
DSLFORGE: Textual Modeling on the Web

Amine Lajmi1, Jabier Martinez2,3, and Tewfik Ziadi3

1 Software Architect, Paris, France, amine.lajmi@dslforge.com
2 SnT, University of Luxembourg, Luxembourg, jabier.martinez@uni.lu

3 LIP6, Université Pierre et Marie Curie, Paris, France, tewfik.ziadi@lip6.fr

Abstract. The use of Model-Driven Engineering in software develop-
ment is increasingly growing in industrial applications as the technolo-
gies are becoming more mature. In particular, domain-specific languages
bring to end-users simplicity of use and productivity by means of var-
ious artifacts generators. However, end-users still need to cope with
heavy modeling infrastructures and complex deployment procedures, be-
fore being able to work on models. In this paper, we propose a central-
ized lightweight approach for performing textual modeling through web
browsers. DSLFORGE is a generator of online text editors. Given a lan-
guage grammar, the tool allows to generate lightweight web editors, sup-
porting syntax highlighting, syntax validation, scoping, and code com-
pletion. DSLFORGE allows also automatic integration of existing code
generators into the generated web editor providing a complete online
modeling user experience.

Demo: http://youtu.be/KN6cneWhhKY

Keywords: textual modeling, online editor, model-driven engineering,
domain-specific languages

1 Introduction

Domain-Specific Languages (DSL) [10] let end-users feel the advantages of using
domain abstractions instead of general-purpose language constructs. Therefore,
Model-Driven Engineering (MDE) is gaining more success in industrial applica-
tions as the available methods and tools are becoming more mature. Modeling
technologies have made big steps towards better integration and simplicity of use
and, as a consequence, domain-specific standards have met great success within
multiple communities (e.g. Modelica [15], AUTOSAR [2], and SysML [17]).

However, end-users still need to cope with heavy development infrastruc-
tures and complex deployment procedures when it comes to using modeling
tools. This is because most of the existing tools are based on general purpose
Integrated Development Environments (IDEs) such as Eclipse or MPS, or stan-
dalone proprietary applications as MetaEdit+ [11]. Indeed, in most of the tools,
whether bundled into standalone Rich Client Platforms (RCP), or packaged sep-
arately as individual features, both Tooling and Runtime need to run on top of
heavy infrastructures. The deployment of modeling tools is still a tedious task for
non-developers and goes sometimes against the adoption of DSLs in enterprises.

http://youtu.be/KN6cneWhhKY


Indeed, there is a lack of practical solutions, lightweight and easy-to-deploy.
Moreover, modeling resources, as any kind of software resources today, experi-
ence an increasing demand to be accessed using different devices such as tablets
and smartphones and from any place in the world at any time.

In this paper, we present the DSLFORGE tool, as support of a lightweight
centralized approach that allows end-users to edit and process textual models
through web browsers. The paper is organized as follows: Section 2 describes
current web-based approaches and Section 3 presents the DSLFORGE tool, its
methodology of use, two functional examples and its internal architecture.

2 Modeling in the web

There are still technological challenges to achieve modeling on the web. Nev-
ertheless, some initiatives targeting graphical languages are worth to notice.
GenMyModel [4] allows end-users to create UML diagrams and launch artifacts
generation. AToMPM [16] is an online graphical modeling environment, which
uses a subset of UML for the definition of modeling languages and renders model
elements in SVG. GEFGWT [6] allows to build graphical editors based on GEF
and could be the basis for porting GMF on the web. Also, the Eclipse-based
Remote Application Platform (RAP) [7] makes easier to port Rich Client Appli-
cations (RCP) [9] to the web, since most of the SWT [13] libraries are transpar-
ently handled by the framework. RAP-based EMF editors have been provided
in tools like EMF on Rails [8] or MUVITORKIT [12]. They are based on the
tree viewer and a properties page offering limited user experience when a textual
representation is more appropriate.

Few tools provide flexible means to define textual languages and they come
with in-house formalisms. For example, in Concrete Editor [3], models are rep-
resented by DOM nodes with specific CSS classes. An Xtext-based online editor
has been also prototyped [5]. This prototype, which is based on Orion [14], was
proposed as an initial exploration on the feasibility of online textual editors. It
allows editing EMF resources online but the main part of resource processing
is done on the server. Within the server, each service (e.g. syntax highlighting,
content assist, hover, etc.) is held by a dedicated servlet asynchronously, and the
entire document is sent to the server and back again to the client at each user in-
teraction, leading to serious performance issues. Moreover, neither methodology
nor tool has been provided to show how one could bring a DSL to the web. Pro-
cessing EMF-based DSL resources intensively on the client side is not reasonable
also, as one has to port the entire Eclipse workbench to JavaScript. The frontier
of what should be done on the client side against what should be done on the
server side is an open question. DSLFORGE resource processing is distributed
between the client and the server. We take advantage of two open-source tech-
nologies which are RAP and ACE [1]. The integration with RAP allows the easy
integration with standard widgets such as file system navigators, file uploaders,
forms, etc.



3 DSLFORGE

DSLFORGE is a framework for the generation of web textual DSL editors. The
generated editors are packaged into workbench web applications which let users
create, edit, and launch transformations from models online, making it possi-
ble to work simultaneously with partners or colleagues on the same resources.
These online editors are also easily customizable and extensible. DSLFORGE
is proposed to two main categories of users: (i) DSL developers, and (ii) DSL
users. The former is given a technology to build and publish online editors on the
web. The latter uses the DSL editor through lightweight applications (enterprise
intranet, mobile devices, tablets, etc.).

3.1 Methodology

The framework is packaged into two features: Tooling and Runtime. DSL devel-
opers use the Tooling which contains all the needed components to generate and
deploy the editor on application servers. The steps below are followed iteratively
by DSL developers to get an operational online editor:

1. Design/enhance the DSL
2. If applicable, design/enhance transformations to generate some kind of arti-

facts from DSL instances
3. Automatically generate from the grammar the RCP and the RAP editor
4. If needed, enhance the web editor generated code. Third party plugins could

provide extra functionalities.
5. Automatically package and deploy the editor.

DSL users use the deployed editor to edit and process models online, namely
they can: create, edit and save models, trigger code generation from a model,
and execute other actions or functionalities if the web editor was extended by
third party plugins.

3.2 Examples

Generating a State Machine web editor: As a first example, we use the
Martin Fowler’s state machine example provided by Xtext. The example comes
with a grammar allowing textual specification of state machines. Our objective
is to provide a web editor that allows modeling state machines and generating
java test classes from these state machines on the server using the browser. An
extra functionality should be integrated for compiling and executing the test
classes through the browser too.

Using DSLFORGE, as shown in Figure 1, we select the Xtext grammar to
generate its online editor. At this moment we are able to select the existing trans-
formations that will be available online for end-users. In this case, we select the
existing state-machine to java transformation. The online editor is automatically
packaged into a web application, together with a workspace navigator.

To execute the web application we launch the browser. Figure 2 shows how
the editor handles syntax validation, content assist and how the web applica-
tion is enhanced with a code generation action contributed to the Tools menu.



Fig. 1. DSL developers using DSLFORGE to automatically create the ready to use
textual web editor

Fig. 2. DSL users using online syntax validation, content assist and model transfor-
mation launch for code generation

Semantic highlighting, scoping, history management (undo/redo), key bindings
and folding are also supported by default. In addition, a custom action is inte-
grated to the web application for compiling and executing Java classes on the
server, to show an example of the online editor extensibility.

A web editor for the specification of conference websites: As a second
example, we use DSLFORGE in the context of a conference DSL. This DSL
allows end-users, who are not necessarily HTML/JavaScript experts, to generate
and update on the server the conference or workshop website. This way, they
can update the conference website wherever they are and without knowing the
website technical details.

3.3 Architecture

The Tooling feature is shipped with Xtext, EMF, and ANTLR development fea-
tures, and contains the editor generator and other contributed plugins which may
be integrated with the editor into online workbenches (e.g. workspace navigator,
authentication, file uploader). The Runtime contains the standard RAP target
platform together with EMF target components, Xtext runtime, and additional
plugins used during the execution of the editor. The editor can be integrated
with any third party RAP-compatible plugin.



DSLFORGE follows the RAP standard architecture and lifecycle. Indeed,
each generated editor widget has its counterpart in JavaScript. Resource pro-
cessing is dispatched between the server and the client. The communication
between the client and the server uses the JSON format. Multi-threading is used
on the client side to handle the computationally expensive resource processing.
Indeed, dedicated workers parse the user input and feed-back the UI with an-
notations. Shared workers are used to manage the global index which maintains
available the cross references to all editors opened within the same user session.
On the server side, parsing and validation is triggered when saving the resource.
Asynchronous server pushes are used to notify the client about workspace change
events and server-side resource validation. The generated web applications have
been successfully deployed on two application servers (Tomcat and Jetty). Fu-
ture work will include securing the communication between the client and the
server and enhancing the management of resource access privileges.

References

1. Ace: Ace, Cloud 9 IDE (2014), http://ace.c9.io
2. AUTOSAR: AUTomotive Open System Architecture (2014), http://autosar.org
3. ConcreteEditor: Concrete Editor (2014), http://concrete-editor.org
4. Dirix, M., Muller, A., Aranega, V.: GenMyModel: An Online UML Case Tool. In:

ECOOP (2013)
5. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick

and dirty way. In: SPLASH/OOPSLA Companion. pp. 307–309 (2010)
6. GEFGWT: GEF in the web browser (2014), http://www.gefgwt.org
7. Lange, F.: Eclipse Rich Ajax Platform: Bringing Rich Client to the Web. Apress,

Berkely, CA, USA, 1 edn. (2008)
8. López-Landa, R., Noguez, J., Guerra, E., de Lara, J.: EMF on Rails. In: Proc.

ICSOFT. pp. 273–278 (2012)
9. McAffer, J., Lemieux, J.M.: Eclipse Rich Client Platform: Designing, Coding, and

Packaging Java(TM) Applications. Addison-Wesley Professional (2005)
10. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-specific

Languages. ACM Comput. Surv. 37(4), 316–344 (Dec 2005)
11. MetaCase: MetaEdit+ (2014), http://www.metacase.com/
12. Modica, T., Biermann, E., Ermel, C.: An Eclipse Framework for Rapid Develop-

ment of Rich-featured GEF Editors based on EMF Models. In: GI Jahrestagung
(2009)

13. Northover, S., Wilson, M.: SWT: The Standard Widget Toolkit, Volume 1.
Addison-Wesley Professional, first edn. (2004)

14. Orion: Orion Project (2014), http://www.eclipse.org/orion
15. Saldamli, L., Fritzson, P., Aronsson, P., Bunus, P., Engelson, V., Johansson, H.,

Karström, A.: The Open Source Modelica Project. In: Proc. Modelica Conf. Mod-
elica Association (2002)

16. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V.,
Ergin, H.: AToMPM: A Web-based Modeling Environment. In: De-
mos/Posters/StudentResearch@MoDELS. pp. 21–25 (2013)

17. SysML: Systems Modeling Language (2014), http://www.uml-sysml.org

http://ace.c9.io
http://autosar.org
http://concrete-editor.org
http://www.gefgwt.org
http://www.metacase.com/
http://www.eclipse.org/orion
http://www.uml-sysml.org

	DSLFORGE: Textual Modeling on the Web
	Introduction
	Modeling in the web
	DSLFORGE
	Methodology
	Examples
	Generating a State Machine web editor: 
	A web editor for the specification of conference websites: 

	Architecture



