Scalable Model Edition, Query and Version
Control Through Embedded Database
Persistence

Xabier De Carlos!, Goiuria Sagardui?, and Salvador Trujillo!

! IK4-Ikerlan Research Center, P° .J.M°. Arizmendiarrieta, 2 20500 Arrasate, Spain
{xdecarlos, strujillo}@ikerlan.es
2 Mondragon Unibertsitatea, Goiru 2, 20500 Arrasate, Spain
gsagardui@mondragon.edu

Abstract. Persisting and managing models larger than a few tens of
megabytes using XMI introduces a significant time and memory foot-
print overhead to MDE workflows. Several approaches provide alterna-
tive persistence mechanisms based on databases that can be integrated
with EMF. However, to the best of our knowledge there is less cover-
age of approaches on models persistence which include model querying,
versioning and edition capabilities leveraging persistence capabilities.
In this poster we present an approach that provides model persistence
based on embedded databases. This approach aims to provide scalability
through model edition, querying and versioning mechanisms that lever-
age database capabilities.

Keywords: Model Driven Development, Large-Scale Models, Run-Time
Query Translation, Version Control, Model Edition

1 Background and Motivation

XML Metadata Interchange (XMI) is an XML-based model interchange format
standardised by the OMG, and the default model persistence format in the
widely-used Eclipse Modelling Framework (EMF). Being an XML-based format,
models stored in XMI need to be fully loaded in memory before they can be
queried or modified. As models grow in size, this can have a significant impact
both on the overall time needed to execute a query on a stored model, and on the
memory footprint of the host application. As such, there is a need for alternative
model persistence mechanisms that scale better in terms of speed and memory
footprint.

Approaches like Morsa[I], NeodEMF [2], MongoEMF [3] or EMF Fragments
[4] have been proposed to provide alternative persistence mechanisms. These ap-
proaches also provide integration with EMF and support querying models. Inte-
gration is provided by implementing the Resource interface of EMF. Persistence
approaches provide persistence-specific query languages that take advantage of
database capabilities. However, modelling engineers use query languages closer



to model-level, such as the Object Constraint Language (OCL) or the Epsilon
Object Language (EOL) to query models.

Additionally, models are used within collaborative modelling environments
where different versions of models are managed and shared between developers.
Version Control Systems (VCSs) provide support for version management, and
different approaches have been proposed for version control of models. Some
approaches such as ModelCVS [5], AMOR [6], CDO [7] or EMFStore [8] pro-
vide model-specific VCSs that allow performing version operations (i.e. commit,
update, locking, etc.) at model-level. However, most of these approaches (Mod-
elCVS, AMOR and EMFStore) are based on a central repository where XMI
models are stored. Consequently as XMI has scalability problems, these ap-
proaches do not scale well. CDO also stores models in a centralised repository,
but at model-level. But it also has scalability problems, partially due to version
control [9].

Other approaches like EMF Compare [10], EMF Diff/Merge [I1] or Epsilon
Comparison Language (ECL) and Epsilon Merging Language (EML) [12] provide
model-level differencing and merging. However we have not identified differenc-
ing/merging solutions that leverage database persistence capabilities.

2 Contribution

While some approaches focus on providing persistence for large-scale models (i.e.
Morsa, NeodEMF, etc.), other approaches focus on model-specific VCSs (i.e.
EMFStore, ModelCVS, etc.). However, to the best of our knowledge, a database
persistence mechanism to be integrated with a distributed VCS (i.e. GIT) has not
been explored yet, and we believe that this mechanism can be a good alternative
for large-scale model versioning. Providing a persistence mechanism also implies
to implement model query and edition mechanisms. Consequently, as we are
looking for a scalable solution to be used for large-scale model persistence, version
control, edition and querying mechanisms should be scalable.

We propose a persistence mechanism to be integrated within VCSs. Scal-
ability on version control, and model-level edition and querying is supported
through mechanisms that leverage capabilities of the database (i.e. partial load
and modifications). The approach is divided in four parts: persistence (core of
the approach) and edition, query and version control layers that are created
around the persistence and leveraging its capabilities.

2.1 Persistence

While most of the existing approaches perform model versioning through cen-
tralised repositories, we propose database based persistence of models to be
integrated within distributed VCSs. Persistence is based on single-file embedded
databases and it provides different benefits: (i) drop-in replacement for XMI files
facilitating integration in a VCS and in modelling tools; (ii) partially load and
modify models; and (iii) model comparison at different levels (file, database or
model levels).



‘Work done and open issues. We have implemented a mechanism that persists
models in embedded and single-file relational databases. We have used H2 as
the database back-end. The designed data schema is metamodel-agnostic and
it supports persistence of models that conform to arbitrary metamodels. We
have validated the solution with positive results after performing preliminary
evaluation. Open issues related to this task are: (i) to perform a more complete
evaluation comparing performance with other database configurations (indexes,
table views, cache, etc.) and also with other existing solutions; (ii) to improve
the database schema,; (iii) to analyse alternative embedded database back-ends;
and (iv) to analyse how to persist more complex models (mega-models, models
with decorator models, etc.)

2.2 Model-Level Query Layer

While model-level query languages such as OCL or EOL are commonly used
by engineers, persistence-level query languages leverage capabilities of the used
persistence mechanism. To solve this issue, Model-Level Query Layer translates
at run-time model-level EOL queries to persistence-level (SQL). Performing
the translation at run-time provides transparency to the modelling engineers
that can specify and execute model-level queries without worrying on the used
persistence mechanism. In this way, the model-level queries are automatically
translated to a persistence-specific query language, leveraging persistence mech-
anism’s capabilities.

Model-Level RUN-TIME QUERY TRANSLATOR

SIFeN Model-Level Persistence- >
Query Query ’ Translator ’ Level Query € sat .

b ik Parser ‘ Executor

“=Program ) MODEL.DB

Fig.1: Model-Level Query Layer, run-time translation from model-level to
persistence-level.

As Figure [T]illustrates, the run-time translation process parses query expres-
sions within the query program. Each query expression is translated at run-time.
Translated query is executed over the database (the model) only when the in-
formation is required (by other queries or by the user).

Work done and open issues. We have implemented a first prototype that
translates EOL queries to SQL queries and also executes over the persistence
mechanism. Additionally, we have analysed the time required by the approach



for performing the query translation, concluding that the translation does not
imply a significant time overload. The prototype supports all the EOL sen-
tences that obtain information from models. Model modification sentences are
not supported, but we plan to support them in a future prototype. Moreover,
the prototype supports only EOL at model-level and SQL at persistence level.
For future work we plan to add extensibility, providing more query languages at
both sides.

2.3 VCS Integration Layer

The approach provides a database persistence mechanism to be used in dis-
tributed mainstream VCSs. While source code differencing/merging is natively
supported by VCSs (i.e. GIT or Subversion), they only support versioning models
at file-level. Thus, the VCS Integration Layer provides support for model-specific
and scalable differencing and merging.

push

Differencing/merging

User2

el.db model.db

[_difference(2)

load
partially

load
partially

Differencing
[/Merging Tool

(3)

Fig. 2: VCS Integration Layer, differencing and merging for large-scale models.

In this way, we propose a differencing and merging mechanism that perform
the difference and merge at different-levels. Figure [2] illustrates the proposed
strategy. As it is shown on the figure, a conflict appears when User2 pushes
a new model version to Userl. Consequently, a difference or merge should be
performed. Both versions (model.db) are a large-scale model persisted within an
embedded single-file database. Being so, versions are compared first at file or
database level (step 1) and then the differences are extracted (step 2). Finally,
differences are used to load models partially on the differencing/merging (step
3). These partial models only contain the information required to resolve the
conflict.

Work done and open issues. We have described directions that we will
follow to provide a scalable model differencing/merging solution which leverage
capabilities of the proposed persistence mechanism. However, the approach is



not yet implemented. Moreover we have to analyse feasibility to extend existing
differencing/merging tools (i.e. EMF Compare) with this strategy.

2.4 Tool Integration Layer

Providing an alternative persistence mechanism requires the support of integra-
tion with modelling tools, to be able to edit persisted models. The Tool Integra-
tion Layer aims to provide integration of the persistence mechanism with EMF.
This layer will implement the Resource interface of EMF to integrate the per-
sistence mechanism with EMF. Moreover, scalable solutions for model edition
such as partial load or load on demand will be provided.

Work done and open issues. We have described directions to be followed
to integrate persistence within EMF-based modelling tools and they will be
implemented in the future.

References

1. Espinazo Pagén, J., Sdnchez Cuadrado, J., Garcia Molina, J.: Morsa: A Scalable
Approach for Persisting and Accessing Large Models. In Whittle, J., Clark, T.,
Kahne, T., eds.: Model Driven Engineering Languages and Systems. Volume 6981
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2011) 77-92

2. Benelallam, A., Gémez, A., Sunyé, G., Tisi, M., Launay, D.: NeodEMF, a Scalable
Persistence Layer for EMF Models. In: ECMFA- European conference on Modeling
Foundations and applications, York, UK, Royaume-Uni, Springer (July 2014)

3. Bryan Hunt: Mongo EMF. https://github.com/BryanHunt/mongo-emf/wiki Ac-
cessed March 17, 2014.

4. Scheidgen, M.: Reference Representation Techniques for Large Models. In: Pro-
ceedings of the Workshop on Scalability in Model Driven Engineering. BigMDE
'13, New York, NY, USA, ACM (2013) 5:1-5:9

5. Johannes Kepler University of Linz and Vienna University of Technology: The
ModelCVS Project. http://www.modelcvs.org/versioning/index.html| Ac-
cessed June 23, 2014.

6. Johannes Kepler University of Linz and Vienna University of Technology:
The AMOR Project. http://www.modelversioning.org/index.php?option=com_
content&view=article&id=46&Itemid=54 Accessed June 23, 2014.

7. Eike Stepper: CDO Model Repository Overview. http://www.eclipse.org/cdo/
documentation/| Accessed March 17, 2014.

8. EMFStore: What is EMFStore and Why Should I Use It? https://eclipse.org/
emfstore/| Accessed June 21, 2014.

9. Pagén, J.E., Cuadrado, J.S., Molina, J.G.: A Repository for Scalable Model Man-
agement. Software & Systems Modeling (2013) 1-21

10. EMFCompare: Compare and Merge Your EMF Models. http://www.eclipse.
org/emf/compare/| Accessed June 06, 2014.

11. Diff/Merge, E.: a Diff/merge Component For Models. http://eclipse.org/
diffmerge/| Accessed June 06, 2014.

12. Kolovos, D., Rose, L., Paige, R., Polack, F.A.: The Epsilon Book. Structure 178
(2010)


https://github.com/BryanHunt/mongo-emf/wiki
http://www.modelcvs.org/versioning/index.html
http://www.modelversioning.org/index.php?option=com_content&view=article&id=46&Itemid=54
http://www.modelversioning.org/index.php?option=com_content&view=article&id=46&Itemid=54
http://www.eclipse.org/cdo/documentation/
http://www.eclipse.org/cdo/documentation/
https://eclipse.org/emfstore/
https://eclipse.org/emfstore/
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/emf/compare/
http://eclipse.org/diffmerge/
http://eclipse.org/diffmerge/

	Scalable Model Edition, Query and Version Control Through Embedded Database Persistence
	Xabier De Carlos et al.

