
Tool support for Collaborative Software Quality
Management

Philipp Kalb and Ruth Breu

Institute of Computer Science
University of Innsbruck

Email: philipp.kalb, ruth.breu@uibk.ac.at

Abstract. Nowadays cloud services and complex cyber–physical sys-
tems gradually find their way into practice. As a result the need for
end–to–end software quality management across platform and organiza-
tional boundaries has become paramount. One solution proposed by the
software engineering community is the use of integrated model reposi-
tories for interchanging, interlinking and analyzing software engineering
data and coordinating actions of manifold stakeholders working on this
data. With MoVE, the Model Evolution Engine, we have developed a
model repository supporting model–based data management in hetero-
geneous tool environments. The state machine based workflow concept
allows a tight integration of data and automated and manual actions
on the repository in a change–driven way. In this paper we will present
the essential components of our MoVE Framework, starting with an in-
troduction of the most important concepts, followed by the state based
workflow language which will be contained in our demonstration 1.

1 Introduction

Modern software systems tend to consist of fragmented services across devices,
platforms and organizational boundaries. To handle the rising complexity of
such systems the consideration of end–to–end quality management is of major
importance. For example the management of security in large–scale system like
national health records requires coordinated efforts of heterogeneous stakehold-
ers. Ranging from security engineers tackling technical issues such as designing
secure software services to non–technical stakeholders such as compliance man-
agers, surveying legal regulations, are also involved. As a consequence these
systems demand for a consolidated treatment of data and processes in the realm
of IT management, software engineering and systems operation [1].

Standards such as ITIL [2] and the software engineering community sug-
gest the use of integrated model repositories for interchanging, interlinking and
analyzing data [3,4,5]. While repositories have a long history in software engi-
neering there exists still a huge gap in integrating different kinds of model–based
data and semi–structured data. Additionally, the support of processes for end–
to–end quality management, especially the interoperation of strictly structured

1 http://youtu.be/WKG__UnHL8U

http://youtu.be/WKG__UnHL8U


processes in IT management and agile processes in software engineering comes
with further challenges. Flexible ticket based workflow management tools, such
as IBMs Jazz platform [6] or Atlassians JIRA project management tool [7], have
reached first adoption in practice in recent years. However, they do not address
the aspect of data integration and are still weak in allying manual and automated
tasks.

With MoVE, the Model Versioning and Evolution Engine, we have conceptu-
alized and implemented a model repository referring not only to the data integra-
tion aspect but also the collaboration aspect. The MoVE–approach has a focus
on continuous model integration for software engineering. MoVE provides meth-
ods to achieve traceability across tools, by applying concepts of meta–modelling
and interlinkage. A key feature of MoVE is support for change–driven engineer-
ing, which is a novel methodology to cope with system evolution by supporting
workflows triggered by changes of the systems data artifacts. The workflow lan-
guage enables quality management to support change management as described
in standards and guidelines such as ITIL [2] or ISO/IEC 20000 [8]. Hence, system
evolution respecting data artifacts can be controlled to guaranty an integrated
quality process during the complete software systems life cycle.

In Section 2 we will summarize the important concepts of the MoVE Frame-
work. Section 3 describes the novel MoVE Workflow language, which is used to
established a change–driven process.

2 Concepts and Architecture of the MoVE Framework

Figure 1 shows the overall architecture of the MoVE framework, consisting of
the central MoVE Repository and multiple MoVE Clients connecting software
engineering and IT management tools to the repository through MoVE Adapters.

From the conceptual point of view the basis of the MoVE Framework is
the Common Meta Model (CMM). The CMM configures the data structures
used in the MoVE Repository by specifying the (meta) model elements and their
relationships. The CMM consists of a set of (partial) meta models such as the
System Model, the Security Requirements Model, the Testing Model and the
like. A full integration of all data structures of connected tools is not intended,
the language should only contain the structures necessary for stakeholder col-
laboration. The CMM is designed using an UML modelling tool 2. To enhance
the UML models with MoVE specific features a UML profile (the MoVE Exe-
cuteable Profile) defines a number of stereotypes. After its design the CMM is
uploaded to the MoVE Repository with the help of a Configuration–Service. The
Configuration Service uses the XMI representation of the CMM to configure the
repository.

At the instance level Create, Read, Update, Delete and Query (CRUDQ)
services the MoVE Repository provides to commit instances of the CMM. CRUDQ
–Services are consumed by MoVE Adapters, which are plug–ins into client–side

2 in the current implementation Magic Draw is used



Fig. 1: Conceptual Architecture of the MoVE Framework

tools. These client–side tools are not limited to UML modelling tools. In the
current environment we have developed e.g. a MoVE Adapter for Microsoft Ex-
cel to demonstrate the applicability of our concepts in a heterogeneous tool
environment. The MoVE Adapter’s main responsibility is to manage the map-
ping between the tool data representation and the representation in the MoVE
Framework. CRUDQ–Services interact with the MoVE Engine, which is the main
component of the MoVE server–side.

The major tasks of the MoVE Engine are to support versioning and per-
sistency for all model elements stored in the MoVE Repository and to provide
a Plug–in Interface. MoVE is event–driven in terms of generating an event
for each change of a model or model element (using the CRUDQ–Services for
changes). Each occurring change is analysed and then transformed into a change
event. Server–side MoVE plug–ins listen to certain types of events and can trig-
ger further actions. A Plug–in System allows users to register plug–ins for
every (partial) model separately and therefore to decide which event should re-
sult in further actions. A crucial consumer of change events is the MoVE State
Machine Engine, which allows to create state machine based workflows triggered
by change events. Due to the importance of the MoVE workflow methodology it
be described in Section 3 in more details.



3 The MoVE State Machine Workflow Language

The general idea of our state machine based workflow approach is that a model
element can evolve during the operation of a system and typically undergoes a
dedicated life cycle which is represented as a UML state machine.

Fig. 2: System Model In Magic Draw with Updates for the Security Model in
MS Excel

Each model element in the CMM can be attached with states and state
machines. The states determine the quality gates in the quality lifecycle of
the model element, like a Security Requirement being in the states ADDED,
COMPLETE or EVALUATED. Transitions between states may be triggered
in an automatic way by internal events stemming from other state machines,
a timer or change events created by the MoVE Engine. Alternatively, manual
transitions need user interaction which is implemented via systems such as mail
3. Each transition can be guarded by conditions defined in OCL or the Hibernate
Query Language (HQL).

Figure 2 shows two screenshots from our demonstration. The underlying
CMM links a System Model with security requirements. The configured work-
flows control that on change of elements of the System Model, the linked security
requirements have to be be re–evaluated. On the left side one can see a System
Model designed with Magic Draw. On the right side, a spreedsheet–view in MS
Excel contains the linked security requirements. Figure 2 shows the situation af-
ter an update of the System Model. The state of the linked security requirement
changes from EVALUATED to ADDED and thus causes a re–evaluation of the
security requirements.

In case a state has changed, it is possible to define a number of actions
onEntry of the new state and onExit of the current state. These actions e.g.
may involve external systems such as mail to notify stakeholders. Actions can
be defined with two options: (i) The MoVE Executeable Profile contains several

3 in our implementation we use Mylyn



predefined actions that can be composed in standard UML activity diagrams.
Using this option it is possible to trigger predefined actions in a certain order
but with limited expressiveness. (ii) Alternatively it is possible to use the fUML
standard to create rich activity diagrams. FUML supports not only the actions
defined in the MoVE Executeable Profile but a huge subset of UML activity
diagrams. This enables users to create complex model changes on state changes.

4 Conclusion

In this demonstration paper we have sketched the MoVE framework which is a
powerful model repository that integrates model storage capabilities.

The MoVE framework has been developed within the EU-IST project Se-
cureChange [9] and has been employed as a central model repository for security
policy interlinkage within the EU-IST project PoSecCo [10]. The has been evalu-
ated in several case studies, both from applicability in industrial context, but also
performance perspective. Within PoSecCo, the MoVE environment included six
connected tools, using more than 4000 instances and about 15 state machines.
The tool is available open source under Eclipse EPL license.

References

1. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., Innerhofer-
Oberperfler, F.: Living models - ten principles for change-driven software engi-
neering. Int. J. Software and Informatics 5(1-2) (2011) 267–290

2. APM Group Ltd: ITIL official website, accessed on february 19, 2014.
http://www.itil-officialsite.com/home/home.aspx.

3. Sztipanovits, J.: Cyber physical systems - convergence of physical and information
sciences. it - Information Technology 54(6) (2012) 257–265

4. Atkinson, C., Stoll, D., Bostan, P.: Supporting view-based development through
orthographic software modeling. In: ENASE. (2009) 71–86

5. Bruegge, B., Creighton, O., Helming, J., Kogel, M.: Unicase an ecosystem for uni-
fied software engineering research tools. In: Third IEEE International Conference
on Global Software Engineering, ICGSE. (2008)

6. IBM: Jazz – rational team concert; project web side, accessed on february 20,
2014. https://jazz.net/products/rational-team-concert/.

7. Atlassian: Jira – project web side, accessed on march 20, 2014.
https://www.atlassian.com/software/jira.

8. ISO/IEC: ISO/IEC20000. Information technology – Service management.
ISO/IEC (2011)

9. SecureChange: EU project, accessed on june 30, 2014.
http://www.securechange.eu/.

10. PoSecCo : EU project, accessed on june 30, 2014 http://www.posecco.eu/.


	Tool support for Collaborative Software Quality Management
	Introduction
	Concepts and Architecture of the MoVE Framework
	The MoVE State Machine Workflow Language
	Conclusion


