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The UML (Unified Modeling Language) graphical models miss providing some pertinent elements 
of specification as constraints over objects and operations. To fill this lack, OCL (Object Constraint 
Language) has been developed by IBM and integrated to UML as a modern and formal modeling 
language, which is easy to learn and efficient to use. On the other hand, many works emerged 
providing a formal semantics to UML dynamic diagrams by using CP-nets (High-level Petri Nets). 
The latter are verified based on system properties written in temporal logic. The purpose of this 
paper is to assist the UML modeler, not necessarily familiar with temporal logics, by letting him 
expressing the properties in OCL language and proposing an automatic mapping of OCL invariants 
and pre/post-conditions into CTL-like logic (Computational Tree Logic) coupled with the functional 
programming language Standard ML. The obtained temporal logic formulas are verified over the 
state space of the CP-net models derived from UML diagrams by model-checking.  
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1. INTRODUCTION 

UML [17] is the de facto standard for specifying 
both of the structural and behavioral aspects of 
systems. OCL (Object Constraint Language [16]), 
an integral part of UML, allows for specifying 
additional constraints on UML models in a more 
precise and concise manner. OCL has a 
mathematical definition based on set theory with a 
notion of object model and system states.  UML 
and OCL are easy and familiar to users, but they 
do not support validation tasks and their semantics 
is defined in a semi-formal way.  

To provide a rigorous semantics for UML models, 
CPN-nets [10] have been used by many studies 
[1,3,9,20] as an expressive semantics domain. 
Also, OMG (Object Management Group) has 
inspired many UML concepts from Petri Nets, 
particularly, in activity diagrams. CP-nets are 
widely-used for specifying and analysing behaviour 
of concurrent systems. They consist in a transition 
system that supports model-checking validation 
method.   

Model-checking technique shows that a system 
satisfies its specification. It requires a formal 
representation (as CP-nets) of the system and a 
specification that is often expressed in terms of a 
temporal logic formula [2].  

A formal tool, called CPNtools, has emerged for 
analyzing CP-nets. It uses the functional 
programming language Standard ML [14,21] and 
CTL-like temporal logic, called ASKCTL [5], for 
model description, data manipulation and 
properties specification.  

We proposed in [3] an approach to translate the 
Interaction Overview Diagram (IOD) to CP-nets for 
simulation and state space analysis using 
CPNtools. To specify and check system properties, 
the modeler is not familiar with temporal logic and 
ML language that require many skills.   

To assist the modeler in this phase of specification, 
we propose to allow him to express system 
properties in his usual language of specification, 
namely OCL, and to automate the translation of 
OCL properties to ASKCTL and ML. The resulting 
formulas are evaluated over the state space of the 
CP-net model derived from the IOD diagram.  

Various works [2,4,7,12,15,23] have been 
undertaken to transform OCL into other formal 
languages. Our approach differs from works that 
use temporal logics to formalize OCL constraints in 
that it achieves a detailed mapping of basic and 
complex expressions of OCL into Standard ML.  

This extends our previous works on the IOD 
diagrams mapping into CP-net models. Unlike 
other works, our approach translates the class 
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diagram, IOD diagram, and OCL specifications into 
the input languages of CPNtools model-checker. 

The remainder of this paper is organized as 
follows. Section 2 presents OCL language and its 
constraints whereas section 3 presents the 
CPNtools and its input formal languages. Section 4 
describes our approach of mapping of OCL 
expressions into ML functions and OCL constraints 
into ASKCTL formulas. Section 5 illustrates the 
application of our approach over an ATM system. 
Section 6 recalls the related works. Finally, Section 
7 concludes and presents future works. 

2. OBJECT CONSTRAINT LANGAGE 

The UML has been widely accepted as a standard 
for object-oriented modeling language and is 
supported by a great number of CASE tools. The 
Object Constraint Language (OCL) is an integral 
part of UML, and was introduced to express 
subtleties and nuances of meaning that diagrams 
cannot convey by themselves. 

OCL has been introduced by IBM for business 
modeling and adopted by UML as a mean to 
specify invariants of classes and types in a class 
model, to specify type invariant of stereotypes, to 
describe pre- and post-conditions on operations 
and methods, to describe guards, and also as a 
navigation language. OCL is a language of typed 
expressions, where an expression can be 
universally and existentially quantified [13]. 

2.1 Invariants 

The OCL expression can be part of an Invariant 
which is a Constraint stereotyped as an 
«invariant». When the invariant is associated with a 
Classifier, the latter is referred to as a “type” in this 
clause. An OCL expression is an invariant of the 
type and must be true for all instances of that type 
at any time [16]  

context <TypeName> inv <InvName>: 

<BooleanExpression> 

Optionally, the name of the constraint may be 
written after the inv keyword, allowing the 
constraint to be referenced by name. 

Integrity constraints in OCL are represented as 
invariants defined in the context of a specific type, 
named the context type of the constraint. Its body, 
the Boolean condition to be checked, must be 
satisfied by all instances of the context type. 

2.1 Pre/post conditions 

The OCL expression can be part of a Precondition 
or Postcondition, corresponding to «precondition» 
and «postcondition» stereotypes of Constraint 
associated with an Operation or other behavioral 

feature. The contextual instance self then is an 
instance of the type that owns the operation or 
method as a feature. The context declaration in 
OCL uses the context keyword, followed by the 
type and operation declaration. The stereotype of 
constraint is shown by putting the labels ‘pre:’ and 
‘post:’ before the actual Preconditions and 
Postconditions [16]. 

context 
<TypeName>::<OperationName>(<param1>: 
<Type1>, ... ): <ReturnType> 

pre <PreName>: <BooleanExpression> 

post <PostName>: <BooleanExpression> 

 

Optionally, the name of the precondition or 
postcondition may be written after the pre or post 
keyword, allowing the constraint to be referenced 
by name. 

3. CP-NETS AND TEMPORAL LOGIC 

3.1 CPN-ML language 

The CPN-ML [11] programming language is a 
variation of functional programming language 
Standard ML (SML) used in CP-nets. CPN-ML 
embeds the Standard ML and extends it with 
constructs for defining colour sets and functions, 
declaring variables, and writing inscriptions in CP-
net models. SML provides the user with the 
expressiveness required to model data and data 
manipulation of complexity found in industrial 
systems. SML is also used to implement simulation, 
state space analysis, and performance analysis of 
CP-net models. 

(i) Colour sets: The CPN ML language 
provides a predefined set of basic types 
inherited from Standard ML that can be 
used as simple colour sets. 

(ii) Expressions and Types: In CP-nets, 
relatively simple expressions have been 
used as arc expressions, guards, and initial 
markings. It is possible to use the complete 
set of Standard ML expressions. 

(iii) Functions: Functions are similar to the 
procedures and methods known from 
conventional programming languages. 

(iv) Recursion and Lists: Such loop statements 
are not available in a functional 
programming language, which instead 
relies on recursive functions to express 
iteration. 
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3.2 ASKCTL logic 

The ASKCTL [5] is a CTL-like logic which is 
interpreted over the state spaces of CP-nets. The 
logic has been designed to express properties of 
both state and transition information over the CP-
net state space. The logic is powerful enough to 
express many of the standard CP-net properties. 
Using ASKCTL logic implies that we get a well 
understood and easy to use framework for 
expressing a much wider range of properties. The 
models over which we interpret ASKCTL are state 
spaces of CP-nets. These graphs carry information 
on both nodes and edges.  

ASKCTL is a branching-time modal logic and an 
extension of Computational Tree Logic (CTL [8]). 
An ASKCTL statement is defined to be a state or a 
transition formula. For more details about ASKCTL 
syntax see [6] and [22]. 

3.3 CP-nets 

CP-nets [10] are high-level Petri nets widely-used 
formal method for system specification, design, 
simulation and verification. They provide a 
graphical oriented modeling language capable of 
expressing concurrency, synchronization, 
resources sharing and non-determinism at different 
levels of abstraction. They combine the mathematic 
primitives of Petri Nets [18] and the expressive 
power of SML. They support a variety of verification 
techniques such as state space analysis and model 
simulation. 

3.4 CPNtools 

CPNtools [19] is a tool for editing, simulating, and 
analyzing CP-nets. The tool features incremental 
syntax checking and code generation, which take 
place while a net is being constructed. A fast 
simulator efficiently handles untimed and timed 
nets. Full and partial state spaces can be 
generated and analyzed, and a standard state 
space report contains information, such as 
boundedness properties and liveness properties. 
CPNtools supports state space analysis and 
model-checking of ASKCTL logic. 

4. MAPPING OF OCL 

4.1. Mapping of OCL expressions to ML 

In OCL language, a number of basic types are 
predefined to the UML modeler. These predefined 
types, such as Boolean, UnlimitedNatural, Integer, 
Real, Enumeration and String, are independent of 
any object model. In ML language, the same basic 
types are available with some difference in the 
syntax. 

 

4.1.1 Numbers and arithmetical operations 

There are three types to express numbers in OCL: 
Real, Integer and UnlimitedNatural, where 
UnlimitedNatural  is a subtype of Integer and 
Integer is a subtype of Real. The basic arithmetical 
(+, -, *, =, abs(), min(), max()) and comparison 
operations (>, <, >=, <=) are defined for numbers. 
Two types of conversion from Real to Integer are 
provided (floor(), round()) and additionally, a 
conversion to string was introduced (toString()). 
There are two operations defined for the Integer 
and UnlimitedNatural types only: division quotient 
(div()) and remainder (mod()). Table 1 shows the 
mapping of OCL numeral operations into ML. 

The OCL UnlimitedNatural type represents the set 
of non-negative integers. Its OCL declaration a : 
UnlimitedNatural is expressed in ML by  var a:INT 
with 0..maxINT;. All integer operations are applied 
in the UnlimitedNatural subtype except the 
negation operation. 

The OCL Real type represents numerals with a 
decimal point. All integer operations are applied in 
the Real supertype except the div and mod 
operations. Additionally, the floor and around 
operations are supported in Real type. 

 

4.1.2 Boolean type mapping 

Basically OCL users work with the Boolean values 
true and false that are the instances of the Boolean 
type. OCL provides the basic logical operations 
and, or, not as well as the derived operations xor, 
implies. The OCL declaration syntax of a Boolean 
a: Boolean is expressed in ML syntax by var a: 
BOOL; 

In ML, the OCL Boolean conjunction ‘a and b’ 
becomes ‘a andalso b’, disjunction ‘a or b’ becomes 
‘a orelse b’, implication ‘a implies b’ becomes ‘not a 
orelse b’ and negation ‘not a’ is the same. The 
table 2 shows the mapping of OCL Boolean 
operations into ML. 

 
OCL ML Description 

A:Integer var a: INT; integer type declaration 

A: 
UnlimitedNatural 

var a:INT with 
0..maxINT ; natural type declaration 

A:Real A:Real; real type declaration 

A = B , A <> B A = B, A <> B equal, not equal 

A > B , A >= B , 
A< B, A <= B 

A > B , A >= B 
, A< B, A <= B 

greater, greater or equal, less, 
less or equal 

A + B , A – B , 
A*B 

A + B , A – B , 
A*B 

addition, subtraction, 
multiplication 

- A ~A Negation (only for real and 
integer) 
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A. div(B) , 
A.mod(B) 

A div B , A 
mod B 

division quotient, remainder 

(only for integer and natural) 

A.min(B),  
A.max(B) 

INT.min(A,B),  
INT.max(A,B) 

minimum, maximum 

A.abs abs  A absolute value  

A.floor() floor A 
the largest integer not larger 
than A 

(only for real) 

A. round() round A 
the integer nearest to A 

(only for real) 

 

Table 1.  Mapping of Numeral operations  

 

4.1.3 Strings and text operations 

Strings are specified by sequences of printable 
ASCII characters surrounded with double quotes. 
The OCL declaration syntax of a string a: String is 
expressed in ML syntax by var a: String;. In both 
OCL and ML, the length of a string (size) can be 
determined, a string can be projected to a 
substring, and two strings can be concatenated (^). 
Also, it is possible to access single or all characters 
of a given string and to applied case conversion. 

 Table 3 shows the mapping of OCL string 
operations into ML. 

 
OCL ML Description 

A: Boolean var a: BOOL; Boolean type declaration 

A = B , A <> B A = B , A <> B equality , inequality 

A and B A andalso B conjunction  

A or B A orelse B disjunction  

A xor B A <> B exclusive disjunction 

A implies B not A orelse B 
Implication 

(if A then B else true) 

not A not A negation  

if A then B else 
C endif  

If A then B else 
C 

If the expression A is true 
then B must be true else C 
must be true 

 

Table 2. Mapping of Boolean operations  

 

OCL ML Description 

A: String var A: STRING; String type declaration  

A = B , A <> B A = B , A <> B equality and inequality 

A .size() String.size A String length 

A.concat(B) A^^B Concatenate two strings 

A.subString(i,i+len) substring 
(A,i,len) 

extract a substring of 
length len starting at 
position i in A, first position 
is 0 

A.characters() explode A convert string A to list of 
chars 

A.at(i) sub (A, i) returns the i(th) char of A, 
counting from zero. 

A.toUpper() map toUpper A convert all  chars to 
uppercase 

A.toLower() map toLower A convert all  chars to 
uppercase 

 

Table 3. Mapping of string operations  

 

4.1.4 Enumeration type 

OCL enumeration types are user-defined types. An 
enumeration type is defined by specifying a name 
and a set of literals. An enumeration value is one of 
the literals used for its type definition. In ML, 
enumerated values are explicitly named as 
identifiers in the declaration. These values must be 
alphanumeric identifiers. Table 4 shows the 
mapping of OCL enumeration operations into ML. 

 

OCL  ML  Description 

A : 
Enum{v0,v1,..,vn} 

Var  Enum = with 
v0| v1|...|vn; 

enumeration type 
declaration 

A = #vi , A <> #vi A = #vi ,  A <> #vi 
equality and 
inequality with an 
enumeration value 

Table 4. Mapping of enumeration operations. 

 
4.1.5 TupleType 

Informally known as record type. It combines 
different types into a single aggregate type. The 
parts of a TupleType are described by its attributes, 
each having a name and a type.  

The OCL TupleType declaration A: Tuple(id1:type1, 
id2:type2,…, idn:typen) is expressed in ML by : 
colset tuple = record id1:type1 * … * idn:typen; 
var A:tuple; 
 
Values of this color set have the form: {id1=v1,..., 
idn=vn} where vi are values of type typei for 
1<=i<=n. 
To extract the ith element of a product the following 
operation is used: #idi  tuple 
In ML, each component in the record color set may 
be a different type and each is identified by a 
unique label so that each field is position-
independent. 
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4.1.5 CollectionType 

It describes a list of elements of a particular given 
type. It is a concrete metaclass whose instances 
are the subclasses SetType, OrderedSetType, 
SequenceType, and BagType.  

(v) BagType is a collection type that describes 
a multiset of elements where each element 
may occur multiple times in the bag. The 
elements are unordered. 

(vi) SequenceType is a collection type that 
describes a list of elements where each 
element may occur multiple times in the 
sequence. The elements are ordered by 
their position in the sequence. 

(vii) SetType is a collection type that describes 
a set of elements where each distinct 
element occurs only once in the set. The 
elements are not ordered. 

(viii) OrderedSetType is a collection type that 
describes a set of elements where each 
distinct element occurs only once in the set. 
The elements are ordered by their position 
in the sequence. 

The OCL CollectionType declaration A: 
Collection(Type) is expressed in ML by: 
colset collection= list Type;  
var A : collection; 
 
In ML, the values of a list color set are a sequence 
whose color set must be the same type. Values of 
this color set have form [v1, v2, ..., vn] where vi has 
type Type for i=1..n. 
 
The four kind of collection in OCL have the same 
declaration in ML as a list color set but the 
difference is shown in the treatment of their 
operations. Table 5 shows the mapping of standard 
operations while table 6 presents the mapping of 
iteration operations and table 7 describes the 
mapping of the collection operations. 
 
 
OCL ML Description 

Collection (T) 
Colset Collect =  
List T 
Var C : Collect 

Collection type 
declaration 

C->size() length C Number of elements in 
the collection;  

C->sum():Integer 
 

foldr (fn (x,y) => 
x+y) 0 C  

Sum of elements in the 
collection. Elements must 
be numbers or have a + 
operation defined 

C->count(e) 

foldr (fn (x,y) => if 
x=e then y+1 else 
y) 0 C 

The number of times that 
e is in c. 

cf e C 
C->excludes(e): 
Boolean not (mem C e)  C exclude the element e 

C->includes(e): 
Boollean mem C e C include the element e 

C1-
>excludesAll(C2) 

((intersect  C1 C2) 
=  nil) no element of C2 is in C1 

C1-
>includesAll(C2) 

  contains_all C1 
C2 

All elements of C2 are in 
C1 

C->isEmpty: 
Boolean C=nil Same as (c->size = 0) 

C->notEmpty: 
Boolean C<>nil Same as (not c->isEmpty) 

Table 5. Mapping of standard operations 

 

OCL ML Description 

C->select(x|p(x))  filter p C 
The collection of those 
elements in c for which p 
is true.  

C->reject(x|p(x)) filter (not p) C 
The collection of those 
elements in c for which p 
is false. 

C->any(x|p(x)) random (filter p C) 

Returns any element for 
which p is true  
where  C->notEmpty() is 
true 

C->exist(x|p(x)) List.exists p C returns true if p is true for 
some element in C 

C->forAll(x|p(x) ) (filter p C) = C returns true if p is true for 
all element in C 

C-
>isUnique(x|f(x)) 

isUnique f C 
fun isUnique _ [] = 
false | isUnique _ 
[x]=true |  isUnique 
f [x,y] = f(x)=f(y) | 
isUnique f (x::xs) =  
(f(x)=f(hd(xs))) 
andalso (isUnique f 
xs); 

Does f has unique value 
for all elements of C 

C-
>sortedBy(x|f(x)) sort f C 

Returns a collection 
containing all elements 
ordered by  f 

C->collect(x|f(x)) map f C 

Returns a collection 
containing the result of 
applying f on all 
elements of C 

C->iterate(x, r=v| 
f(x,r)) foldr f  v  C 

returns f(e1, f(e2, …,f(en, 
v) …)) where C = [e1, 
e2,…, en] 

Table 6. Mapping of iteration operations 

 

OCL ML Description 

C->asSet: 
Set remdupl C 

A set corresponding 
to the collection 
(duplicates are 
dropped). 

C->asSequence: 
Sequence sort T.lt  C 

A sequence 
corresponding to the 
collection. 
More useful: c-
>sortedBy 
(Comparator(T)).  

C->asBag: 
Bag C A bag corresponding 

to the collection. 

C->asOrdredSet: 
OrdredSet sort T.lt (remdupl C) 

An OrdredSet 
corresponding to the 
collection (duplicates 
are dropped, ordred). 

C1=C2: 
Boolean 

C1 = C2 
Equality between two 
OrdredSets or two 
Sequence s 

contains_all C1 C2 
andalso  
contains_all C2 C1 

Equality between two 
Sets or two Bags 
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C1=C2: 
Boolean 

C1 <> C2 
Inequality between 
two OrdredSets or 
two Sequence s 

not (contains_all C1 
C2 andalso  
contains_all C2 C1) 

Inequality between 
two Sets or two Bags 

C1 – C2 listsub  C1  C2 

Subtraction of two 
collections  
where C2-
>includesAll(C2) is 
true 

C->excluding(e) rmall e C 
Remove all 
appearances of  e 
from C  

C->including(e) ins C e Add the element e at 
the end of C (C+e) 

C1-
>intersection(C2) intersect  C1 C2 

returns the 
intersection of  C1 
and C2 

C1->union(C2) 

union C1 C2 
Union of C1 and C2 
(C1+C2) (for BagType 
and SequenceType)  

remdupl (union C1 
C2) 

Union for SetType 
and OrdredType (no 
multiplicity) 

S
eq

ue
nc

e 
an

d 
O

rd
re

dS
et

 

C->at(i) List.nth(C, i-1) 
return the ith element 
of a collection where 
i>0 

C->last() List.nth(C, (length 
C)-1) 

return the last 
element of a list 
 where C->size()>0 

C->first() hd C 

return the first 
element of a list 
 where C->notEmpty() 
is true  

C->append(e) C^^[e] 
The  colection 
obtained by 
appending e to C 

C->prepend(e) e::C 
The  colection 
obtained by 
prepending e to C 

C->subSequence ( 
i, j ) List.take(List.drop(C, 

i-1),  
j-i+1); 

The sequence from 
position i to j 

C-
>subOrderedSet(i,j) 

The ordredset from 
position i to j 

C1->symmetric 
Difference(C2) 

listsub (remdupl 
(union C1 C2)) 
(intersect C1 C2)  

The set containing all 
the elements that are 
in C1 or in C2 but not  
in both 

C->reverse() rev C Reverse the collection 
C 

C->insertAt(i,e) 
List.take(C,i-
1)^^[e]^^ 
List.drop(C,i-1) 

The collection 
consisting of C with 
element e inserted at 
position I (for 
OrdredSet and 
Sequence) 

C->indexOf(e) 

indexOf e C = if 
List.nth(C,0) = e 
then 0 else indexOf 
e (lt C) +1 

Index of element e in 
the  

OrderedSet C 

Table 7. Mapping of collection operations 

 

4.1.6 Classes and objects 

OCL expressions can refer to classes, attributes, 
assocaionEnds and operations of the class 
diagram. The class type class_name (att1:type1, 

….,attn:typen) is declared in ML as an record type : 
Colset class_type = record  att1:type1* ….*attn:typen 

var class_name : class_type;  
The attribute value class_name.atti is expressed in 
ML by #atti class_name;.  
 

4.2 Mapping of OCL Constraints to ASKCTL 

OCL constraints consist of an OCL expression of 
type Boolean and some declaration connecting the 
OCL expression to an item in the class diagram. In 
the case of pre and post-conditions, the constraint 
is bound to an operation; invariants are bound to a 
class. 
An OCL invariant is an OCL expression associated 
with a class. It must be true for all instances of that 
class type at any time. Its structure is:  
 

context ClassType  inv: ExpOcl. 
 
An invariant is translated by the ASKCTL formula: 
 

INV(NF("",ML(ExpOcl))) 
 
where: 

 ML() is a mapping function that gets an 
equivalent expression in ML code. 

 NF() is the node function used as a state 
subformula. Its arguments are a string and a 
ML function which takes a state space node 
and returns a Boolean. 

 INV(A) is a state formula witch is true if the 
argument A is true for all reachable states 
from the current state. 

 
Figure 1 shows the verification of an OCL invariant 
on the CP-net state space where the ML Boolean 
expression (MLExp=ML(ExpOCL)) must hold in all 
reachable nodes.          

 
 

Figure 1.  Mapping of OCL invariant 

 
A pre/post condition OCL is associated with an 
operation of a class. The pre condition must be true 
before the operation call and the post condition 
must be true after the operation execution. Its 
structure is: 
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Context ClassType::Operation(Parameters:Types): 
ReturnType 

Pre: ExpOcl1 
Post: ExpOcl2 

 
A pre/post condition is translated by an ASKCTL 
formula: 
 

INV(AND(OR(NOT(NF("",Fir(t1))),NF("", 
ML(ExpOcl1))),OR(OR(NOT(NF("",Fir(t1))), 

NOT(NF("",ML(ExpOcl1)))), 
FORALL_NEXT(AND( NF("",Fir(t2)), 

FORALL_NEXT( NF("",ML(ExpOcl2)))))))); 
 
where: 

 t1 and t2 are the derived transitions from the 
sending and receiving events of the message 
“operation call”. 

 Fir(t) indicates the firing of a transition t. 

 FORALL_NEXT(A): used as a state formula, 
looks at immediate successors, is true if the 
argument, A, is  hold for all immediate 
successors. 

Figure 2 shows the verification of an OCL pre/post-
condition on the CP-net state space where the ML 
Boolean pre-expression (MLExpPre = 
ML(ExpOCL1)) must be true just prior the operation 
execution (state i) and the ML Boolean post-
expression (MLExpPost = ML(ExpOCL2)) must be 
true just after the operation execution (state i+2).     
      

 

Figure 2.  Mapping of OCL pre/post condition 

5. CASE STUDY 

Our approach of mapping and analysis is applied to 
an ATM system. To start the application, the client 
inserts his card in the dispenser. He then enters his 
personal identification number (PIN). In the 
absence of error, he chooses to withdraw money or 
view his balance. Otherwise, he starts again the 
identification phase. To withdraw money, he 
introduces the amount and recovers his money if 
the balance is sufficient. For account inquiry, only 

the balance is displayed. In all cases, the client 
gets his card at the operation end. 
 
Thus, the static view of the ATM system is modeled 
by a class diagram (see figure 3), and an object 
diagram, see figure 4. The object diagram is used 
to initialize the model for a possible execution. 
 

 
 

Figure 3. ATM Class Diagram 

 

 
 
 

Figure 4. ATM Object Diagram 

 
 

ID = ‘c1’ 

PIN = 100  

max_amount = 5000 

asked_amount =  4000  

old_balance = 9000 
new_balance = 8000 
 

c1 : Client 

ID = ‘ a1’ 

cash = 100000  

state = 1  

tax = 50 

ejected_money 

= « 0 » 
 

a1 : ATM 
ID= « b1 » 

PINs = set{100, 200, 300,400} 
 

b1 : Bank 

ID = ‘c2’ 

PIN = 200 

max_amount = 4000  

asked_amount =  3000  

old_balance = 8000  
new_balance = 7000  
 

c2 : Client 

Client 
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Figure 5. ATM IOD diagram 

 
 
To illustrate the behaviour view of the ATM system, 
we present in figure 5 the Interaction Overview 
Diagram (IOD) of the ATM. The ATM IOD consists 
of three sequence diagrams: client identification, 
balance and withdrawal transaction; each of which 
models a part of the system interactions.  
 
We limit ourselves to only show the identification 
SD. We use a TranslatorTool that implements the 
mapping rules developed in [3] for automatically 
generating a CP-net model from the ATM IOD in 
accordance with the ATM Class Diagram. 
  
The obtained CP-net model (see figure 4) is 
initialized by the multi-set of tokens derived from 
the ATM Object Diagram, see figure 4. The initial 
multi-set of tokens is given as follows: 
 
{("client", "c1", (100,5000,4000,9000,8000)), 
("client", "c2", (200,4000,3000,8000,9000)),  
("atm", "a1", [100000,1,50,0]),  
("bank", "b1", (100,200,300,400))} 
 

The resulting CP-net model is executed in 
CPNtools for simulation, state space analysis and 
system properties verification.  

 
Using the simulation tool, we can examine different 
scenarios and explore the behaviour of the system. 
Simulation provides a partial validation of the 
model. It is often used to debug its dynamics. The 
simulation of a HCPN can be either interactive or 
automatic with graphical feedback showing visually 
the tokens movement, enabled transitions and 
places marking. The simulation feedback can be 
interpreted by a helpful sequence diagram for user 
facilities and errors detection. 
 

Figure 6. ATM CP-net model 
 
 
As for the state space analysis, it is one of the main 
formal analysis methods of Petri Net. It has proven 
successful in the verification of systems. Once the 
state space is generated for the resulting CP-net 
model, we obtain a text file which contains a 
standard report providing information about generic 
properties such as state space statistics, 
boundedness properties, home properties and 
liveness properties. 
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ML standard queries available in CPNtools may 
also be evaluated. In the case of negative answers, 
the user is helped to investigate why an expected 
property does not hold. If an unexpected dead state 
is found a shortest path from the initial state to the 
dead state is helpful information, as a 
counterexample. This situation may be interpreted 
to UML user with both a sequence diagram 
describing the error trace (events sequence), and 
an object diagram describing the dead marking 
(object values).  
 
However, as UML users are not necessary familiar 
with input languages of CPNtools (CP-nets, 
ASKCTL and CPN-ML). The specification of 
system properties, to check the model consistency 
with the expected properties of the real system, will 
be difficult for users to understand. So, we allow 
UML user to express system properties in OCL 
language, as invariants and pre/post conditions, on 
the class diagram, then we automatically map 
these constraints into ASKCTL formulas based on 
CPN-ML functions. Finally, we check OCL 
properties on CP-net state space trough ASKCTL 
formulas. Positive responses are shown to UML 
user and negative responses are interpreted by a 
counterexample through a sequence diagram and 
an object diagram.  
 
We express in what follows four OCL properties 
checked over the state space of the resulting CP-
net model in CPNtools environment. 
 
Property 1: ATM machine does not eject money if 
the client asks for an amount higher than its 
balance. 
 
OCL invariant:  
Context c:Client  
inv: (c.asked_amount > c.balance) implies 
(c.ATM.eject_money = 0) 
 
ASKCTL formula (without detail for invariant 
condition):  
       

use (ogpath^"/ASKCTL/ASKCTLloader.sml");        

       

val CTLFormula1 = INV( NF("",MLInv));  
       

eval_node   CTLFormula1    1 
       

 
where INV() is a state formula which is true if its 
argument is true for all reachable states.  
Eval_node() is a function that allows to evaluate a 
state formula from a specified state node (initial 
state node = 1). It returns true or false, and in the 
case of false, it also prints out a diagnostic report. 
Thus, the first code line allows loading the ASKCTL 
library. The ASKCTL library has two parts: one 
which implements the language of the logic, and 
one which implements the model checker [6]. 

MLInv is a ML function which allows verifying the 
OCL invariant condition. 
 
Property 2: after an “insufficient balance” message 
is returned by the machine, the client balance must 
be decreased by the tax value. 
 
OCL pre/post-condition:  
Context Client::insufficient()  
let c:Client  
POST: (a.new_balance = a.old_balance - 
a.ATM.cach) 
 
ASKCTL formula (without detail for post-
condition): 
       

use (ogpath^"/ASKCTL/ASKCTLloader.sml");        

       

Val  CTLformula2= INV(or(not NF(“”, fire(t1)), 
FORALL_NEXT( and( NF( “”,  fire(t2)), 
FORALL_NEXT( NF(“”, MLpost))))));  
       

eval_node  CTLformula2   1 
       

 
where FORALL_NEXT() is used as a state formula. 
It is true if its argument is true for all immediate 
state successors. t1 and t2 are derived transitions 
from the sending and receiving events of the call 
operation message. Fire(t) indicates that the 
transition t is enabled. MLpost is a ML function 
which allows verifying the OCL post-condition. 
 
Propriety 3: The machine does not eject money if 
the requested sum is greater than the cash 
machine or greater than the maximum or exceeds 
the client's balance amount. 
 
OCL invariant: 
Context c: Client 
INV: (c.asked_amount+c.ATM.tax > c.balance) or 
(c.asked_amount+ c.ATM.tax > c.max_amount) or 
(c.asked_amount+a.ATM.tax > c.ATM.cash) 
implies c.ATM.eject_money=0 
 

ASKCTL formula 3: 
       

use (ogpath^"/ASKCTL/ASKCTLloader.sml");       
       

val CTLFormula3 = INV(NF("",MLInv)) ;  
       
eval_node   CTLFormula3   1;   
       

fun MLInv3   n =                   
if (Mark.SubPageAmountError'P11  1  n) <> empty 
then CheckEjctedMoney n 
else true 
       

fun CheckEjectedMoney  n =                 
let 
val atm= List.nth(Mark.SubPageAmountError 'P11  
1  n,0) :TOBJ; 
val class=(#1 atm): STRING; 
val ID=(#2 atm) : STRING; 
val list=(#3 atm): INTlist; 
in 
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(class="atm") andalso (ID="a1") andalso 
(List.nth(list,3)=0) 
end 
       

 
Property 4: The machine rejects the user PIN if it 
does not appear in the bank data. The machine is 
thus in a state of reject. 
 
OCL pre/post condition: 
Context  Bank :: pin_error() 
Let b :bank 
PRE : b.PINsexcludes(b.client.PIN) 
POST : atm.state =0 
 
 
ASKCTL formula 4: 
       

use (ogpath^"/ASKCTL/ASKCTLloader.sml"); 
       

val CTLFormula4 = INV( AND( OR( NOT( NF("", 
firt1)), 
NF("",MLpre)),OR(OR(NOT(NF("",firt1)),NOT(NF(""
, MLpre))), EXIST_NEXT( AND( NF( "", firt2), 
EXIST_NEXT( NF( "", MLpost))))))); 
       

eval_node    CTLFormula4  1 
       

fun firt1 n = ((Mark.SubPagePinError'P20  1  n) <> 
empty) 
       

fun firt2 n = ((Mark.SubPagePinError'P_msg1 1  n) 
<> empty)andalso((Mark.SubPagePinError'P10  1  
n) <> empty) 
       

fun MLpre n =  
let 
val bank= List.nth(Mark.SubPagePinError'P20  1  
n,0) :TOBJ; 
val list2=(#3 bank): INTlist; 
val client= List.nth(Mark.SubPagePinError'P00  1  
n,0) :TOBJ; 
val list0=(#3 client): INTlist; 
in    (not(checkpin list0 list2)) end  
       

fun MLpost n =  
let  val atm= List.nth(Mark.SubPagePinError'P11 1 
n,0) :TOBJ; 
val list1=(#3 atm): INTlist; in (List.nth(list1,1)=0) 
end 
       

 
where MLpre is a ML function which allows 
verifying the OCL pre-condition. 

6. RELATED WORKS 

OCL has been formalized by various formal 
languages such as B, Z, CSP, PVS, mu-calculs 
and temporal logic. Many temporal extensions of 
OCL exist. Ziemann and Gogolla aim in [23] to 
expand the semantics of the language with a LTL-
based extension. Bill et al. present in [2] an OCL 
extension with CTL-based temporal operators. 
Kanso and Taha propose in [12] a pattern-based 
extension of the OCL language to express temporal 
constraints on object-oriented systems. Distefano 

et al. provide in [7] a formal semantics to OCL by 
using OBTL (Object-Based Temporal Logic), which 
facilitates the specification of dynamic and static 
properties of object-based systems. They do not 
expand OCL with temporal operators, but provide a 
theoretical precise mapping of a part of OCL into 
OBTL. Cengarle and Knapp propose in [4] an 
extension of OCL, called OCL/RT, for modeling 
real-time and reactive systems. OCL/RT introduces 
a general notion of time and event to describe the 
temporal behavior of UML models. Mullins and 
Oarga provide in [15] an OCL extension, called 
EOCL, with CTL temporal operators. This 
extension is strongly inspired by BOTL, and allows 
model checking EOCL properties on UML models 
expressed as abstract state machines. 
 
Theoretically, our approach of OCL formalization 

can be compared to [7] when translating invariants 
and pre/post conditions to a variant of CTL logic. 
But, practically, our work uses a specific logic 
strongly based on a functional programming 
language SML in CP-nets context. This allows 
detailed mapping of basic and complex types and 
operations of OCL language. Our approach is 
implemented and integrated in a validation 
framework of UML models by using CPNtools 
environment. 

7. CONCLUSION  

To help and assist UML modelers verifying their 
specification, we proposed to automatically 
translate OCL properties, specified on the class 
diagram, to CTL-like logic based on SML. We also 
present in details the translation of basic and 
complex expressions of OCL by exploiting the 
expressiveness of the functional programming 
language CPN-ML. We relied on the class diagram 
for the static view of the system and the IOD 
diagram for the behaviour view of the system. The 
CP-net model derived from the UML description is 
analysed by model-checking based on OCL 
constraints derived to ASKCTL logic. To the best of 
our knowledge, it is the first work that uses 
Standard ML to formulate OCL expressions in a 
CP-net context. The resulting formulas are succinct 
and of reduced execution time as ASKCTL logic is 
based on the functional and recursive aspect of ML 
as well as the Strongly Connected Component 
graph (SCC). ASKCTL formulas have been 
evaluated over the generated state space of CP-
net model within CPNtools environment. In case of 
negative answers, we propose to help the user 
investigating why an expected property does not 
hold. For this purpose, a sequence diagram is 
returned to the user relating the property error 
trace.   
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For future works, we plan to improve our 
implementation with regard to efficiency and 
usability. We also plan to integrate the proposed 
approach of mapping in a CASE tool (Computer-
Aided Software Engineering) of UML2 in order to 
generalize its application to other dynamic 
diagrams. 

8. REFERENCES 

1. Alhroob, A., Dahal, K., & Hossain, A. (2010, 
October). Transforming UML sequence 
diagram to high level Petri Net. In Software 
Technology and Engineering (ICSTE), 2010 
2nd International Conference on (Vol. 1, pp. 
V1-260). IEEE. 

2. Bill, R., Gabmeyer, S., Kaufmann, P., & Seidl, 
M. (2013). OCL meets CTL: Towards CTL-
Extended OCL Model Checking. In 
Proceedings of the MODELS 2013 OCL 
Workshop} (Vol. 1092, pp. 13-22). 

3. Bennama, M., & Bouabana–Tebibel, T. (2013). 
Validation environment of UML2 IOD based on 
hierarchical coloured Petri nets. International 
Journal of Computer Applications in 
Technology, 47(2), 227-240. 

4. Cengarle, M. V., & Knapp, A. (2002). Towards 
ocl/rt. In FME 2002: Formal Methods—Getting 
IT Right (pp. 390-409). Springer Berlin 
Heidelberg. 

5. Cheng, A., Christensen, S., & Mortensen, K. H. 
(1997). Model checking Coloured Petri Nets-
exploiting strongly connected components. 
DAIMI Report Series, 26(519). 

6. Christensen, S., & Mortensen, H.K. (1996) 
‘Design/CPN ASKCTL Manual Version 0.9’, 
University of Aarhus. 

7. Distefano, D., Katoen, J. P., & Rensink, A. 
(2000). On a temporal logic for object-based 
systems (pp. 305-325). Springer US. 

8. Edmund M. Clarke, E. A. Emerson, and A. P. 
Sistla, “Automatic Verification of Finite State 
Concurrent System Using Temporal Logic”, 
ACM Transactions on Programming 
Languages and Systems, vol. 8(2), 1986, pp. 
244-263. 

9. Fernandes, J. M., Tjell, S., Baek Jorgensen, J., 
& Ribeiro, Ó. (2007, May). Designing tool 
support for translating use cases and UML 2.0 
sequence diagrams into a coloured Petri net. 
SCESM'07: ICSE Workshops 2007. Sixth 
International Workshop on (pp. 2-2). IEEE.  

10. Jensen, K. (1998) An Introduction to the 
Practical Use of Coloured Petri Nets. Lectures 
on Petri Nets II: Applications, Lecture Notes in 
Computer Science, 1492, 237-292, 1998. 

11. Jensen, K., & Kristensen, L. M. 
(2009). Coloured Petri nets: modelling and 
validation of concurrent systems. Springer. 

12. Kanso, B., & Taha, S. (2013). Temporal 
Constraint Support for OCL. In Software 
Language Engineering (pp. 83-103). Springer 
Berlin Heidelberg. 

13. Mandel, L., & Cengarle, M. V. (1999). On the 
expressive power of the Object Constraint 
Language OCL. Available on the World Wide 
Web: http://www. fast. de/projeckte/forsoft/ocl. 

14. Milner, R. (Ed.). (1997). The definition of 
standard ML: revised. The MIT press.  

15. Mullins, J., & Oarga, R. (2007). Model checking 
of extended OCL constraints on UML models in 
SOCLe. In Formal Methods for Open Object-
Based Distributed Systems (pp. 59-75). 
Springer Berlin Heidelberg. 

16. OMG, Object Constraint Language 2.3.1, Doc 
Number: formal/2012-01-01, 2012.  

17. OMG, UML Superstructure Specification 2.4.1, 
Doc Number: formal/2011-08-06, 2011. 

18. Petri, C. A. (1962).  Kommunikation mit 
Automaten. Bonn: Institut f¨ur Instrumentelle 
Mathematik, Schriften des IIM Nr. 2, 1962. 

19. Ratzer, A. V., Wells, L., Lassen, H. M., 
Laursen, M., Qvortrup, J. F., Stissing, M. S., ... 
& Jensen, K. (2003). CPN tools for editing, 
simulating, and analysing coloured Petri nets. 
In Applications and Theory of Petri Nets 2003 
(pp. 450-462). Springer Berlin Heidelberg. 

20. Staines, T. S. (2008, March). Intuitive mapping 
of UML 2 activity diagrams into fundamental 
modeling concept Petri net diagrams and 
colored Petri nets. ECBS 2008. 15th Annual 
IEEE International Conference and Workshop 
on the (pp. 191-200). IEEE. 

21. Ullman, J. D. (1998). Elements of ML 
programming. 

22. Zaidi, A. K., & Levis, A. H. (2006). Verification 
of System Architectures Using Modal Logics 
and Formal Model Checking Techniques. In 
Conference on Systems Engineering Research 
(CSER). 

23. Ziemann, P., & Gogolla, M. (2003, January). 
Ocl extended with temporal logic. In 
Perspectives of System Informatics (pp. 351-
357). Springer Berlin Heidelberg. 

 

112




