
Addressing Multi-Domain Integration Challenge
in Robotics using Model-Based Approach

Arunkumar Ramaswamy1,2 and Bruno Monsuez1 Adriana Tapus1

1 Department of Computer and System Engineering,
ENSTA-ParisTech, 828 Blvd Marechaux, Palaiseau, France,

2 VeDeCom Institute, 77 rue des Chantiers, Versailles, France
{arun-kumar.ramaswamy,bruno.monsuez,adriana.tapus}@ensta-paristech.fr

Abstract. Software development for robotic systems require knowledge
from several domains. This paper highlights the application of domain
modeling in SafeRobots Framework for designing robotic systems. We
discuss how heterogeneous domain models can be modeled and integrated
for systematic software development, and how it can be employed in
intelligent model evolution.

Keywords: robotics, model-driven software engineering, knowledge-based
systems

1 Introduction

System engineering robots poses an interesting challenge of integrating hetero-
geneous problem domains while designing the system. This heterogeneity can be
seen in terms of conceptual domains (e.g., perception, control systems, mapping),
models of computation (e.g., synchronous, asynchronous, discrete, continuous
time), application domains (e.g., service robots, industrial robots, driver-less
cars), etc. In the last decade, developing software for such complex systems was
addressed by ‘divide and rule’ strategy by adopting component-based software
engineering techniques [1]. This has resulted in a large number of middlewares
(e.g., ROS [2]), code libraries (e.g., PCL [3]), and component frameworks devel-
oped by different research laboratories and universities. To a large extent, these
frameworks have helped in rapid prototyping of individual functionalities, but
system integration and analysis still remains an issue. The main reason is that
these frameworks handle the system development at the level of software code.
The system integration problem can be managed efficiently by increasing the
level of abstraction.

In this paper, we highlight the application of domain modeling for robotic
system design in our ‘SafeRobots’ framework [4]. Specifically, we discuss the
following two questions with respect to SafeRobots Framework:

1. How domain knowledge is modeled in SafeRobots Framework?
2. How the domain models helps in model evolution during software develop-

ment?



2 Related Works

By learning from the shortcomings of code-based approaches, the software engi-
neering community in robotics is gradually moving towards Model-Driven Soft-
ware Development (MDSD) approach. The Smartsoft framework is based on
a model driven toolchain that support formal modeling of component skele-
ton that act as a wrapper around the user code [5]. The European project on
Best Practices in Robotics (BRICS) provides guidelines and a framework to
develop robotic components [6]. They are based on the separation of concerns
between different aspects of Computation, Communication, Coordination, Con-
figuration, and Composition. Currently it is in the developmental stage and only
limited concepts have been integrated in the toolchain. RobotML, developed in
the framework of the French research project ‘PROTEUS’ is a DSL for de-
signing, simulating, and deploying robotic applications [7]. V3CMM component
meta-model consists of three complementary views: structural, coordination, and
algorithmic views. However, it has not addressed any robotic domain specific as-
pects [8].

3 SafeRobots: A model-driven toolchain for software
development in Robotics

Fig. 1: Ecosystem of models in SafeRobots toolchain



Self Adaptive Framework for Robotic Systems (SafeRobots) is a model-driven
toolchain that is currently under development in our lab at ENSTA-ParisTech.
SafeRobots is based on three software engineering paradigms: Knowledge-based
engineering, Model-driven engineering, and Component-based software engineer-
ing. A comprehensive discussion on SafeRobots can be found in [4].

In SafeRobots framework, the entire software development process is concep-
tually divided into three spaces: problem space, solution space, and operational
space. Each space is supported by a knowledge space which acts as a bridge
between the three spaces. The complete ecosystem is illustrated in Figure 1. In
problem space, the problem, the requirements, and the contexts are modeled us-
ing appropriate Modeling Languages (ML). The solution space model captures
the knowledge relating to domain concepts, computational algorithms, execution
sequence, and their non-functional properties in a formal way. The Architecture
Modeling and Analysis Language (AMAL) and its open semantic framework
enables concrete architecture modeling in the operational space.

4 Domain Knowledge Modeling

In SafeRobots, the domain knowledge is modeled in two different phases: Prob-
lem Independent Knowledge Modeling and Problem Specific Knowledge Model-
ing. These two phases correspond to the knowledge space and solution space in
Figure 1.

4.1 Problem Independent Knowledge Modeling

The domain knowledge modeling in this phase is independent of the problem
specification or application constraints. The domain concepts are formally mod-
eled using ontologies, Domain-Specific Languages (DSLs), Knowledge graphs,
etc. The models at this level captures the robotic domain specific concepts,
meta-data about the computational algorithms and standard interfaces, their
structural dependencies, etc. The domain knowledge complements the various
application specific development process by providing a knowledge base for ab-
stract concepts such as image, point clouds, links, joints, platform, etc.

4.2 Problem Specific Knowledge Modeling

Problem-specific knowledge modeling or solution space modeling is performed
with the help of functional requirements from the problem model as constraints
applied to the domain model. In other words, a solution space model captures
multiple solutions for the given problem by considering only the functional re-
quirements and given domain knowledge base modeled in problem independent
knowledge modeling phase. The strategy is to postpone the decisions on non-
functional requirements at a later stage, since such properties can be estimated
only when platform-specific decisions are made. In our approach, the solution



space is formally modeled using our modeling language, ‘Solution Space Model-
ing language (SSML)’. Figure 2 shows a solution space model in SSML for lidar
based vehicle tracking application. The connectors represents computational al-
gorithms and their non-functional property model and the gates represents basic
operations for composing different functional computational processes. The given
model shown in Figure 2b capture three different solutions for the pointcloud
segmentation problem. The three solutions that are modeled satisfies the func-
tional goal of the problem model, but has different non-functional properties. A
detailed discussion on SSML and the vehicle tracking application scenario can
be found in [9].

(a) Experimental setup of lidar
mounted vehicle

(b) Solution space model of pointcloud segmen-
tation operation

Fig. 2: An example for problem specific knowledge modeling in SSML for a vehicle
tracking application

5 Knowledge Supported Model Evolution

The conceptual spaces from the SafeRobots framework shown in Figure 1 are
hierarchically arranged in such a way that the lower layer uses the knowledge
gained in the upper layer. The knowledge space consists of domain concepts
represented using ontologies. The problem is modeling in the form of goals (i.e.,
hard goals and soft goals) and requirements modeled using Goal and Require-
ment Language (GRL). By applying the functional constraints provided by the
problem space on the domain conceptual knowledge, the solution space for the
given problem is modeled. The non-functional properties (NFP) modeled using
our NFP modeling language [10] are specified along with their functionalities
in the solution model. The operational model is filtered from solution model by
applying non-functional constraints provided by the problem model. The oper-
ational model contains concrete architectural model with variabilities that are
resolved dynamically during run-time. Hence, the knowledge provided by the
domain models are used by the tool to guide various phases of software devel-
opment.

The SafeRobots toolchain is being implemented using Eclipse Modeling Frame-
work. The model evolves during the software development by incorporating the
knowledge created in the form of models and helps to shift the critical decision
when more information is available.



6 Conclusion

In this paper, we discussed how modeling techniques are employed in SafeR-
obots framework to model domain knowledge and how they can be applied in
intelligent software tools and process, to develop complex robotic systems. The
main challenge is to adopt the domain model at the appropriate granularity to
assist the system designer in systematic software development process to develop
efficient and reusable software for robotic systems.

References

1. D. Brugali and P. Scandurra, “Component-based robotic engineering (part
i)[tutorial],” Robotics & Automation Magazine, IEEE, vol. 16, no. 4, pp. 84–96,
2009.

2. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA workshop on
open source software, vol. 3, no. 3.2, 2009.

3. R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp.
1–4.

4. A. Ramaswamy, B. Monsuez, and A. Tapus, “Saferobots: A model-driven approach
for designing robotic software architectures,” in International Conference on Col-
laboration Technologies and Systems (CTS), Minneapolis, USA. IEEE, May 2014.

5. C. Schlegel and R. Worz, “The software framework smartsoft for implementing
sensorimotor systems,” in Intelligent Robots and Systems, 1999. IROS’99. Pro-
ceedings. 1999 IEEE/RSJ International Conference on, vol. 3. IEEE, 1999, pp.
1610–1616.

6. R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar, H. Bruyninckx,
P. Soetens, M. Haegele, A. Pott, P. Breedveld et al., “Brics-best practice in
robotics,” in Robotics (ISR), 2010 41st International Symposium on and 2010 6th
German Conference on Robotics (ROBOTIK). VDE, 2010, pp. 1–8.

7. S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “Robotml, a domain-
specific language to design, simulate and deploy robotic applications,” in Simula-
tion, Modeling, and Programming for Autonomous Robots. Springer, 2012, pp.
149–160.

8. D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor, and B. Alvarez, “V3cmm: A
3-view component meta-model for model-driven robotic software development,”
Journal of Software Engineering for Robotics, vol. 1, no. 1, pp. 3–17, 2010.

9. A. Ramaswamy, B. Monsuez, A. Tapus et al., “Solution space modeling for robotic
systems,” Journal for Software Engineering Robotics (JOSER), vol. 5, no. 1, pp.
89–96, 2014.

10. A. Ramaswamy, B. Monsuez, and A. Tapus, “Modeling non-functional properties
for human-machine systems,” in 2014 AAAI Spring Symposium Series, Formal
Verification and Modeling in Human-Machine Systems, Palo Alto, USA, March
2014.


