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1. INTRODUCTION

A discrete event system (DES) is a dynamic system
whose behavior can be described by means of a set
of time-consuming activities, performed according
to a prescribed ordering. Events correspond to
starting or ending some activity (Cassandras (1999);
Cohen (1984)). These systems can represent
a great number of processes characterized as
being concurrent, asynchronous, distributed or
parallel, such as flexible manufacturing systems,
multiprocessor systems or transportation networks.
If the concerned systems are characterized by delay
and synchronization phenomena, the Timed Event
Graphs (TEG) constitute interesting models. Timed
Event Graphs are a subclass of timed Petri Net in
which all places have a single transition upstream
(A single upstream transition means that there is
no competition in either consumption or supply of
token in TEG) and a single one downstream (means
that all potential conflicts in using tokens in places
have been already arbitrated). This class of system
plays an important role because of its deterministic
temporal behavior.
In opposition to continuous systems, Timed Event
Graphs are not modeled through differential or
difference equations. An appropriate model is
developed to describe the behavior of these

systems and provide a framework for analytical
techniques to meet the goals of design, control
and performance evaluation. For about 30 years,
a particular algebraic structure, called Dioids has
motivated the elaboration of a new linear system
theory (Baccelli (1992); Cuninghame-Green (1979);
Cohen (1984)). This theory offers a striking analogy
with conventional linear system theory such as state
representation, transfer matrices, corrector synthesis
and identification theory (Cohen (1999); Lhommeau
(2003); Cottenceau (1999)).
In control theory, a state observer is a system
that provides an estimate of the internal state of
a given real system from measurements of the
input and output of the real system. the observer
was first proposed and developed in (Luenberger
(1964, 1966)). Since these early papers, which
concentrated on observers for purely deterministic
continuous linear systems, observer theory has been
extended by several researchers to include discrete
event dynamic systems, in particular Timed Event
Graph.
The observer design problem of Timed Event Graph
has received much attention over the last few years.
A first problem considered is to estimate state in
presence of disturbances for max-min plus linear
system initially developed by (Laurent (2010)). Here,
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the main approach is based on the dioid of series
Max

in [γ, δ]. A second objective is to use an observer
to feedback controller in order to obtain a desired
behavior.
In this paper, the approaches are applied to an
industrial process. Simulation results using Scilab
are reported.
The article is organized as follows. In section 2 we
recall basic notions and results about idempotent
semiring and residuation theory (Cohen (1998a)).
A brief description of the industrial plant is given,
and we then introduce the modeling of Timed Event
Graph in the dioid of formal series Max

in [γ, δ] in
section 3. In section 4, the observer is designed by
analogy with the classical Luenberger observer for
linear systems and controller synthesis with observer
is obtained by considering residuation theory which
allows the inversion of mapping in section 5. Finally,
an example of production process is given in section
6.

2. PRELIMINARIES

In this section we give the notations and some
algebraic tools concerning the dioid and residuation
theories.

2.1. Definitions

Definition 1 (Monoid). A Monoid is a set D,
endowed with an internal law noted ⊕, which is
associative and has a neutral element, denoted ε,
∀a ∈ D, a⊕ ε = ε⊕ a = a.

Definition 2 (Dioid or idempotent semiring). A dioid
(D,⊕,⊗) is an algebraic structure, endowed with
two internal operations, denoted by ⊕ and ⊗.
The operation ⊕ is associative, commutative and
idempotent, that is a ⊕ a = a. The operation ⊗ is
associative (but not necessarily commutative), and
distributive at left with respect to ⊕: ∀ a, b, c ∈ D, (a⊕
b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c), and at right: ∀ a, b, c ∈
D, a⊗(b⊕c) = (a⊗b)⊕(a⊗c). The neutral elements
of ⊕ and ⊗ are represented by ε and e respectively,
and ε is absorbing for ⊗: ∀ a ∈ D, a⊗ ε = ε⊗ a = ε

One says that the dioid is commutative provided that
the law ⊗ is commutative.

Definition 3 (Complete dioid). A dioid D is said to
be complete if it is closed for infinte for infinite sums
and if the product disitributes over infinte sums. A
dioid is said complet

2.1.1. Example 1.
((max,+)algebra).Rmax = (R ∪ {−∞} ∪
{+∞},max,+) is a commutative dioid with zero
element ε equal to −∞, and the unit element e

equal to 0. We adopt the usual notation, so that
the symbol ⊕ stands for the max operation,
and ⊗ stands for the addition. Notice that
ε ⊗ (+∞) = (−∞) + (+∞) = ε = (−∞) in
Rmax.

2.1.2. Example 2.
((min,+)algebra).Rmin = (R ∪ {−∞} ∪
{+∞},min,+) is also a commutative dioid, for
which ε equals to +∞, and e equals to 0. We shall
denote ⊕ the min operation in the sequel, and the
symbol ⊗ will stand for the addition. Notice that
ε⊗ (−∞) = (+∞) + (−∞) = ε = (+∞) in Rmin.

2.1.3. Remark.
Most of the time the symbol ⊗ will be omitted as in
conventional algebra, moreover ai = a ⊗ ai−1 and
a0 = e.

Definition 4 (Order relation). A set D is said to be
ordered if there exisists a binary relation � such that
the following conditions are satisfied for all a, b and c
in D:

• Reflexive: every element is in relation with itself
(a � a);

• Antysymmetric: if a � b and b � a⇒ a = b.

• Transitive: if a � b and b � c⇒ a � c.

In a dioid, the relation � associated with max
application is an oreder relation which correspond to
the usual order ≤, a � b⇔ b = a⊕ b⇔ a ≤ b.
The relation � associated with min application is an
oreder relation which correspond to the reverse of
the usual order ≥, a � b⇔ b = a⊕ b⇔ a ≥ b.

Definition 5 (Majorant and minorant). Let (D,�D)
be an ordered set, C ⊂ D a non-empty subset of D,
and a, b ∈ C.

• An element x ∈ D satisfying ∀b ∈ C, b � x is
called majorant of set C.

• An element y ∈ D satisfying ∀b ∈ C, y � b is
called minorant of set C.

In particular, if the upper bound (i.e. the least
majorant) or/and lower bound (i.e. the greatest
minorant) of set a, b exist, we denote them by a ∨ b
and a ∧ b, respectively.

2.2. Matrix dioid

Let (D,⊕,⊗) be a given dioid, and denote Dn×n the
set of square n × n matrices with entries over D.
The sum and the product over D extend as usually
over Dn×n as follows:
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(A⊕B)ij = Aij ⊕Bij

(A⊗B)ij =
n⊕
k=1

(Aik ⊗Bkj).

One can see that (Dn×n,⊕,⊗) is a dioid. The neutral
matrix for the law ⊕ is the matrix with entries equal to
ε, the identity matrix for the law ⊗ is the matrix with
entries equal to e on the diagonal and ε elsewhere.
Notice that the products of matrices in Rmax and in
Rmin are not equal, and do not equal the usual sum
of matrices.

Theorem 1 (Kleene star operator). Over a complete
dioid D, the implicit equation x = ax ⊕ b admits
x = a∗b as least solution. where a∗ =

⊕
i∈N a

i

In the following this operator will sometimes be
represented by the mapping K : D → D,x 7→ x∗.
Furthermore, letting a, b ∈ D, Kleene star operator
satisfies the following well known properties : :

(a∗)∗ = a∗, a∗a = aa∗, a(ba)∗ = (ab)∗a (1)

(a⊕ b)∗ = (a∗ ⊕ b)∗ = (a⊕ b∗)∗ = (a∗ ⊕ b∗)∗ (2)

Thereafter, the operator a+ =
⊕

i∈N+ ai = aa∗ =
a∗a is also considered, it satisfies the following
properties:

a+ � a∗, (a+)∗ = a∗, (ab∗)+ = a(a⊕ b)∗ (3)

Inversion of mappings is an important issue in
many control applications. Unfortunately, in general
manner, mappings defined over idempotent semiring
do not admit inverse. However the residuation
theory allows to characterize the solution set of an
inequality such as f(x) � b. The reader may consult
Cohen (1998a) to obtain a complete presentation of
this theory.

Definition 6 (Isotone mapping). f is an isotone
mapping if it preserves order, that is, a � b⇒ f(a) �
f(b).

Definition 7 (Residuated mapping). An isotone
mapping f : D → C, where D and C are ordered
sets, is a residuated mapping if for all b ∈ C
there exists a greatest element x that satisfies the
inequality f(x) � b. This greatest element is denoted
by f ](b) and mapping f ] is called the residual of f .
Dually, if there exists a least element x for the
inequality f(x) � b, it is denoted by f [(b). Mapping
f [ is called the dual residual of f .

Corollary 1 The mappings La : x 7→ a ⊗ x
and Ra : x 7→ x ⊗ a defined over a complete
idempotent semiring D are both residuated Cohen
(1998a). Their residuals are isotone mappings

denoted respectively by L]a(x) = a ◦ x and R]a(x) =
x ø a, were ◦ and ø are the left and right residuation
respectively.

Theorem 2 The mappings x 7→ a ◦ x and x 7→ xøa
satisfy the following properties:

a ◦ a = (a ◦ a)∗, aøa = (aøa)∗, (4)

a(a ◦ (ax)) = ax, ((xa)øa)a = xa, (5)

b ◦ a ◦ x = (ab) ◦ x, xøaøb = xø(ba), (6)

a∗ ◦ (a∗x) = a∗x, (a∗x)øa∗ = a∗x, (7)

(a ◦ x) ∧ (a ◦ y) = a ◦ (x ∧ y), (8)

(xøa) ∧ (yøa) = (x ∧ y)øa. (9)

The sum, the product and the residuation of
matrices are defined after the sum, product and the
residuation of scalars in D.

3. TIMED EVENT GRAPH

A Timed Event Graph (TEG) is a subclass of timed
Petri Net where each place has a single input
transition and a single output transition. For more
details about Petri net see David and Alla (1997).

Figure 1: Production process

3.1. Plant description

The process we study here (see Martinez (2003);
Amari (2004)) is composed of three conveyor belts
connected by loops. the parts are made on an
extruding machine in loop 3. Loop 1 and loop 2 are
both similar one to each other. they are dedicated to
a thermal processing of the parts. Loop 3 processes
parts that are conveyed on pallets to one of the other
loops. we study loop 2 Figure 2 (identical process
for loop1). Parts arrive from loop 3 at point A and
an operator fixes them to point I. Here they enter
inside the furnace. This element is a channel divided
into two sections. Inside the former section parts are
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Figure 2: Petri Net of the loop2

heated and they are next cooled down inside the
latter. Once, pallets come outside the furnace (point
O), they are transferred to a second operator who
removes parts from the pallets. Thus, parts are taken
away at point E according to the external resources.
Finally, the free pallets are released and transfer to
point A.
The main problem is to achieve the thermal
treatment on loop 1 or loop 2 without major failures.
In figure 1, d and l are assumed to be the durations of
operations and the conveyor capacities respectively.
This physical process (loop2) is modelled thanks
to a TEG. Transition u1 models parts arrivals from
loop3, u2 models the necessity of a resource to carry
the terminated part and Transition y represents the
departure of an achieved part. Figure 2 shows a
model of the plant.

3.2. Timed Event Graph description in dioids

Timed Event Graph can be expressed by linear
relations over some dioids Cohen (1999). By
associating with each transition x a dater function,
in which x(k) is equal to the date when which the
firing numbered k occurs, it is possible to obtain a
linear state representation in Rmax. there is another
representation of TEG in Rmin, a function of time
t, corresponding to the cumulated number of firings
of the transition at time t. such a function is called
a counter. A two-dimensional representation of
input-output maps called Max

in [γ, δ] is considered
here Cohen (1998b), where γ is an indeterminate
which may also be considered as the backward
shift operator in the event domain, and δ is the
backward shift operator in the time domain. this
property means that each entry can be written as
an expression of the form s = p ⊕ qr∗ in which
p and q are polynomials in (γ, δ) which represent
the transient behavior and the repeated pattern

respectively. whereas r is a monomial γνδτ which
reproduces the pattern q along the slope ν

τ .
Considering the Timed Event Graph in Figure2. The
dynamic behavior of this system can be expressed
as follow: x1(k) = max(x7(k−5)+4, x2(k−1), u1(k)),
x2(k) = max(x1(k) + 1, x3(k − 2)), x3(k) =
max(x2(k)+3, x4(k−2), w1(k)), x4(k) = max(x3(k)+
10, x5(k − 2)), x5(k) = max(x4(k) + 10, x6(k − 3)),
x6(k) = max(x5(k) + 3, x7(k − 1)), x7(k) =
max(x6(k) + 2, x1(k− 2), u2(k), w2(k)), y(k) = x7(k).
In terms of Max Plus notation, we obtain the
following linear equations: x1(k) = 4 ⊗ x7(k − 5) ⊕
x2(k − 1) ⊕ u1(k), x2(k) = 1 ⊗ x1(k) ⊕ x3(k − 2),
x3(k) = 3 ⊗ x2(k) ⊕ x4(k − 2) ⊕ w1(k),
x4(k) = 10 ⊗ x3(k) ⊕ x5(k − 2), x5(k) =
10⊗x4(k)⊕x6(k−3)), x6(k) = 3⊗x5(k)⊕x7(k−1),
x7(k) = 2 ⊗ x6(k) ⊕ x1(k − 2) ⊕ u2(k) ⊕ w2(k)),
y(k) = x7(k).
consequently, The transitions are related as follows
overMax

in [γ, δ]:
x1 = γ5δ4x7 ⊕ γx2 ⊕ u1, x2 = δx1 ⊕ γ2x3,
x3 = δ3x2 ⊕ γ2x4 ⊕ w1, x4 = δ10x3 ⊕ γ2x5,
x5 = δ10x4 ⊕ γ3x6, x6 = δ3x5 ⊕ γx7,
x7 = δ2x6 ⊕ γ2x1 ⊕ u2 ⊕ w2, y = x7.
We obtain the following state space representation
overMax

in [γ, δ]:

x = Ax⊕Bu⊕Rw = A∗Bu⊕A∗Rw (10)

y = Cx = CA∗Bu⊕ CA∗Rw (11)

With: A =



ε γ ε ε ε ε γ5δ4

δ ε γ2 ε ε ε ε
ε δ3 ε γ2 ε ε ε
ε ε δ10 ε γ2 ε ε
ε ε ε δ10 ε γ3 ε
ε ε ε ε δ3 ε γ
γ2 ε ε ε ε δ2 ε


,

B =



e ε
ε ε
ε ε
ε ε
ε ε
ε ε
ε e


, R =



ε ε
ε ε
e ε
ε ε
ε ε
ε ε
ε e


, x =



x1
x2
x3
x4
x5
x6
x7


,

C =
(
ε ε ε ε ε ε e,

)
, ut =

(
u1 u2

)
,

wt =
(
w1 w2

)
.

where u, y and x are respectively the input, output
and state vector. w represents uncontrollable inputs,
each entry of w corresponds to a transition which
disable the firing of internal transition of the graph,
and then decreases the performance of the system.
A, B, C and R are given matrices over Max

in [γ, δ].
CA∗B is the input/output transfer matrix and CA∗R
is the disturbance/output transfer matrix.
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Figure 3: observer structure

3.3. Periodicity, causality and asymptotic slope

Definition 8 (Periodicity) A series s ∈ Max
in [γ, δ] is

said to be periodic if it can be written as s = p ⊕
q(γνδτ ) with p and q two polynomials and ν, τ ∈ N .
A matrix is said to be periodic if all its entries are
periodic.

Definition 9 (Causality) A series s ∈ Max
in [γ, δ] is

causal if s = ε. The set of causal elements of
Max

in [γ, δ] has a complete dioid structure denoted by
Max+

in [γ, δ]

Definition 10 (asymptotic slope) The asymptotic
slope of a periodic series s = p ⊕ q(γνδτ )∗ denoted
σ∞(s) is defined as the ratio σ∞(s) = ν/τ

Let s1 and s2 be two periodic series such that ν1, ν2
6= 0 et τ1, τ2 6= 0), then

σ∞(s1 ⊕ s2) = min(σ∞(s1), σ∞(s2)),

σ∞(s1 ⊗ s2) = min(σ∞(s1), σ∞(s2)),

If σ∞(s1) ≤ σ∞(s2) then

σ∞(s2 ◦ s1) = σ∞(s1)

otherwise s2 ◦ s1 = ε.

4. OBSERVER DESIGN

The system evolves according to its state vector
equations. Or, In many systems of practical
importance, the entire state vector is not available
for measurement. When faced with this difficulty , a
solution is to provide an estimate of the internal state
of the given plant from measurements of the input
and output of the real system. By analogy with the
classical Luenberger observer Luenberger (1964,

1966), we present an observer design (inspired from
the work of (Laurent (2010)) for Timed Event Graph
modeled in Max

in [γ, δ]. Figure3 depicts the observer
structure whose equations are:

x̂ = Ax̂⊕Bu⊕L(ŷ⊕y) = Ax̂⊕Bu⊕LCx̂⊕LCx (12)

ŷ = Cx̂ (13)

Where L is an observer gain matrix.
Using equation (10), we obtain the following
structure:
x̂ = Ax̂⊕Bu⊕ LCx̂⊕ LC(A∗Bu⊕A∗Rw)
x̂ = (A⊕ LC)x̂⊕Bu⊕ LCA∗Bu⊕ LCA∗Rw
x̂ = (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Bu⊕

(A⊕ LC)∗LCA∗Rw
By applying Kleene star properties we are:

(A⊕ LC)∗ = A∗(LCA∗)∗ (14)

Replacing (14) in previous equation, we obtain:
x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)∗LCA∗Bu⊕

A∗(LCA∗)∗LCA∗Rw
and by recalling that (LCA∗)∗LCA∗ = (LCA∗)+,
this equation may be written as follows:
x̂ = A∗(LCA∗)∗Bu ⊕ A∗(LCA∗)+Bu ⊕
A∗(LCA∗)+Rw
Equation (3) yields: (LCA∗)+ ≤ (LCA∗)∗

Then the observer equation may be written as
follows:

x̂ = A∗(LCA∗)∗Bu⊕A∗(LCA∗)+Rw

x̂ = (A⊕ LC)∗Bu⊕ (A⊕ LC)∗LCA∗Rw (15)

The objective, is to calculate the greatest observa-
tion matrix L such that the estimated vector x̂ be
as close as possible to state x, under the constraint
x̂ ≤ x , formally it can be written :

(A⊕LC)∗Bu⊕(A⊕LC)∗LCA∗Rw ≤ A∗Bu⊕A∗Rw

Or equivalently:

(A⊕ LC)∗B ≤ A∗B (16)

(A⊕ LC)∗LCA∗R ≤ A∗R (17)

Lemma 1 The greatest matrix L such that (A ⊕
LC)∗B ≤ A∗B is given by :

L1 = (A∗B)ø(CA∗B) (18)

Lemma 2 The greatest matrix L such that (A ⊕
LC)∗LCA∗R ≤ A∗R is given by :

L2 = (A∗R)ø(CA∗R) (19)

The greatest observer matrix such that x̂ ≤ x is:

L = L1 ∧ L2
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Figure 4: Controller using observer

5. FEEDBACK CONTROLLER SYNTHESIS WITH
OBSERVER

Now, we consider a problem of controller synthesis
with an observer, for TEG, in an objective of
reference model matching. This problem can be
described in the following way: Taking a TEG of
which one knows the transfer matrix, we estimate a
state and we compute a controller which leads to a
closed loop system whose behavior is as close as
possible to the given reference model Gref .
The input output transfet function is expressed by:

y = Hu, such that H = CA∗B

The observer equation is given by:

x̂ = (A⊕ LC)∗Bu

Acontroller denoted K is added between x̂ and u,
the input is described by:

u = Kx̂⊕ v = (K(A⊕ LC)∗B)∗v (20)

Then, the system equation is given by:

x = A∗Bu = A∗B(K(A⊕ LC)∗B)∗v

y = Cx = CA∗B(K(A⊕ LC)∗B)∗v (21)

Firstly, we calculate the observer matrix Lopt =
(A∗B)ø(CA∗B). Then, within the framework of
feedback controller synthesis, we have to find for
a given Gref , a greatest Kopt with respect to the
residuation theory.

Kopt = H ◦Grefø((A⊕ LoptC)∗B) (22)

Proof 1 We calculate the greatest solution Kopt in
order that the controlled system (with estimate state)
will behave as close as possible to a given reference
model.

CA∗B(K(A⊕ LoptC)∗B)∗ � Gref

Using the residuation properties, the following
equivalences are given :

CA∗B(K(A⊕ LoptC)∗B)∗ � Gref

⇔ (K(A⊕ LoptC)∗B)∗ � CA∗B ◦Gref
⇔ K(A⊕ LoptC)∗B � CA∗B ◦Gref

⇔ K � CA∗B ◦Grefø(K(A⊕ LoptC)∗B) = Kopt

6. ILLUSTRATION

In order to illustrate results presented previously, we
consider a Timed Event Graph depicted in figure,
2. Transitions w1 and w2 represent uncontrollable
inputs. each one corresponds to a transition which
delays or disables the firing of internal transition
of the graph. In our example, w1 corresponds to a
failure at entry inside the furnace, the beginning of
the thermal process, is modeled by x3, the firing of
this transition is reported to time 25 instead of time
15. w2 means that the operator removes parts from
the pallets at time 45 instead of time 39. Then, the
state are delayed by disturbances whose trajectories
are as follows :(

w1

w2

)
=

(
γ3δ25

γ2δ45

)
Using minmaxgb Toolbox for Scilab (see
http://www.maxplus.org/), the observer matrix is
given by:

L11 = γ5δ4⊕γ6δ6⊕γ7δ8⊕γ8δ10⊕γ9δ12⊕(γ10δ37⊕γ11δ39

⊕γ12δ47 ⊕ γ13δ49 ⊕ γ14δ57)[γ5δ33]∗

L21 = γ5δ5⊕γ6δ7⊕γ7δ9⊕γ8δ11⊕γ9δ18⊕(γ10δ38⊕γ11δ40

⊕γ12δ48 ⊕ γ13δ50 ⊕ γ14δ58)[γ5δ33]∗

L31 = ε⊕(γ5δ8⊕γ6δ10⊕γ7δ18⊕γ8δ20⊕γ9δ28)[γ5δ33]∗

L41 = ε⊕(γ5δ18⊕γ6δ20⊕γ7δ28⊕γ8δ30⊕γ9δ38)[γ5δ33]∗

L51 = γ4⊕(γ5δ28⊕γ6δ30⊕γ7δ38⊕γ8δ40⊕γ9δ48)[γ5δ33]∗

L61 = γ⊕γ2δ2⊕γ3δ4⊕γ4δ6⊕(γ5δ31⊕γ6δ33⊕γ7δ41⊕γ8δ43

⊕γ9δ51)[γ5δ33]∗

L71 = e⊕γδ2⊕γ2δ4⊕γ3δ6⊕γ4δ8⊕(γ5δ33⊕γ6δ35⊕γ7δ43

⊕γ8δ45 ⊕ γ9δ53)[γ5δ33]∗

and ŷ is equal to y:

ŷ = δ29⊕γδ31⊕γ2δ45⊕γ3δ50⊕γ4δ52⊕γ5δ62⊕γ6δ64

⊕(γ7δ78 ⊕ γ8δ83 ⊕ γ9δ88 ⊕ γ10δ95 ⊕ γ11δ98)[γ5δ33]

The simulation results are Shown in figure (Fig. 5,
Fig. 6). The estimated states of Timed Event Graph
x̂1, x̂2, x̂3, x̂4, x̂5, x̂6, x̂7 are compared to the actual
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state. x1, x2, x3, x4, x5, x6, x7. We remark a little
difference between some state and corresponding
estimated state : x̂3 and x3, x̂4 and x4, x̂5 and x5,
x̂6 and x6. it implies that the disturbances applied
for transition x3 reduce the system performances,
but these disturbances are not acknowledge by
the observer. it is assumed that the model and
the initial state correspond to the fastest behavior,
ie. ŷ and y are equivalent, and there are equality
between asymptotic slope of the state and the one
of estimated state, σ∞(ŷ) = σ∞(y) = 5/33.
Consider a problem of controller synthesis with
observer, we propose to compute a greatest K so
that the system has a transfer relation close to a
given reference transfer Gref .
The objective of the reference model is to impose a
desired behavior Gref to a given system H, then in
our example, we consider Gref = H.Using Scilab,
we calculate H:

H11 = δ29⊕γ1δ31⊕γ2δ39⊕γ3δ41⊕γ4δ49⊕(γ5δ37⊕γ11δ39[γ5δ33]∗

H12 = γ0δ0⊕γ1δ2⊕γ2δ4⊕γ3δ6⊕γ4δ8⊕(γ5δ33⊕γ6δ35⊕γ7δ43

⊕γ8δ45 ⊕ γ9δ53[γ5δ33]∗

For Lopt obtained, we compute the greatest
realizable feedback Kopt using the expression:

Kopt = H ◦Hø((A⊕ LoptC)∗B)

therefore, we can compute the controller and the
output of the system:

u = (K(A⊕ LC)∗B)∗v

y = CA∗B(K(A⊕ LC)∗B)∗v

Assume that: Gkopt = CA∗B(K(A⊕ LC)∗B)∗

Gkopt11 = δ29 ⊕ γ1δ31 ⊕ γ2δ39 ⊕ γ3δ41

⊕γ4δ49 ⊕ (γ5δ37 ⊕ γ11δ39[γ5δ33]∗.

Gkopt12 = γ0δ0 ⊕ γ1δ2 ⊕ γ2δ4⊕

γ3δ6 ⊕ γ4δ8 ⊕ (γ5δ33 ⊕ γ6δ35 ⊕ γ7δ43

⊕γ8δ45 ⊕ γ9δ53[γ5δ33]∗.

For any TEG, it is possible to preserve its own
transfer with either a greatest realizable feedback
control. We have: Gkopt � Gref = H

Figure 5: Estimated state of x1, x2, x3 and x4

Figure 6: Estimated state of x5, x6, x7 and y

7. CONCLUSION

In this paper, we have applied to an industrial
process an observer design and the synthesis of
controller with observer. this system is modeled by
Timed Event Graph which can be described by
linear equations in idempotent semiring. Firstly, The
estimation state in presence of perturbation based
on Luenberger observer, is considered, and the
effectiveness of this method is shown by simulation
results given by the use of Scilab. Afterwards, A
synthesis of controller with observer for TEG in a
model reference is presented, we have shown that
it is possible to preserve its own transfer with a
greatest realizable feedback control.
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