technolo-
gies are becoming more mature. In particular, domain-specific languages
bring to end-users simplicity of use and productivity by means of var-
ious artifacts generators. However, end-users still need to cope with
heavy modeling infrastructures and complex deployment procedures, be-
fore being able to work on models. In this paper, we propose a central-
ized lightweight approach for performing textual modeling through web
browsers. DSLFORGE is a generator of online text editors. Given a lan-
guage grammar, the tool allows to generate lightweight web editors, sup-
porting syntax highlighting, syntax validation, scoping, and code com-
pletion. DSLFORGE allows also automatic integration of existing code
generators into the generated web editor providing a complete online
modeling user experience.

Demo: http://youtu.be/KN6cneWhhKY

Keywords: textual modeling, online editor, model-driven engineering,
domain-specific languages

1 Introduction

Domain-Specific Languages (DSL) [10] let end-users feel the advantages of using
domain abstractions instead of general-purpose language constructs. Therefore,
Model-Driven Engineering (MDE) is gaining more success in industrial applica-
tions as the available methods and tools are becoming more mature. Modeling
technologies have made big steps towards better integration and simplicity of use
and, as a consequence, domain-specific standards have met great success within
multiple communities (e.g. Modelica [15], AUTOSAR [2], and SysML [17]).

However, end-users still need to cope with heavy development infrastruc-
tures and complex deployment procedures when it comes to using modeling
tools. This is because most of the existing tools are based on general purpose
Integrated Development Environments (IDEs) such as Eclipse or MPS, or stan-
dalone proprietary applications as MetaEdit+ [11]. Indeed, in most of the tools,
whether bundled into standalone Rich Client Platforms (RCP), or packaged sep-
arately as individual features, both Tooling and Runtime need to run on top of
heavy infrastructures. The deployment of modeling tools is still a tedious task for
non-developers and goes sometimes against the adoption of DSLs in enterprises.

http://youtu.be/KN6cneWhhKY

Indeed, there is a lack of practical solutions, lightweight and easy-to-deploy.
Moreover, modeling resources, as any kind of software resources today, experi-
ence an increasing demand to be accessed using di↵erent devices such as tablets
and smartphones and from any place in the world at any time.

In this paper, we present the DSLFORGE tool, as support of a lightweight
centralized approach that allows end-users to edit and process textual models
through web browsers. The paper is organized as follows: Section 2 describes
current web-based approaches and Section 3 presents the DSLFORGE tool, its
methodology of use, two functional examples and its internal architecture.

2 Modeling in the web

There are still technological challenges to achieve modeling on the web. Nev-
ertheless, some initiatives targeting graphical languages are worth to notice.
GenMyModel [4] allows end-users to create UML diagrams and launch artifacts
generation. AToMPM [16] is an online graphical modeling environment, which
uses a subset of UML for the definition of modeling languages and renders model
elements in SVG. GEFGWT [6] allows to build graphical editors based on GEF
and could be the basis for porting GMF on the web. Also, the Eclipse-based
Remote Application Platform (RAP) [7] makes easier to port Rich Client Appli-
cations (RCP) [9] to the web, since most of the SWT [13] libraries are transpar-
ently handled by the framework. RAP-based EMF editors have been provided
in tools like EMF on Rails [8] or MUVITORKIT [12]. They are based on the
tree viewer and a properties page o↵ering limited user experience when a textual
representation is more appropriate.

Few tools provide flexible means to define textual languages and they come
with in-house formalisms. For example, in Concrete Editor [3], models are rep-
resented by DOM nodes with specific CSS classes. An Xtext-based online editor
has been also prototyped [5]. This prototype, which is based on Orion [14], was
proposed as an initial exploration on the feasibility of online textual editors. It
allows editing EMF resources online but the main part of resource processing
is done on the server. Within the server, each service (e.g. syntax highlighting,
content assist, hover, etc.) is held by a dedicated servlet asynchronously, and the
entire document is sent to the server and back again to the client at each user in-
teraction, leading to serious performance issues. Moreover, neither methodology
nor tool has been provided to show how one could bring a DSL to the web. Pro-
cessing EMF-based DSL resources intensively on the client side is not reasonable
also, as one has to port the entire Eclipse workbench to JavaScript. The frontier
of what should be done on the client side against what should be done on the
server side is an open question. DSLFORGE resource processing is distributed
between the client and the server. We take advantage of two open-source tech-
nologies which are RAP and ACE [1]. The integration with RAP allows the easy
integration with standard widgets such as file system navigators, file uploaders,
forms, etc.

3 DSLFORGE

DSLFORGE is a framework for the generation of web textual DSL editors. The
generated editors are packaged into workbench web applications which let users
create, edit, and launch transformations from models online, making it possi-
ble to work simultaneously with partners or colleagues on the same resources.
These online editors are also easily customizable and extensible. DSLFORGE
is proposed to two main categories of users: (i) DSL developers, and (ii) DSL

users. The former is given a technology to build and publish online editors on the
web. The latter uses the DSL editor through lightweight applications (enterprise
intranet, mobile devices, tablets, etc.).

3.1 Methodology

The framework is packaged into two features: Tooling and Runtime. DSL devel-
opers use the Tooling which contains all the needed components to generate and
deploy the editor on application servers. The steps below are followed iteratively
by DSL developers to get an operational online editor:

1. Design/enhance the DSL
2. If applicable, design/enhance transformations to generate some kind of arti-

facts from DSL instances
3. Automatically generate from the grammar the RCP and the RAP editor
4. If needed, enhance the web editor generated code. Third party plugins could

provide extra functionalities.
5. Automatically package and deploy the editor.

DSL users use the deployed editor to edit and process models online, namely
they can: create, edit and save models, trigger code generation from a model,
and execute other actions or functionalities if the web editor was extended by
third party plugins.

3.2 Examples

Generating a State Machine web editor: As a first example, we use the
Martin Fowler’s state machine example provided by Xtext. The example comes
with a grammar allowing textual specification of state machines. Our objective
is to provide a web editor that allows modeling state machines and generating
java test classes from these state machines on the server using the browser. An
extra functionality should be integrated for compiling and executing the test
classes through the browser too.

Using DSLFORGE, as shown in Figure 1, we select the Xtext grammar to
generate its online editor. At this moment we are able to select the existing trans-
formations that will be available online for end-users. In this case, we select the
existing state-machine to java transformation. The online editor is automatically
packaged into a web application, together with a workspace navigator.

To execute the web application we launch the browser. Figure 2 shows how
the editor handles syntax validation, content assist and how the web applica-
tion is enhanced with a code generation action contributed to the Tools menu.

Fig. 1. DSL developers using DSLFORGE to automatically create the ready to use
textual web editor

Fig. 2. DSL users using online syntax validation, content assist and model transfor-
mation launch for code generation

Semantic highlighting, scoping, history management (undo/redo), key bindings
and folding are also supported by default. In addition, a custom action is inte-
grated to the web application for compiling and executing Java classes on the
server, to show an example of the online editor extensibility.

A web editor for the specification of conference websites: As a second
example, we use DSLFORGE in the context of a conference DSL. This DSL
allows end-users, who are not necessarily HTML/JavaScript experts, to generate
and update on the server the conference or workshop website. This way, they
can update the conference website wherever they are and without knowing the
website technical details.

3.3 Architecture

The Tooling feature is shipped with Xtext, EMF, and ANTLR development fea-
tures, and contains the editor generator and other contributed plugins which may
be integrated with the editor into online workbenches (e.g. workspace navigator,
authentication, file uploader). The Runtime contains the standard RAP target
platform together with EMF target components, Xtext runtime, and additional
plugins used during the execution of the editor. The editor can be integrated
with any third party RAP-compatible plugin.

DSLFORGE follows the RAP standard architecture and lifecycle. Indeed,
each generated editor widget has its counterpart in JavaScript. Resource pro-
cessing is dispatched between the server and the client. The communication
between the client and the server uses the JSON format. Multi-threading is used
on the client side to handle the computationally expensive resource processing.
Indeed, dedicated workers parse the user input and feed-back the UI with an-
notations. Shared workers are used to manage the global index which maintains
available the cross references to all editors opened within the same user session.
On the server side, parsing and validation is triggered when saving the resource.
Asynchronous server pushes are used to notify the client about workspace change
events and server-side resource validation. The generated web applications have
been successfully deployed on two application servers (Tomcat and Jetty). Fu-
ture work will include securing the communication between the client and the
server and enhancing the management of resource access privileges.

References

1. Ace: Ace, Cloud 9 IDE (2014), http://ace.c9.io
2. AUTOSAR: AUTomotive Open System Architecture (2014), http://autosar.org
3. ConcreteEditor: Concrete Editor (2014), http://concrete-editor.org
4. Dirix, M., Muller, A., Aranega, V.: GenMyModel: An Online UML Case Tool. In:

ECOOP (2013)
5. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick

and dirty way. In: SPLASH/OOPSLA Companion. pp. 307–309 (2010)
6. GEFGWT: GEF in the web browser (2014), http://www.gefgwt.org
7. Lange, F.: Eclipse Rich Ajax Platform: Bringing Rich Client to the Web. Apress,

Berkely, CA, USA, 1 edn. (2008)
8. López-Landa, R., Noguez, J., Guerra, E., de Lara, J.: EMF on Rails. In: Proc.

ICSOFT. pp. 273–278 (2012)
9. McA↵er, J., Lemieux, J.M.: Eclipse Rich Client Platform: Designing, Coding, and

Packaging Java(TM) Applications. Addison-Wesley Professional (2005)
10. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-specific

Languages. ACM Comput. Surv. 37(4), 316–344 (Dec 2005)
11. MetaCase: MetaEdit+ (2014), http://www.metacase.com/
12. Modica, T., Biermann, E., Ermel, C.: An Eclipse Framework for Rapid Develop-

ment of Rich-featured GEF Editors based on EMF Models. In: GI Jahrestagung
(2009)

13. Northover, S., Wilson, M.: SWT: The Standard Widget Toolkit, Volume 1.
Addison-Wesley Professional, first edn. (2004)

14. Orion: Orion Project (2014), http://www.eclipse.org/orion
15. Saldamli, L., Fritzson, P., Aronsson, P., Bunus, P., Engelson, V., Johansson, H.,

Karström, A.: The Open Source Modelica Project. In: Proc. Modelica Conf. Mod-
elica Association (2002)

16. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V.,
Ergin, H.: AToMPM: A Web-based Modeling Environment. In: De-
mos/Posters/StudentResearch@MoDELS. pp. 21–25 (2013)

17. SysML: Systems Modeling Language (2014), http://www.uml-sysml.org

http://ace.c9.io
http://autosar.org
http://concrete-editor.org
http://www.gefgwt.org
http://www.metacase.com/
http://www.eclipse.org/orion
http://www.uml-sysml.org

Umple: An Open-Source Tool for Easy-To-Use Modeling,
Analysis, and Code Generation

Timothy C. Lethbridge

School of Electrical Engineering and Computer Science
University of Ottawa, Canada K1N 6N5

tcl@eecs.uottawa.ca

Abstract. We demonstrate the Umple technology, which allows software de-
velopers to blend abstract models, including class-, state- and composite struc-
ture diagrams textually into their Java, C++ or PhP code. Umple is targeted at
developers who prefer textual programming but also want additional abstrac-
tions in order to simplify their software and improve its quality. Umple devel-
opment has involved over 60 people, mostly at Canadian and US universities,
and is used to develop itself. Several systems have been umplified – converted
into Umple – thus raising their abstraction and reducing code volume. The ac-
companying video can be found at http://youtu.be/xD-zTpB_zyQ .

Keywords: Code generation, Textual Modeling, Umple, UML, State Machines

1 Introduction

Umple is a multi-faceted technology allowing users to integrate modeling into soft-
ware development straightforwardly. It supports modeling using class diagrams, state
machines and composite structure diagrams, and provides a textual syntax for these
that can be blended into any C-family language such as Java or C++. The resulting
system can consist completely of modeling abstractions, completely of base pro-
gramming language code, or a blend of either. The Umple textual form is the ‘master’
code for the system. Umple therefore renders the distinction between model and code
somewhat moot.

Umple can display and update model diagrams as text is edited, and allows chang-
es to diagrams to automatically change the Umple text. This is accomplished in near-
real-time using UmpleOnline [1]. The developer can hence work productively,
whether they prefer text or diagrams.

Umple supports a rich feature set, all documented with examples in its user manual
[2], and all generating fully-operational code in Java and C++. Features include:

• UML associations with capabilities such as referential integrity, sorting, and en-
forcement of multiplicity constraints [3].

• State machines with unlimited nesting, concurrent activities, and a choice of im-
plementation semantics such as having a separate thread for queuing events [4].

• Traits to support inclusion of model or code fragments in different contexts, or to
overcome lack of multiple inheritance.

• Active objects and ports for communicating among concurrent objects (including
support of parts of Autosar [5]).

• Constraints for invariants, state transition guards, method preconditions and ports.
• Built-in patterns such as singleton and immutable, with idioms for other patterns

such as delegation.
• Aspect-oriented code injection to allow tailoring of the generated code.
• Templates to allow construction of string output for language generation.
• Trace-directives to allow dynamic analysis at the model level [6].

Umple supports mixins to allow the system to be structured in several ways. These
include separating model abstractions from methods of classes, or dividing up the
system in a feature-oriented manner. With mixins, multiple definitions of a given
model element (e.g. a class) found separately in the Umple source files, are merged.

Umple can generate C++. Java, PhP, Ruby, SQL, metrics, documentation and vari-
ous model-interchange formats such as ECore XMI, USE , TextUML and YUML.
Particular focus is being placed on its ability to generate real-time systems.

Umple is under active development. Upcoming features include formal method
generation, incorporation of Use Cases, requirements , and product-line capabilities.
Umple has been designed to be extensible; new code generators and modeling con-
cepts can be added easily – a process that has been going on for the last 7 years.

2 Envisioned Users

Umple is intended for general-purpose development, so anybody currently developing
in one of Umple’s primary supported languages can use it to enhance productivity.
Anyone who wants to model using UML class diagrams, state diagrams or composite
structure diagrams can also use it purely for that purpose, even if they don’t intend to
generate code. However, Umple is particularly targeted at the following groups:

• Open source developers and small in-house developers: For these communities,
code is king. They may use a little UML on whiteboards, but they don’t generate
code due to awkward or expensive tools, or poor quality of the code generated by
many tools.

• University professors and students: Umple is designed to be as easy to use as
possible to facilitate teaching and learning, as discussed in the next section.

• Developers who want the flexibility and the minimum of dependency: There
are several ways of structuring an Umple system, and it can be managed with many
tools: Umple supports command-line, Eclipse-based and web-based development.
Umple generated code doesn’t require linking with third-party libraries. Although
Eclipse’s EMF is powerful, we avoided it to preclude dependency on Eclipse.

• Developers who want generated code that is readable (and inspectable), but
need to avoid modifying it: In Umple, any needed user code can be injected into

the master Umple files; nonetheless, generated code can be easily read as described
in Section 3.2.

• Real-time developers: There are several UML profiles such as Marte and Autosar
for real-time use, but these are hard to master. Umple’s C++ code generation (sup-
porting various platforms) and syntax for active objects, ports and composite struc-
ture are designed to simplify basic real-time system generation.

Other open source modeling tools are available. ArgoUML [7] was once a contender
but has never had full-fledged code generation, and its development has trickled to a
very slow pace. Papyrus [8] is an actively-developed open-source modeling suite
(According to Ohloh –Black Duck Open Hub [9] its velocity and size is about twice
that of Umple), but it is tied tightly to the Eclipse ecosystem, and is more complex
than what we desire for our targeted users.

3 The MDE and modeling challenges that Umple addresses

The key challenge Umple addresses is to make modeling simple and adoptable, and
hence accessible to most developers. Recent papers have commented on the lack of
use of modeling in practice [10], and the obstacles to adoption of modeling [11]. Um-
ple specifically targets these obstacles as described in the following subsections:

3.1 Textual modeling that blends into code and avoids round-tripping

Although many aspects of a system can be better understood using a diagram, textual
formats have advantages: They allow rapid input and editing, they allow easier ver-
sion-difference analysis, and the majority of targeted users are most comfortable with
textual forms. We have therefore sought ways to make all modeling constructs textu-
al, and to ensure they are syntactically compatible with our target programming lan-
guages. Umple is not the only textual modeling tool, but it is the only tool to allow
transparent blending of models with multiple programming languages.

3.2 High quality code generation

Most tools we have studied either do not generate code at all, or else do it in a half-
hearted way. It is common that UML associations only generate stub methods [12].

Much Umple research has focused on ensuring generated code code is of top quali-
ty and can be used for real systems out of the box. All aspects of Umple-generated
code work synergistically with other aspects, and with hand-written code.

Although it is Umple philosophy to never edit generated code, Umple generates
readable code. Comments in Umple source pass through to generated code, and trace-
ability links are injected; this enables certification and raises confidence in code cor-
rectness. There are thousands of test cases verifying all aspects of the code generation.

3.3 A highly-usable user interface

In a recent paper, we explained how for the education community, Umple’s design
was guided by the need to achieve usability, incrementality in learning how to model,
and various other traits [13]. UmpleOnline instantly starts on the web, and generates
code with one click, and diagrams with zero clicks. Umple’s command-line tool
works just like any other compiler that people have been familiar with for decades,
and Umple’s Eclipse plugin works just like any other language plugin for Eclipse.

4 Methodology for using Umple

Umple gives the user the freedom to choose their methodology. Virtually any existing
approach is possible.

Umple can be used in any of the following modes, or in a hybrid of these:
Model-first: The developer can start by creating the model (either graphically or

textually). Developers can then inject any necessary additional program code, such as
main programs or methods for algorithms, directly into the Umple text. It is possible
in Umple to specify alternative versions of code in different languages. One model
can hence be used to create a C++ and a java version of the same system.

Code-first: An existing system written in a pure programming language such as
Java or C++ can be ‘umplified’ [14]. This can be done incrementally in a series of
refactorings, gradually adding Umple syntactic constructs to replace existing code.
We have so far performed this on systems such as JHotDraw [15] and Weka [16].

5 Research and Development of Umple

Umple has been under development since 2007, and has been the subject of several
theses and many published papers that are referenced throughout this paper.

The effectiveness of Umple has been evaluated in several contexts. For example in
an experiment [17], Badreddin et al. show that developers can model with Umple’s
textual form just as readily as they can use the standard UML diagram form for the
same model. We plan to conduct more such experiments soon.

One of the key tests of Umple is that it is developed in itself. The Umple compiler
code is written in over 120 Umple files, describing over 460 classes. The project is
managed using model-driven and test-driven development, as well as continuous inte-
gration. The status of the build server [18], and the most recent test run can be found
online [19].

Development velocity has been increasing over the years. Most contributions have
been by professors and students at ten Canadian and three US universities.

6 Conclusion

Umple is an open-source modeling suite designed to make modeling practical and
accessible to a wide variety of software developers and application types.

The accompanying video (http://youtu.be/xD-zTpB_zyQ [20]) gives a walkthrough
of the use of UmpleOnline for editing models, generating code and analyzing models.
It also gives a quick look at the extensive user manual [2] and the architectural dia-
gram generated by Umple of Umple itself [21]. At the Models conference the demon-
stration will expand on many of these aspects.

References

1. UmpleOnline, http://try.umple.org
2. Umple user manual, http://manual.umple.org
3. Badreddin, O, Forward, A., and Lethbridge, T.C. (2013), “Improving Code Generation for

Associations: Enforcing Multiplicity Constraints and Ensuring Referential Integrity”,
SERA 2013, Springer SCI 496, pp. 129-149, DOI: 10.1007/978-3-319-00948-3_9

4. Badreddin, O., Lethbridge, T.C., Forward, A., Elasaar, M. Aljamaan, H, Garzon, M.
(2014), “Enhanced Code Generation from UML Composite State Machines”,
MODELSWARD 2014, Portugal

5. Autosar, http://www.autosar.org
6. Aljamaan, H., Lethbridge, T.C., Badreddin, O., Guest, G., and Forward, A. (2014), “Speci-

fying Trace Directives for UML Attributes and State Machines”, Modelsward 2014
7. ArgoUML, http://argouml.tigris.org
8. Papyrus, http://www.eclipse.org/papyrus/
9. The Umple Open Source Project on Black Duck Open Hub,

http://www.openhub.net/p/Umple
10. M. Petre, “UML in Practice”, ICSE 2013, pp 722-731
11. Forward, A., Badreddin, O., and Lethbridge T.C. (2010), “Perceptions of Software Model-

ing: A Survey of Software Practitioners”, 5th C2M:EEMDD Workshop, Paris, June 2010,
http://www.esi.es/modelplex/c2m/papers.php.

12. Forward, A. (2010): The Convergence of Modeling and Programming: Facilitating the
Representation of Attributes and Associations in the Umple Model-Oriented Programming
Language, PhD Thesis, UOttawa, http://www.site.uottawa.ca/~tcl/gradtheses/aforwardphd/

13. Lethbridge, T.C. (2014), “Teaching Modeling Using Umple: Principles for the Develop-
ment of an Effective Tool”, CSEE&T 2014, IEEE Computer Society, Austria, pp 23-28

14. Lethbridge, T.C., Forward, A. and Badreddin, O. (2010), “Umplification: Refactoring to
Incrementally Add Abstraction to a Program”, Working Conference on Reverse Engineer-
ing, Boston, October 2010, pp. 220-224

15. JHotDraw, http://sourceforge.net/projects/jhotdraw/
16. Weka, http, //sourceforge.net/projects/weka/
17. Badreddin, O., Forward, A., and Lethbridge, T. “Model Oriented Programming: An Em-

pirical Study of Comprehension”, Cascon, ACM (2012)
18. Umple Continuous Integration Server, http://cc.umple.org
19. Umple Quality Assurance Report, http://qa.umple.org
20. YouTube, Umple Demo – Summer 2014, http://youtu.be/xD-zTpB_zyQ
21. Umple Metamodel, http://metamodel.umple.org

Automatic Generation of Consistency-Preserving
Edit Operations for MDE Tools

Michaela Rindt, Timo Kehrer, Udo Kelter

Software Engineering Group
University of Siegen

{mrindt,kehrer,kelter}@informatik.uni-siegen.de

Abstract. Many tools for Model-Driven Engineering (MDE) which are
based on the widespread Eclipse Modelling Framework (EMF) [4] are de-
veloped for single tasks like e.g., generating, editing, refactoring, merging,
patching or viewing of models. Thus, models are oftentimes exchanged
in a series of tools. In such a tool chain, a grafical model editor or viewer
usually sets the degree of well-formedness of a model in order to visualize
it. Well-formedness rules are typically defined in the meta-models, yet
not all tools take them into account. As a result, a model can become un-
processable for other tools. This leads to the requirement, that all tools
should be based on a common definition of minimum consistency.
An obvious solution for this challenge is to use a common library of
consistency-preserving edit operations (CPEOs) for models. However,
typical meta-models lead to a large number of CPEOs. Manually spec-
ifying and implementing such a high number of CPEOs is hardly fea-
sible and prone to error. This paper presents a new meta-tool which
generates a complete set of CPEOs for a given meta-model. We have
successfully integrated the generated CPEOs in several developer tools.
The video http://youtu.be/w31AcMOd83Y demonstrates our meta-tool
in the context of one of our developer tools.

1 Introduction

Model-Driven Engineering (MDE) must be supported by tools which can edit or
refactor (e.g., [2]), generate (e.g., [8]), patch or merge models (e.g., [6]). These
tools are typically based upon the Eclipse Modeling Framework (EMF) [4], in
which a model is represented as an Abstract Syntax Graph (ASG). Frameworks
such as EMF provide basic API methods to edit the ASG of a model, e.g.
creating, deleting or updating single objects or attributes. However, editing ASGs
with such low-level operations can violate consistency constraints on the ASG
defined in a meta-model. The resulting inconsistent ASGs cannot be processed
and graphically visualized by most MDE tools. In order to solve this problem, all
model editing tools should use a common library of consistency-preserving edit
operations (CPEOs). These CPEOs must be tailored to the relevant meta-model
and its constraints. Unfortunately, complete sets of CPEOs can be quite large for
comprehensive meta-models such as the UML [11] meta-model. Obviously, the

manual implementation of a large number of CPEOs, e.g., as code or executable
transformations, is not only tedious, but also very error-prone.

The main contribution of this paper is a meta-tool called SERGe (SiDi↵ Edit
Rule Generator) which generates a complete set of executable CPEOs for a given
meta-model. The generated sets of CPEOs can be integrated by tool developers
into an MDE environment as illustrated in Figure 1. In this example, a model
generator integrates the functionality of SERGe to initially generate a set of
CPEOs. Afterwards, the model generator algorithm can execute these CPEOs
to generate models. Moreover, the generated CPEOs comprise a common library
which can be reused by further tools, e.g., a model refactor tool.

Fig. 1. Deployment Diagram show-
ing SERGe and CPEO integration

The generation process for a set of
CPEOs is fully automated and meta-model
independent. SERGe is based on EMF. The
generated CPEOs use EMF Henshin [5] as
the transformation language and require the
Henshin interpreter as the execution plat-
form. Henshin transformation rules are in-
place transformations and can contain model
patterns to be found and preserved, deleted
or created and also to be forbidden or re-
quired. Some consistency criteria are already
enforced by EMF, e.g., type conformance,
guaranteeing at most one container for each model element or a consistent han-
dling of opposite references. With CPEOs generated by SERGe we can extend
this list by (a) the preservation of multiplicity constraints and (b) the prevention
of containment hierarchy cycles. The generated CPEO sets are complete in the
sense that any change between two consistent models can be expressed using
these CPEOs. These types of consistency constraints are su�cient to be able to
graphically display models. We are not aware of an existing model editor which
is usable in combination with other EMF based MDE tools and which enforces
stronger consistency constraints. There can be more advanced constraints (i.e.,
OCL Constraints) inside a meta-model. However, they are typically not enforced
by model editors and thus are not covered with SERGe so far.

SERGe provides a variety of optional configuration settings to tailor the gen-
eration process, e.g., whether to generate CPEOs for supertypes instead of for
each subtype. The former will decrease the number of generated CPEOs heav-
ily. One can also enable or disable the kinds of CPEOs (create, move, etc.)
that should be generated. These are just a few configurations that are possible.
SERGe has already been used extensively in di↵erent research projects, e.g., the
SMG (SiDi↵ Model Generator) [8], SiLift [6, 10] for di↵erence recognition be-
tween models and patching of models, and others [7]. Further possible use-cases
can be tools for merging, refactoring or checking of models. More information
and an example set of CPEOs can be found at the SERGe project website [9].

2 Consistency-preserving Edit Operations (CPEOs)

The easiest way to modify the Abstract Syntax Graph (ASG) of a model is to use
basic graph operations e.g., creating or deleting single model objects. However,
basic ASG operations do not consider well-formedness rules (e.g., multiplicity
constraints) as defined by the meta-model. Hence, they can lead to inconsistent
ASGs, which cannot be processed by other tools.

As an example, we use simplified state machines with a meta-model as shown
in Figure 2(a). A StateMachine object must have at least one child object of type
Region, s. the multiplicity constraint of [1..⇤] of the containment reference region.
A basic ASG operation which creates only a single StateMachine object violates
this constraint. A CPEO on the other hand will create a StateMachine object
together with a contained, mandatory child object of type Region.

A CPEO usually comprises several basic ASG operations, but at least those
which are required to implement a consistency-preserving editing behavior. Fig-
ure 2(b) shows the CPEO mentioned above as an EMF Henshin [5] transfor-
mation rule named ’createStatemachineInModel’. Another example is provided
in Figure 2(d). The example CPEO rule has a few input and output parame-
ters: e.g., Selected is a placeholder for an input model object which defines the
context for the transformation application. Figure 2(d) depicts the changing of
an old targeted State object to a new target State in the context of a Transi-
tion. This operation contains two ASG operations, notably the deletion of an
old reference target and the creation of a new reference target.

3 Generation of CPEOs

Prior to the generation phase, the meta-model is analyzed to identify the rela-
tionships between classifiers. This is done by considering incoming references of
each classifier and the complete inheritance hierarchy. The source of a reference
can either be a parent context or a neighbor context. This depends on the na-
ture of a reference which is either containment in the first or non-containment
in the latter case. Analogously, the target of a reference can either be identi-
fied as a ’child’ or a ’neighbor’. Naturally, opposite references (e.g., region and
stateMachine in the example) have to be considered together. Otherwise invalid
CPEOs could be generated. An invalid operation would be the change of the
reference target stateMachine without also changing its opposite, namely the
containment reference region

Multiplicities of a reference (i.e., the upper bound (ub) and lower bound (lb))
are classified by one or more of the invariant groups shown in Figure 2(c). The
meta-model analysis categorizes each relationship by considering each multiplic-
ity invariant, which can be found on a reference. It determines if a target of a
reference needs mandatory objects. This is the case if the reference multiplic-
ity is classified as required. In a relationship between model elements, there can
also exist optional objects. This is the case if the reference is attached with a
many multiplicity classification. Naturally, these classifications can both apply

(a) simple state machine meta-model

(b) CPEO ’createStateMachineInModel’

classification invariant group (lb ub)
required lb > 0
bounded ub < 1
fixed lb = ub
many (ub� lb >= 1) _ (ub = 1)

(c) multiplicity invariant classifica-
tion

(d) CPEO ’changeTransitionTargetToState’

Fig. 2. Generation details

to one reference, e.g., for [1..⇤] (see Figure 2(a)). This identification allows the
generation algorithm to decide if a CPEO for the creation of an object may be
generated or if this creation may only happen in the context of another CPEO.

During the generation phase every classifier in the given meta-model is vis-
ited. By means of the previously analyzed relationships and attributes of each
considered classifier, SERGe determines which CPEO kinds will be generated
for which classifier, reference or attribute. The starting point for each deci-
sion is the nature of a reference (i.e., being containment or noncontainment). 1

The following CPEO kinds can be generated depending on the occurring mul-
tiplicity invariants: creation/deletion of elements, adding/removing neighbors,
setting/unsetting/changing of single neighbors or (default) attribute values
or moving of children between di↵erent contexts. Mandatory children and neigh-
bors of elements are integrated recursively inside a CPEO.

The generated CPEOs can also contain precondition checks to avoid falling
below required multiplicities or exceeding bounded multiplicities. This is realized
with Henshin Positive Application Conditions (PAC) and Negative Application
Conditions (NAC).

1 We assume attributes can be handled equally to non-containment references.

4 Related Work

There are several approaches to generate executable edit operations for models
beyond basic ASG edit operations. The closest approaches to ours are [1, 3].

Ehrig and Taenzer [3] address the problem to generate correct instances of
a given meta-model. In such a context, only edit operations which create model
elements are needed. Edit operations which delete or modify models are not pro-
vided. The problem that mandatory components cannot be simply deleted, but
only be replaced, is not addressed here. The generated sets of edit operations
are thus not complete in our sense. Moreover, the final result of the instance
generation process must conform to the meta-model; here intermediate and in-
consistent states can occur and need to be repaired afterwards. Our CPEOs on
the other hand never produce inconsistent intermediate states when applied; i.e.,
CPEOs preserve the consistency by-construction.

Alanen and Porres [1] proposes to first convert a model into a string represen-
tation, then edit the model using a syntax-directed editor, and finally to convert
it back to an ASG-based representation. Although basic consistency constraints
can be preserved this way, this process is not very convenient, especially in the
case of visual models.

To our best knowledge, the coverage of consistency constraints, configura-
bility and completeness of the generated sets is not met by any other existing
meta-tool to generate edit operations.

References

1. Alanen, M.; Porres, I.: A relation between context-free grammars and meta object
facility metamodels; Technical Report 606, TUCS Turku Center for Computer
Science; 2003

2. Arendt, T.; Taentzer, G.: A tool environment for quality assurance based on
the Eclipse Modeling Framework; p.141-184 in: Automated Software Engineering
20(2); 2013

3. Ehrig, K.; Küster, J.M.; Taentzer, G.; Generating instance models from meta mod-
els; p.479-500 in: Software and Systems Modeling 8(4); 2009

4. EMF: Eclipse Modeling Framework; 2014; http://www.eclipse.org/emf;
5. EMF Henshin; 2014; http://www.eclipse.org/modeling/emft/henshin/
6. Kehrer, T.; Kelter, U.; Taentzer, G.: Consistency-Preserving Edit Scripts in Model

Versioning; p.191-201 in: Proc. 28th IEEE/ACM Intl. Conf. Automated Software
Engineering (ASE 2013); 2013

7. Kehrer, T.; Rindt, M.; Pietsch, P; Kelter, U.: Generating Edit Operations for
Profiled UML Models; p.30-39 in: Proc. Models and Evolution (ME 2013); 2013

8. Pietsch, P.; Shariat Yazdi, H.; Kelter, U.: Generating Realistic Test Models for
Model Processing Tools; p.620-623 in: Proc. 26th IEEE & ACM Inter. Conf. Au-
tomated Software Engineering (ASE 2011); ACM; 2011

9. SERGe; Project Page; 2014; http://pi.informatik.uni-siegen.de/Projekte/-
SERGe.php

10. SiLift project website; http://pi.informatik.uni-siegen.de/Projekte/SiLift
11. Unified Modeling Language: Superstructure, Version 2.4.1; OMG, Doc.

formal/2011-08-05; 2011

From Pen-and-Paper Sketches to Prototypes:

The Advanced Interaction Design Environment

Harald Störrle

Dept. of Applied Mathematics and Computer Science
Technical University of Denmark (DTU), hsto@dtu.dk

Abstract. Pen and paper is still the best tool for sketching GUIs. How-
ever, sketches cannot be executed, at best we have facilitated or animated
scenarios. The Advanced User Interaction Environment facilitates turn-
ing hand-drawn sketches into executable prototypes.

1 Introduction

Graphical user interfaces (GUIs) have two important, independent aspects: ap-
pearance and a↵ordances (i.e., visuals vs. behavior). Existing techniques focus
mostly on visual appearances, providing tools for a limited scope of visual fidelity
(e.g., from GUI-builders at the high end via drawing tools such as Photoshop,
Visio or PowerPoint, to sketching tools like Balsamic at the low end). The sim-
plest possible tool for creating sketches of the visual appearance of a UI is, of
course, pen and paper (PaP). It turns out, that PaP is hard to beat in terms of
usability and cost/benefit ratio; thus it is our gold standard of drawing.

On the other hand, there is the behavioral aspect of GUIs. Most tools com-
pletely abstract from this aspect, restricting designers to simple mock-ups of
individual scenarios made from hyperlinked pictures, or manually facilitated pa-
per prototypes. A notable exception is Flowella (see http://www.youtube.com/
watch?v=xmuJwKYjiW0). An early approach of combining rough sketches with
interactive executability (to a degree) is the Silk/Denim line of work by Landay
et al. [3,2], where users would input a sketch with a digital pen. Both Flowella
and Silk/Denim are limited to very small UIs as the complexity of designs grows
dramatically with the number of behavioral variants and details added.

AIDE aspires to overcome this limitation by a number of mechanisms, most
notably using hierarchical state machines with concurrent substates, and syn-
tactic layers.1 Also, AIDE allows inputting UI designs by PaP, thus allowing to
include diverse audiences in the creation process and reducing overhead and ex-
traneous load caused by inadequate tooling. AIDE allows to complement rough
sketches (i.e., PaP input) by more elaborate input in the form of XUL (XML
User Interface Language, see https://developer.mozilla.org/en/XUL). PaP
and XUL may be mixed freely, allowing scalable fidelity. AIDE provides the
following advantages.

1 See https://www.youtube.com/watch?v=vbMblOWTRko&feature=youtube.be or the
AIDE homepage www.compute.dtu.dk/~hsto/tools.html for a demo.

http://www.youtube.com/watch?v=xmuJwKYjiW0
http://www.youtube.com/watch?v=xmuJwKYjiW0
https://developer.mozilla.org/en/XUL
https://www.youtube.com/watch?v=vbMblOWTRko&feature=youtube.be
www.compute.dtu.dk/~hsto/tools.html

– Inclusive Technology We all learn to use pen and paper from early child-
hood, so it is safe to assume everyone has su�cient dexterity in sketching;
artistic skills are not required. In contrast, operating a computer-based tool
often demands substantial expertise and/or training, which end users and do-
main experts may lack. Thus, using simple pen-and-paper sketches as AIDE
does allows us to include virtually everybody in the UI design process.

– Continuous Workflow Graphic designers appreciate sketching tools: their
low viscosity makes them ideal for exploring the design space (cf. [1,7,8]).
However, exploration has to turn into engineering eventually, at which point
developers take over from designers and visionary sketches give way to formal
models and code. Often, the overall development process is greatly a↵ected
by this discontinuity of people, cultures, and methods. AIDE supports a con-
tinuous workflow integrating initial sketching with subsequent elaboration.

– Comprehensive Design While it is relatively easy to specify the appear-

ance of an interface by a drawing, specifying its behavior is much more
di�cult (cf. [6]). In fact, the only way to completely describe arbitrary
complex interface behaviors is by programming them. Obviously, integrat-
ing drawings and code in a harmonious way is di�cult, further disrupting
the interface design workflow. Most people are either good at graphic de-
sign or at programming, but rarely at both. Storyboards only o↵er a partial
solution, since they allow to specify a very limited degree of behavior only
(basically only linear sequences, see [5, p. 105]). So, in order to create com-
prehensive interface designs, we need a way to integrate both aspects of an
interface, appearance and behavior.

– Scalable Abstraction Even small UIs may o↵er a large number of af-
fordances, all of which act together to create the overall user experience.
Capturing them in a prototype is expensive, time consuming, and inhibit-
ing change. Capturing them in a more abstract specification will lead to a
bloated and/or fragmented design that is di�cult to reintegrate, maintain,
and communicate. Establishing and maintaining consistency is an arduous
and complex task [4]. So, we need a way of managing the complexity of large
interface designs in such a way, that neither the clarity of the initial vision,
nor the details of the interactions get lost.

2 Example

Consider an example Fig. 1. It shows a small portion of an interface design from a
teaching example, the Library Management System (LMS). This toy case study
is about searching for media in a library, lending them, prolonging, them, and
and so on. Fig. 1 shows an interface design for the process of issuing a new reader
card. The numbers in red dots are not part of the notation but have been added
to improve the presentation here.

First, a dialog for entering some data appears. It contains a text field, two
groups of radio buttons with two choices each, and two buttons to proceed and
abort. The user inputs a reader’s name, selects a few options, and eventually

D

B

C

A

E

F

Sketch & Explore
y�ĐƌĞĂƚĞ�ŝŶŝƟĂů�ĚĞƐŝŐŶ�ĂƐ�Ă�ƉĞŶͲĂŶĚͲƉĂƉĞƌ�ƐƚŽƌǇďŽĂƌĚ
y�ĞǆƉůŽƌĞ�ĚĞƐŝŐŶ�ƐƉĂĐĞ�ďǇ�Ğ͘Ő͘�ŐƌŽƵƉ�ĚǇŶĂŵŝĐ�ĞǆĞƌĐŝƐĞ
y�ĞůŝĐŝƚ�ŝŶƚĞƌĨĂĐĞ�ƌĞƋƵŝƌĞŵĞŶƚƐ�ďǇ�Ğ͘Ő͘�ƚĂƐŬ�ĂŶĂůǇƐŝƐ�Žƌ�ƌĞǀĞƌƐĞ�ĞŶŐŝŶĞĞƌŝŶŐ

Elaborate Appearance
y�ƚƌĂŶƐĨŽƌŵ�ƐŬĞƚĐŚ�ŝŶƚŽ�ĂƉƉĞĂůŝŶŐ�ŐƌĂƉŚŝĐƐ
y�ŝŶĐŽƌƉŽƌĂƚĞ�ĂƉƉĞĂƌĂŶĐĞ�ŐƵŝĚĞůŝŶĞƐ
y�ůĂǇŽƵƚ�ŽĨ�t��

Elaborate Behavior
y�ĂĚĚ�ůĂǇĞƌƐ�ŽĨ�ƚƌĂŶƐŝƟŽŶƐ�ĨŽƌ�ĞǀĞŶƚ�ƚǇƉĞƐ
y�ĂĚĚ�ŐƵĂƌĚƐ�ĂŶĚ�ĞīĞĐƚƐ�;Ğ͘Ő͘�:ĂǀĂ^ĐƌŝƉƚͿ
y�ĂĚĚ�ŵĞŶƵĞƐ�ĂŶĚ�ĂŶŶŽƚĂƟŽŶƐ

Generate & Validate
y�ŐĞŶĞƌĂƚĞ�yh>�ĐŽĚĞ�ĨŽƌ�ƉƌŽƚŽƚǇƉĞ
y�ƵƐĂďŝůŝƚǇ�ƚĞƐƚ�ŽŶ�ƉƌŽƚŽƚǇƉĞ
y�ĨŽƌŵĂů�ĐŽŶƐŝƐƚĞŶĐǇ�ĐŚĞĐŬŝŶŐ
y�ĞǆƉĞƌƚ�ǁĂůŬƚŚƌŽƵŐŚ�ŽĨ�h/�ĚĞƐŝŐŶ

�ŝŐŝƟǌĞ�Θ�/ŵƉŽƌƚ
y�ĚŝŐŝƟǌĞ�ƉĂƉĞƌ�ĚŝĂůŽŐ�ƐŬĞƚĐŚĞƐ�ďǇ�ƐĐĂŶŶĞƌ�Žƌ�ĐĂŵĞƌĂ
y�ďĂƚĐŚ�ŝŵƉŽƌƚ�ĚŝŐŝƟǌĞĚ�ĚŝĂůŽŐƐ�ĂƵƚŽŵĂƟĐĂůůǇ
y�ĂŶŶŽƚĂƚĞ�ƚƌĂŶƐŝƟŽŶƐ�ǁŝƚŚ�ƚƌŝŐŐĞƌƐ͕�
���ŐƵĂƌĚƐ͕�ĂŶĚ�ĞīĞĐƚƐ�ŵĂŶƵĂůůǇ

/ŶƚĞŐƌĂƚĞ�WĂƌƚƐ�Θ��ůƚĞƌŶĂƟǀĞƐ
y�ĐŽŵďŝŶĞ�ƐĞǀĞƌĂů�t��Ɛ�ŝŶƚŽ�ŽŶĞ�ƵƐŝŶŐ
���ŵŽĚĞů�ŵĞƌŐĞ�ƚĞĐŚŶŝƋƵĞƐ

WED >D^͗�/ƐƐƵĞ�EĞǁ�ZĞĂĚĞƌ��ĂƌĚ

�ƌƌŽƌ͗��ĂƌĚ��ĂŶ�EŽƚ��Ğ�/ƐƐƵĞĚ

�ŽŶĮƌŵ͗�/ƐƐƵĞ��ĂƌĚ

/ƐƐƵĞ�EĞǁ�ZĞĂĚĞƌ��ĂƌĚ

&ŝƌƐƚ��ĂƌĚ

ZĞĂĚĞƌ

ZĞƉůĂĐĞŵĞŶƚ��ĂƌĚ

WŝĐŬ�ƵƉ�Ăƚ�ůŝďƌĂƌǇ

DĂŝů�ƚŽ�ŚŽŵĞ�ĂĚĚƌĞƐƐ

You are about to issue a new
reader card for <NAME>.

No new reader card will be
issued because of <REASON>.

H*

WƌŽĐĞĞĚAbort
WƌŽĐĞĞĚ

Abort

WƌŽĐĞĞĚZĞƚƌǇ

[input ok]

[bad input]

/ process request

,ĞůƉ

�ƵƚŽ�ĐŽŵƉůĞƚĞ

�ƵƌƌĞŶƚ�&ĞĞƐ
�ůĞĂƌ

/ lock
 window

ďĞĞƉ͊

�^�

Fig. 1. Stages in the UI development life cycle using WEDs and AIDE: Starting from
a traditional pen-and-paper wallpaper prototype, subsequent steps of elaboration yield
a prototype with executable XUL code. Note that XUL-elements, clickable areas, and
transitions have to be annotated manually in the current version of AIDE.

pressed “Proceed”. If the data validation is successful, the user must acknowl-
edges or aborts. If the process is aborted or the validation was not successful,
the user may either revise the inputs or terminate the whole process. Using the
right mouse button on the window “Issue New Reader Card” will open a pop-up
menu with four options.

States UI widgets like text boxes or buttons are represented as simple states.
Groups of widgets and complete dialogs are modeled as composite states. As a
default, only one widget or dialog can be active at any time, which in UML maps
to sequential composite states. In order to achieve di↵erent behavior, concurrent
composite may be used. Not all states need be visible in a design. For instance,
grouping radio buttons together can be achieved by an invisible compound state.
The same applies for layout elements such as vertical boxes.

Triggers Positioning a pointer over a WED element is interpreted as putting
the focus on that element. Technically, the corresponding state configuration tree

is activated. Any user events issued subsequently will be interpreted by that tree,
bottom up. For instance, positioning the mouse pointer over the “Abort” button
and pushing the left mouse button (a) issues the event single left click in the
state “IssueNewReaderCard.Abort” and triggers the transition emanating that
state. Likewise, moving the pointer over “Issue New Reader Card” and pressing
the Escape key (b) will reset the corresponding state. Any (user) actions the UI
a↵ords may be used as triggers.

Guards Transitions may carry a guard that enforces the respective condi-
tion to be true before the transition is taken. Guards may refer to environment
variables that may be used to represent a hidden UI state such as a mode.

E↵ects Then, the e↵ect of the transition (modeling a UI action) is executed
and its target state is entered. E↵ects may be described by plain text (a), code
snippets, invocation of library functions, or maybe visualized by an icon (b).
Probably the most common e↵ects are opening a new window (a), closing one
(b), or opening a modal dialog (c).

Entering States When entering a composite state C for the first time, the
substate to be entered is determined by the initial state. Reentering C will reset
its state configuration unless a history state is added to C, which restores the
state configuration in e↵ect at the time of exiting C. Exit Points (and and Entry
Points) help achieving a modular design (this is regular UML 2.2 syntax). Exiting
a state (or state machine) automatically exits all sub states, i.e., corresponding
windows are closed by reaching a final node.

Secondary Notation Annotations and comment boxes may be used freely;
they are represented as UML PseudoStates.

There is no semantic di↵erence between UML 2 state machines and a UI
design in this form: every construct in a UI design may be mapped to a UML
state machine construct. These mappings are typically very straightforward, but
have to be added manually in the current version of AIDE.

SM LMS: Issue New Reader Card

Issue New Reader Card

�ŽŶĮƌŵ͗�/ƐƐƵĞ�EĞǁ��ĂƌĚ

�ƌƌŽƌ͗��ĂƌĚ��ĂŶ�EŽƚ��Ğ�/ƐƐƵĞĚ

First Card

Replacement Card

Pick up at library

Mail to home address

Proceed

Abort

�ŽŶĮƌŵAbort

OkRetry

Reader

�ŽŶƚĞǆƚ�DĞŶƵ

Clear

Auto complete

Help

Current Status

mouse(l) /
closeWindow()

mouse(l)

mouse(l) / closeModalWindow()

mouse(l)

mouse(l) /
issueRC()

mouse(r) / openModalWindow()

ĐƌĞĚĞŶƟĂůƐ�ŽŬ
/spawnWindow()

ĐƌĞĚĞŶƟĂůƐ�ŶŽƚ�ŽŬ
/spawnWindow()

mouse(l) /
spawnWindow()

ŬĞǇ;ƚĂďͿ
ŬĞǇ;ƚĂďͿ

ŬĞǇ;ƚĂďͿ
ŬĞǇ;ƚĂďͿ

ͬďĞĞƉ;Ϳ

mouse(l)
ͬ�ƐǁŝƚĐŚtŝŶĚŽǁ;Ϳ

H*

ŬĞǇ;ĞƐĐͿ

Fig. 2. This UML state machine is yielded by stripping all appearance cues and elab-
orating e↵ects to procedure calls.

3 The AIDE Tool

The Advanced Interaction Design Environment (AIDE) is a highly modular
platform independent direct interaction tool set for creating WEDs, refining
and elaborating them in a methodical fashion, supporting distributed concurrent
group work, and generating working prototypes from WEDs. AIDE has been
under development since 2006, with 25 students at Innsbruck University, Munich
University, and the Technical University of Denmark contributing a total of
approximately 10,000 work hours to it. Step B in Fig. 1 is actually a screenshot
of the AIDE tool.

AIDE is created using pure Java, using Piccolo2D, jEdit, JGoodies Looks,
the Tango Iconset, VLDocking, and JAXB for persistency. AIDE follows a strict
separation of logic and presentation. Extensibility of AIDE is ensured by a car-
tridge mechanism that encapsulates the visual appearance of elements and func-
tions associated with them. Cartridges may be dynamically loaded or unloaded.
Apart from the basic cartridges of UML state machines and annotations, there
are currently cartridges for the XML User Interface Language (XUL), and for
importing hand-drawn storyboards. XUL is used e.g., for defining the UIs of
Mozilla projects such as Firefox and Thunderbird. AIDE provides XUL export
and integrated simulation. Finally, AIDE also o↵ers unbounded Undo/Redo,
user definable roll-back points, tear-o↵-menus to support very large screens, a
locator map, sophisticated zoom and scrolling functions, and multiple views on
elements.

References

1. Bill Buxton. Sketching User Experiences: Getting the Design Right and the Right
Design. Morgan Kaufmann, 2007.

2. James A. Landay and Brad A. Myers. Interactive Sketching for the Early Stages
of User Interface Design. Technical Report CMU-HCII-94-104, Carnegie Mellon
University, July 1994.

3. James A. Landay and Brad A. Myers. Sketching Interfaces: Toward More Human
Interface Design. IEEE Computer, 34(3), March 2001.

4. Francisco J. Lucas, Fernando Molina, and Ambrosio Toval. A systematic review
of UML model consistency management. Inf. Softw. Technol., 51(12):1631–1645,
December 2009.

5. Scott McCloud. Understanding Comics: The Invisible Art. HarperPerennial, 1993.
6. Brad A. Myers, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew J.

Ko. How Designers Design and Program Interactive Behaviors. In Paolo Bottoni,
Mary Beth Rosson, and Mark Minas, editors, Proc. IEEE Symp. Visual Languages
and humand Centric Computing (VL/HCC’08), pages 177–184. IEEE Press, 2008.

7. Mark W. Newman and James A. Landay. Sitemaps, Storyboards, and Specifications:
a Sketch of Web Site Design Practice. In Proc. 3rd Conf. Designing Interactive
Systems: Processes, Practices, Methods, and Techniques (DIS’00), pages 263–274.
ACM, 2000.

8. Y.Y. Wong. Rough and Ready Prototypes: Lessons from Graphic Design. In SIG
Computer Human Interaction (SIGCHI’92), page 685, 1992.

Concern-Driven Software Development with

jUCMNav and TouchRAM

Nishanth Thimmegowda1, Omar Alam1, Matthias Schöttle1,
Wisam Al Abed1, Thomas Di’Meco2, Laura Martellotto2,

Gunter Mussbacher3, Jörg Kienzle1

1School of Computer Science, McGill University, Montreal, Canada
2Polytech Nice-Sophia, Sophia Antipolis, France

3Dep. of Electrical and Computer Engineering, McGill University, Montreal, Canada
{Nishanth.Thimmegowda,Omar.Alam,Matthias.Schoettle,Wisam.Alabed}
@mail.mcgill.ca, {Thomas.DiMeco,Laura.Martellotto}@gmail.com,

{Gunter.Mussbacher,Joerg.Kienzle}@mcgill.ca

Abstract A concern is a unit of reuse that groups together software
artifacts describing properties and behaviour related to any domain of
interest to a software engineer at different levels of abstraction. This
demonstration illustrates how to specify, design, and reuse concerns with
two integrated tools: jUCMNav for feature modelling, goal modelling,
and scenario modelling, and TouchRAM for design modelling with class,
sequence, and state diagrams, and for code generation. For a demo video
see: http://www.youtube.com/watch?v=KWZ7wLsRFFA.

1 Introduction

In contrast to the focus of classic Model-Driven Engineering (MDE) on models,
the main unit of abstraction, construction, and reasoning in Concern-Driven
Software Development (CDD) is the concern [2]. CDD seeks to address the
challenge of how to enable broad-scale, model-based reuse. A concern is a unit
of reuse that groups together software artifacts (models and code, henceforth
called simply models) describing properties and behaviour related to any domain
of interest to a software engineer at different levels of abstraction.

A concern provides a three-part interface. The variation interface describes
required design decisions and their impact on high-level system qualities, both
explicitly expressed using feature models and goal models in the concern specifi-
cation. The goal models used in CDD are called impact models. The customiza-

tion interface allows the chosen variation to be adapted to a specific reuse con-
text, while the usage interface defines how the functionality encapsulated by a
concern may eventually be used.

Building a concern is a non-trivial, time consuming task, typically done by
or in consultation with a domain expert (subsequently called the concern de-

signer). On the other hand, reusing an existing concern is extremely simple, and
essentially involves 3 steps for the concern user :
1. Selecting the feature(s) of the concern with the best impact on relevant goals

and system qualities from the variation interface of the concern,
2. Adapting the general models of features of the concern that were selected to

the specific application context based on the customization interface, and

http://www.youtube.com/watch?v=KWZ7wLsRFFA

3. Using the functionality provided by the selected concern features as defined
in the usage interface within the application.

In general, MDE approaches rely heavily on tool support. Tool support is even
more important in the context of CDD, in particular for the concern user:
• When selecting the set of features of a concern that best meets the

requirements of the application under development, a concern user needs
to be able to perform trade-off analysis between different variations/im-
plementations of the needed functionality. To do that efficiently, a tool
is needed that performs real-time impact analysis of feature selections.

• Once a selection is made, a tool is needed that composes the models
that realize the selected features to yield new models of the concern
corresponding to the desired configuration.

• When adapting the generated concern models to the application context,
the concern user must map customization interface elements from the
concern to application-specific model elements in the application. Tool
support is helpful to ensure that the mapping is specified correctly.

• Once the concern model is customized, a tool can help to ensure that
the functionality provided by the concern is correctly used.

This demo illustrates CDD in practice by demonstrating Concern-Driven Devel-
opment with two integrated tools: jUCMNav and TouchRAM. Section 2 of this
paper briefly describes how the two tools were modified to support concerns.
Section 3 outlines concern development and concern reuse with the two tools.

2 Integration of jUCMNav and TouchRAM

jUCMNav is a requirements engineering tool created in 2005 for the elicitation,
analysis, specification, and validation of requirements with the User Require-
ments Notation (URN). jUCMNav combines two complementary views: one for
goals provided by the Goal-oriented Requirement Language (GRL) and one for
scenarios provided by the Use Case Map (UCM) notation. Recently, jUCMNav
was extended to support combined goal and feature modelling and their inte-
grated analysis based on GRL semantics [5]. Over the last two years, jUCMNav
was demoed at RE [3,4], the 2013 SDL Forum, and the 2013 iStar workshop.

TouchRAM is a multitouch-enabled tool for agile software design modelling
aimed at developing scalable and reusable software design models using UML
class, sequence, and state diagrams. It exploits model interfaces and aspect-
oriented model weaving to enable the concern user to rapidly apply reusable
design concerns within the design model of the software under development.
The user interface features of the tool are specifically designed for ease of use,
reuse, and agility. TouchRAM was introduced initially at SLE 2012 [1], and later
demonstrated at Modularity:aosd 2013 and 2014 [7] and MODELS 2013 [6].

For CDD, jUCMNav and TouchRAM are complementary to each other.
jUCMNav covers the requirements modelling side, providing support for feature
and goal modelling necessary for the definition of a concern’s variation interface.
Furthermore, jUCMNav supports scenario modelling with the Use Case Map
notation. TouchRAM on the other hand provides support for detailed design

modelling and code generation. The first step in integrating the two tools was
to define the concepts of CDD in a metamodel – the CORE (Concern-Oriented
REuse) metamodel. It defines:
• Concern, which groups together a set of models,
• Concern Interface, i.e., the variation interface, the customization inter-

face, and the usage interface,
• Concern Reuse, i.e., a concept that is used to store the selected features

and the customization whenever a concern is reused, and
• Feature, with associations to connect the models that realize the feature

and the concern reuses that the feature specifies.
Next, the existing metamodels of jUCMNav and TouchRAM had to be made
compliant with CORE. This involved declaring classes in the metamodel of
jUCMNav and TouchRAM to subclass classes in CORE. In jUCMNav, the new
subclasses of CORE concepts also subclassed existing URN classes. This allowed
the same analyses performed on URN models to also be performed on CORE-
compliant URN models. Since none of the classes and properties that already
existed in the old metamodels had to be removed or modified, the tools are
still backwards compatible, i.e., they can still read models created with previous
versions of the tools. In addition, the two tools are now file compatible, i.e., it
is possible to create a concern and define features for it in jUCMNav and then
work with it in TouchRAM, and vice versa.

The current version of jUCMNav can be downloaded from http://www.

softwareengineering.ca/jucmnav, the current version of TouchRAM from
http://cs.mcgill.ca/~joerg/SEL/TouchRAM.html

3 Concern-Driven Development in Action

The demo at MODELS shows how to first build requirements and design models
for the Authentication concern with jUCMNav and TouchRAM, and then how
simple it is to reuse the Authentication concern within a banking application.

3.1 Developing a Concern

First, the concern is created in jUCMNav, and the features of the concern are
specified. The left picture in Fig. 1 shows that Authentication has a mandatory
Authentication Means feature that may either be Password or Biometrics. Bio-

metrics must at least include Retinal Scan or Voice Recognition. An optional
subfeature of Password is Password Expiry. If desired, unsuccessful authentica-
tion may lead to Access Blocking and long idle periods to Auto Logoff.

The right picture in Fig. 1 shows how goal models are used to specify the
relative impact that each feature has on non-functional requirements and qual-
ities (e.g., security). The model shows that Retinal Scan and Voice Recognition

are the strongest Security mechanisms, even stronger than Password with Pass-

word Expiry, Access Blocking, and Auto Logoff. Once the impacts are specified,
jUCMNav allows the concern designer to interact with the feature model and
evaluate the impacts of different configurations (sets of feature selections) of the
concern (visualized with a color scheme and evaluation values from 0 to 100).

http://www.softwareengineering.ca/jucmnav
http://www.softwareengineering.ca/jucmnav
http://cs.mcgill.ca/~joerg/SEL/TouchRAM.html

Figure 1. Feature and Impact Modelling and Analysis in jUCMNav

Figure 2. Scenario Modelling and Analysis in jUCMNav

In jUCMNav, it is also possible to specify scenarios that describe how a user
would interact with the Authentication concern with the Use Case Maps notation
as shown in Fig. 2. The modeller can associate features with path elements in the
scenario, which makes it possible to automatically visualize the scenario traversal
for a given feature configuration (by highlighting the scenario path in red).

Next, the concern designer uses TouchRAM to create detailed design models
and associate them with each feature of the concern. Aspect-oriented techniques
such as class merge and sequence diagram advising are used to modularize the
structural and behavioural properties of each feature. For instance, if Authenti-

cation defines a class called Credential, the design of Password adds a String

attribute for the password in the class, and the design of Password Expiry adds
a Date attribute that stores when the password was last changed as well as ad-
ditional behaviour to update this attribute whenever the password is changed.

3.2 Reusing a Concern

When a modeller creates a specific application for which Authentication is of
relevance, the modeller in the role of the concern user opens the Authentica-

tion concern and selects the desired features from the feature model. While
interacting with the feature model, the impacts resulting from the current se-
lection are constantly updated. When a satisfactory selection has been made,
TouchRAM composes all design models of the selected features together to pro-
duce a detailed design model for this specific configuration. The modeller is then

Figure 3. Reusing Authentication in TouchRAM

presented with a mapping view as shown in Fig. 3 that allows the modeller to
customize the Authentication concern to her specific needs by establishing map-
pings between the model elements in the concern and the application model. In
our case, the software is a simple Banking application, and the modeller wants
to enforce authenticated access to accounts. Therefore, Authenticatable maps
to the Customer class, ProtectedClass to Account, and protectedMethod to
withdraw, deposit, and transfer.

Once the customization is completed, the designer of the bank application
can instruct TouchRAM to compose the entire application model to yield the
combined structure and behaviour of the system. From that, TouchRAM allows
the developer to generate executable Java code.

In future work, we are planning to develop several, more complex concerns
to empirically validate the integration of the jUCMNav and TouchRAM tools.

References

1. Al Abed, W., Bonnet, V., Schöttle, M., Alam, O., Kienzle, J.: TouchRAM: A
multitouch-enabled tool for aspect-oriented software design. In: SLE 2012. pp. 275
– 285. No. 7745 in LNCS, Springer (October 2012)

2. Alam, O., Kienzle, J., Mussbacher, G.: Concern-Oriented Software Design. In: MOD-
ELS 2013. LNCS, vol. 8107, pp. 604–621. Springer (October 2013)

3. Amyot, D., Leblanc, S., Kealey, J., Kienzle, J.: Concern-Driven Development with
jUCMNav. In: RE 2012, Chicago, USA. pp. 319 – 320. IEEE CS (September 2012)

4. Liu, Y., Su, Y., Yin, X., Mussbacher, G.: Combined Goal and Feature Model Reason-
ing with the User Requirements Notation and jUCMNav. In: RE 2014, Karlskrona,
Sweden. IEEE CS (August 2014)

5. Liu, Y., Su, Y., Yin, X., Mussbacher:, G.: Combined Propagation-Based Reasoning
with Goal and Feature Models. In: MoDRE 2014 (August 2014)

6. Schöttle, M., Alam, O., Ayed, A., Kienzle, J.: Concern-Oriented Software Design
with TouchRAM. In: Demonstration Paper at MODELS 2013. CEUR Workshop
Proceedings, vol. 1115, pp. 1 – 6 (october 2013), http://ceur-ws.org/Vol-1115/
demo10.pdf

7. Schöttle, M., Alam, O., Garcia, F.P., Mussbacher, G., Kienzle, J.: TouchRAM: A
Multitouch-enabled Software Design Tool Supporting Concern-oriented Reuse. In:
Companion of Modularity:2014. pp. 25–28. ACM (2014)

http://ceur-ws.org/Vol-1115/demo10.pdf
http://ceur-ws.org/Vol-1115/demo10.pdf

	Bridging Java Annotations and UML Profileswith JUMP

