Automatic Generation of Consistency-Preserving
Edit Operations for MDE Tools

Michaela Rindt, Timo Kehrer, Udo Kelter

Software Engineering Group
University of Siegen
{mrindt,kehrer,kelter } @informatik.uni-siegen.de

Abstract. Many tools for Model-Driven Engineering (MDE) which are
based on the widespread Eclipse Modelling Framework (EMF) [4] are de-
veloped for single tasks like e.g., generating, editing, refactoring, merging,
patching or viewing of models. Thus, models are oftentimes exchanged
in a series of tools. In such a tool chain, a grafical model editor or viewer
usually sets the degree of well-formedness of a model in order to visualize
it. Well-formedness rules are typically defined in the meta-models, yet
not all tools take them into account. As a result, a model can become un-
processable for other tools. This leads to the requirement, that all tools
should be based on a common definition of minimum consistency.

An obvious solution for this challenge is to use a common library of
consistency-preserving edit operations (CPEOs) for models. However,
typical meta-models lead to a large number of CPEOs. Manually spec-
ifying and implementing such a high number of CPEOs is hardly fea-
sible and prone to error. This paper presents a new meta-tool which
generates a complete set of CPEOs for a given meta-model. We have
successfully integrated the generated CPEOs in several developer tools.
The video http://youtu.be/w31AcMOd83Y demonstrates our meta-tool
in the context of one of our developer tools.

1 Introduction

Model-Driven Engineering (MDE) must be supported by tools which can edit or
refactor (e.g., [2]), generate (e.g., [8]), patch or merge models (e.g., [6]). These
tools are typically based upon the Eclipse Modeling Framework (EMF) [4], in
which a model is represented as an Abstract Syntax Graph (ASG). Frameworks
such as EMF provide basic API methods to edit the ASG of a model, e.g.
creating, deleting or updating single objects or attributes. However, editing ASGs
with such low-level operations can violate consistency constraints on the ASG
defined in a meta-model. The resulting inconsistent ASGs cannot be processed
and graphically visualized by most MDE tools. In order to solve this problem, all
model editing tools should use a common library of consistency-preserving edit
operations (CPEQOs). These CPEOs must be tailored to the relevant meta-model
and its constraints. Unfortunately, complete sets of CPEOs can be quite large for
comprehensive meta-models such as the UML [11] meta-model. Obviously, the

manual implementation of a large number of CPEOs, e.g., as code or executable
transformations, is not only tedious, but also very error-prone.

The main contribution of this paper is a meta-tool called SERGe (SiDiff Edit
Rule Generator) which generates a complete set of executable CPEOs for a given
meta-model. The generated sets of CPEOs can be integrated by tool developers
into an MDE environment as illustrated in Figure 1. In this example, a model
generator integrates the functionality of SERGe to initially generate a set of
CPEOs. Afterwards, the model generator algorithm can execute these CPEOs
to generate models. Moreover, the generated CPEOs comprise a common library
which can be reused by further tools, e.g., a model refactor tool.

EMF

The generation process for a set of = O s (|
CPEOs is fully automated and meta-model e E""':;“““t"‘ 4
independent. SERGe is based on EMF. The '"“de' 52 " || Model Generator
generated CPEOs use EMF Henshin [5] as |/ yienshin eerlerttes [T 21
the transformation language and require the FEEE] - T
Henshin interpreter as the execution plat- M:fillTlf;?fZZiir g
form. Henshin transformation rules are in- = |

place transformations and can contain model
patterns to be found and preserved, deleted Fig. 1. Deployment Diagram show-
or created and also to be forbidden or re- jnge SERGe and CPEO integration
quired. Some consistency criteria are already

enforced by EMF, e.g., type conformance,

guaranteeing at most one container for each model element or a consistent han-
dling of opposite references. With CPEOs generated by SERGe we can extend
this list by (a) the preservation of multiplicity constraints and (b) the prevention
of containment hierarchy cycles. The generated CPEO sets are complete in the
sense that any change between two consistent models can be expressed using
these CPEOs. These types of consistency constraints are sufficient to be able to
graphically display models. We are not aware of an existing model editor which
is usable in combination with other EMF based MDE tools and which enforces
stronger consistency constraints. There can be more advanced constraints (i.e.,
OCL Constraints) inside a meta-model. However, they are typically not enforced
by model editors and thus are not covered with SERGe so far.

SERGe provides a variety of optional configuration settings to tailor the gen-
eration process, e.g., whether to generate CPEQOs for supertypes instead of for
each subtype. The former will decrease the number of generated CPEQOs heav-
ily. One can also enable or disable the kinds of CPEOs (create, move, etc.)
that should be generated. These are just a few configurations that are possible.
SERGe has already been used extensively in different research projects, e.g., the
SMG (SiDiff Model Generator) [8], SiLift [6,10] for difference recognition be-
tween models and patching of models, and others [7]. Further possible use-cases
can be tools for merging, refactoring or checking of models. More information
and an example set of CPEOs can be found at the SERGe project website [9].

2 Consistency-preserving Edit Operations (CPEOs)

The easiest way to modify the Abstract Syntax Graph (ASG) of a model is to use
basic graph operations e.g., creating or deleting single model objects. However,
basic ASG operations do not consider well-formedness rules (e.g., multiplicity
constraints) as defined by the meta-model. Hence, they can lead to inconsistent
ASGs, which cannot be processed by other tools.

As an example, we use simplified state machines with a meta-model as shown
in Figure 2(a). A StateMachine object must have at least one child object of type
Region, s. the multiplicity constraint of [1..x] of the containment reference region.
A basic ASG operation which creates only a single StateMachine object violates
this constraint. A CPEO on the other hand will create a StateMachine object
together with a contained, mandatory child object of type Region.

A CPEO usually comprises several basic ASG operations, but at least those
which are required to implement a consistency-preserving editing behavior. Fig-
ure 2(b) shows the CPEO mentioned above as an EMF Henshin [5] transfor-
mation rule named ’createStatemachineInModel’. Another example is provided
in Figure 2(d). The example CPEO rule has a few input and output parame-
ters: e.g., Selected is a placeholder for an input model object which defines the
context for the transformation application. Figure 2(d) depicts the changing of
an old targeted State object to a new target State in the context of a Transi-
tion. This operation contains two ASG operations, notably the deletion of an
old reference target and the creation of a new reference target.

3 Generation of CPEOs

Prior to the generation phase, the meta-model is analyzed to identify the rela-
tionships between classifiers. This is done by considering incoming references of
each classifier and the complete inheritance hierarchy. The source of a reference
can either be a parent context or a neighbor context. This depends on the na-
ture of a reference which is either containment in the first or non-containment
in the latter case. Analogously, the target of a reference can either be identi-
fied as a ’child’ or a 'neighbor’. Naturally, opposite references (e.g., region and
stateMachine in the example) have to be considered together. Otherwise invalid
CPEOs could be generated. An invalid operation would be the change of the
reference target stateMachine without also changing its opposite, namely the
containment reference region

Multiplicities of a reference (i.e., the upper bound (ub) and lower bound (Ib))
are classified by one or more of the invariant groups shown in Figure 2(c). The
meta-model analysis categorizes each relationship by considering each multiplic-
ity invariant, which can be found on a reference. It determines if a target of a
reference needs mandatory objects. This is the case if the reference multiplic-
ity is classified as required. In a relationship between model elements, there can
also exist optional objects. This is the case if the reference is attached with a
many multiplicity classification. Naturally, these classifications can both apply

E Model packagedElement ‘é Rule createStateMachineinModel(Selected, New, Child, Name) |
0.*
H Transition e
S—{ Selected:Model creates l
7 H packagedElement [«creates
- i il MNew:StateMachine

= name : EString transition p— = name=Mame
0.* wcreaten regien wcreaten
region 1 Child:Regicn| stateMachine
1. * stateMachine
B _Ej_ﬁe_g_\c?n . 0. source target .
state 0. 1 1 — (b) CPEO ’createStateMachineInModel’
|l °| [State 1
. 1 S o g 3
|1 mandatory child =—==~ | i classification| invariant group (Ib < ub)
jand many optional children) : 1 "
:forStateMachine I Il mandatory neighbor for: requ1red lb > O
o Transition (" "
iregarding "region’) |y {Tanson Ceoee) bounded ub < 0o
(a) simple state machine meta-model fixed Ib=ub
many |(ub—1b>=1)V (ub= 00)

(¢) multiplicity invariant classifica-
tion

|:) Rule changeTransitionTargetToState(Selected. Transition, OldTarget:State, NewTarget:State) |

preserve «deletes preserve «create» preserve
OldTarget :State elected:Transition = NewTarget:State
target target

(d) CPEO ’changeTransitionTargetToState’

Fig. 2. Generation details

to one reference, e.g., for [1..x] (see Figure 2(a)). This identification allows the
generation algorithm to decide if a CPEO for the creation of an object may be
generated or if this creation may only happen in the context of another CPEO.

During the generation phase every classifier in the given meta-model is vis-
ited. By means of the previously analyzed relationships and attributes of each
considered classifier, SERGe determines which CPEO kinds will be generated
for which classifier, reference or attribute. The starting point for each deci-
sion is the nature of a reference (i.e., being containment or noncontainment). *
The following CPEO kinds can be generated depending on the occurring mul-
tiplicity invariants: creation/deletion of elements, adding/removing neighbors,
setting/unsetting/changing of single neighbors or (default) attribute values
or moving of children between different contexts. Mandatory children and neigh-
bors of elements are integrated recursively inside a CPEO.

The generated CPEOs can also contain precondition checks to avoid falling
below required multiplicities or exceeding bounded multiplicities. This is realized
with Henshin Positive Application Conditions (PAC) and Negative Application
Conditions (NAC).

! We assume attributes can be handled equally to non-containment references.

4 Related Work

There are several approaches to generate executable edit operations for models
beyond basic ASG edit operations. The closest approaches to ours are [1, 3].

Ehrig and Taenzer [3] address the problem to generate correct instances of
a given meta-model. In such a context, only edit operations which create model
elements are needed. Edit operations which delete or modify models are not pro-
vided. The problem that mandatory components cannot be simply deleted, but
only be replaced, is not addressed here. The generated sets of edit operations
are thus not complete in our sense. Moreover, the final result of the instance
generation process must conform to the meta-model; here intermediate and in-
consistent states can occur and need to be repaired afterwards. Our CPEOs on
the other hand never produce inconsistent intermediate states when applied; i.e.,
CPEOs preserve the consistency by-construction.

Alanen and Porres [1] proposes to first convert a model into a string represen-
tation, then edit the model using a syntax-directed editor, and finally to convert
it back to an ASG-based representation. Although basic consistency constraints
can be preserved this way, this process is not very convenient, especially in the
case of visual models.

To our best knowledge, the coverage of consistency constraints, configura-
bility and completeness of the generated sets is not met by any other existing
meta-tool to generate edit operations.

References

1. Alanen, M.; Porres, 1.: A relation between context-free grammars and meta object
facility metamodels; Technical Report 606, TUCS Turku Center for Computer
Science; 2003

2. Arendt, T.; Taentzer, G.: A tool environment for quality assurance based on
the Eclipse Modeling Framework; p.141-184 in: Automated Software Engineering
20(2); 2013

3. Ehrig, K.; Kiister, J.M.; Taentzer, G.; Generating instance models from meta mod-
els; p.479-500 in: Software and Systems Modeling 8(4); 2009

4. EMF: Eclipse Modeling Framework; 2014; http://www.eclipse.org/emf;

5. EMF Henshin; 2014; http://www.eclipse.org/modeling/emft /henshin/

6. Kehrer, T.; Kelter, U.; Taentzer, G.: Consistency-Preserving Edit Scripts in Model
Versioning; p.191-201 in: Proc. 28th IEEE/ACM Intl. Conf. Automated Software
Engineering (ASE 2013); 2013

7. Kehrer, T.; Rindt, M.; Pietsch, P; Kelter, U.: Generating Edit Operations for
Profiled UML Models; p.30-39 in: Proc. Models and Evolution (ME 2013); 2013

8. Pietsch, P.; Shariat Yazdi, H.; Kelter, U.: Generating Realistic Test Models for
Model Processing Tools; p.620-623 in: Proc. 26th IEEE & ACM Inter. Conf. Au-
tomated Software Engineering (ASE 2011); ACM; 2011

9. SERGe; Project Page; 2014; http://pi.informatik.uni-siegen.de/Projekte/-
SERGe.php

10. SiLift project website; http://pi.informatik.uni-siegen.de/Projekte/SiLift
11. Unified Modeling Language: Superstructure, Version 2.4.1; OMG, Doc.
formal/2011-08-05; 2011

