
Hashing of RDF Graphs and a Solution to the
Blank Node Problem

Edzard Höfig1 and Ina Schieferdecker2

1 Beuth University of Applied Sciences, Luxemburger Str. 10, 13353 Berlin, Germany
edzard.hoefig@beuth-hochschule.de

2 Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
ina.schieferdecker@fokus.fraunhofer.de

Abstract. The ability to calculate hash values is fundamental for using
cryptographic tools, such as digital signatures, with RDF data. Without
hashing it is difficult to implement tamper-resistant attribution or prove-
nance tracking, both important for establishing trust with open data. We
propose a novel hash function for RDF graphs, which does not require
altering the contents of the graph, does not need to record additional in-
formation, and does not depend on a concrete RDF syntax. We are also
presenting a solution to the deterministic blank node labeling problem.

1 Introduction

Two years ago we started to discuss requirements for Open Information Spaces
(OIS): distributed systems that facilitate the sharing of data, while supporting
certain trust-related properties, e.g. attribution, provenance, or non-repudiation
[1, Section II]. While working on the topic, we quickly found out that it is
necessary to not only record trust-relevant information, but also to make sure
that the information cannot easily be tampered with. In closed systems, where
access is strictly regulated and monitored, it is possible to record attribution
information like “Alice created this data set” in a trustworthy manner. In open
systems, where everyone is free to share and re-use any provided data sets, this
is harder and usually requires some sort of cryptographic processing.

One of most commonly used methods employed in this context are hash
functions. They take a fixed version of a data set (the snapshot) and calculate
a smaller, characteristic string for that data (the hash value). Cryptographic
hash functions are constructed in a way that even very small changes to the
original snapshot result in completely different hash values. Furthermore, it is
a runtime expensive operation to construct a data set that yields a given hash
value. Thus, by publishing the hash value for a snapshot x, it is possible to verify
that some data set y is highly likely to be identical to x, simply because their
hash values match. For example, to record the information “Alice created this
data set”, Alice would create a hash value of the data set and digitally sign it
using common cryptographic techniques. The signature could then be published
as meta data along with the data set, allowing verification of the attribution
information by calculating the hash value of a local copy of the data set and
comparing it to the one in the signature.

1.1 Motivation

Attribution is one of the fundamental characteristics that OIS needs to support,
as more complex operations, like provenance tracking, build upon such an at-
tribution framework. To engineer an OIS, we needed to start somewhere, so we
decided to quickly implement an attribution system. Technology-wise, we use the
Resource Description Framework (RDF) [2] to hold our data sets. Thus, our first
task was the implementation of a hash function for RDF graphs. This turned
out to be a complex undertaking. The problem is that RDF does not have a
single, concrete syntax. Although quite rigidly defined in terms of semantics, the
specification explicitly states that “A concrete RDF syntax may offer many dif-
ferent ways to encode the same RDF graph or RDF dataset, for example through
the use of namespace prefixes, relative IRIs, blank node identifiers, and different
ordering of statements.” [2, Section 1.8]. Unfortunately, to work properly, hash
functions need a single, concrete syntax. Often, RDF data is transmitted not as
a document — which would be bound to a concrete syntax — but comes from
query interfaces, e.g., SPARQL endpoints [3]. What we really needed was a hash
function that can work on an in-memory RDF graph. The hash function itself
is not the issue, as there are several implementations available (we are relying
on SHA-256 [4, Section 6.2] to calculate the final hash value). The problem is
to deterministically construct a single character string that distinctly represents
the RDF graph, and the main issue here is the identity of blank nodes contained
in the graph.

1.2 Paper Structure

The current section introduces the reader to the general issue and explains our
motivation. In Section 2, we are studying both the underlying problems that
arise when trying to implement a hash function, as well as the related work in
the scientific community. Section 3 contains the description of an algorithm that
is able to create a hash value for in-memory RDF graphs with blank nodes and
we conclude with a critical discussion of our contribution in Section 4.

2 Problems and Related Work

Initially, we looked at the literature and found a number of articles, dating back
about ten years and discussing the issue in great detail. There were even stan-
dards that seemed directly applicable, for example XML Signature [5,6]. After
studying the literature, we found that none of the articles fully explains a general
solution to the problem. All of them need certain constraints, or make assump-
tions about the data, for example the use of a certain concrete syntax. For our
purposes the situation was inadequate, because of our following requirements:

1. No modification of the RDF data is needed for the algorithm to work
2. No additional data needs to be available, apart from the RDF graph
3. The algorithm works in-memory and not on a concrete syntax

During studies of the subject, we found that three issues were of paramount
importance, if we wanted to solve the problem. We will explain these first, before
investigating the existing work.

Blank Node Identifiers: RDF graphs might contain blank nodes. Such nodes
do not have an Internationalized Resource Identifier (IRI) [7] assigned. Once
loaded by an RDF implementation, they are assigned local identifiers, which
are not transferable to other implementations. When trying to calculate a
hash value, this is a major issue as blank nodes cannot be deterministically
addressed. One can think of blank nodes as anonymous and having an iden-
tity is a necessary pre-condition for calculating a hash value. Solving the
blank node issue is an algorithmic challenge.

Order of Statements Calculation of hash values effectively serialises a RDF
graph structure into a string. RDF does not imply a certain order of state-
ments, e.g. the order of predicates attached to a single subject. For serial-
isation purposes we need a deterministic order, or otherwise we might end
up with hash values differing between implementations. This issue can be
solved by adhering to a sort order when serialising the graph.

Encoding RDF uses literals to store values in the graph. These literals need to
follow a common encoding, otherwise different hash values might be calcu-
lated. The same goes for namespace prefixes or relative IRIs (both features of
the XML syntax for RDF [8]) –they need to be encoded with fully qualified
names when stored in memory, or, at the latest, when serialised.

The most influential paper on the subject of RDF graph hashing was written
by Carroll in 2003 [9]. Building on earlier work [10], Carroll explains that the
runtime of any algorithm for generic hashing of RDF data is equivalent to the
graph isomorphism problem, which is not known to be NP-complete nor known
to be in P. Carroll then refrains from finding a generic solution to the problem
and details his algorithm, which runs in O(n log(n)), but re-writes RDF graphs
to a canonical format. The proposed algorithm works on the N-Triples format (a
concrete document syntax). As far as solving the blank node identity problem,
the article states: “Since the level of determinism is crucial to the workings of
the canonicalization algorithm, we start by defining a deterministic blank node
labelling algorithm. This suffers from the defect of not necessarily labeling all
the blank nodes.” [9, Section 4]. Carroll continued to work on the subject, for
example by publishing applications based on digitally signing graphs, together
with Bizer, Hayes, and Stickler [11], but did not seem to have designed a general
algorithm for hashing RDF graphs.

Sayers and Karp, colleagues of Carroll, published two technical reports at
Hewlett-Packard that explains RDF hashing and applications thereof [12,13].
They identify four different ways to tackle the blank node problem [13, Section
3 ff.], namely:

Limit operations on the graph The idea is to maintain blank node identi-
fiers across implementations, which is not possible in an open world scenario.

Limit the graph itself Avoid the use of blank nodes. This is clearly not the
way for us, as we strive for a general solution to the problem.

Modify the graph Work around the problem by adding information about
blank node identity within the graph. Not possible for us, as we don’t want
to change the RDF graph.

Change the RDF specification Generally assign globally unique identifiers
to blank nodes. This will most likely never happen.

Apart from changing the RDF specification, none of these methods actually
solves the problem and they can be seen as workarounds.

Other authors also investigated RDF graph hashing, e.g. Giereth [14] for the
purpose of encrypting fragments of a graph. Giereth works around the blank node
issue by modifying the graph. A more current approach by Kuhn and Dumontier
[15] proposes an encoding of hash values in URIs. The approach replaces blank
nodes with arbitrarily generated identifiers and thus needs to modify the RDF
data to work.

Although Carroll did already provide pointers in the right direction, the final
idea for solving the issue can be attributed to Tummarello et al., who introduce
the concept of a “Minimum Self-Contained Graph” (MSG) [16]. A MSG is a
partitioning of a graph, so that each MSG contains at most one transitively
connected sub-graph of blank nodes. We apply this idea to construct a blank
node identity, as explained in the next section.

3 The Algorithm

Cβ1

β2 A

β3

β4B

Fig. 1. An example structure with blank nodes

Our approach to the blank node labeling problem relies on constructing the
identity of a blank node though its context. This is similar to the MSG principle
of Tummarello et al. [16, Section 2] and a logical continuation of the thoughts
of Carroll [9, Section 7.1]. For an example, see Fig. 1. The diagram shows three
nodes with IRIs (A, B, C) and four blank nodes (β1 ... β4). If we go on to define
the identity of a node as determined by its direct subjects, we can distinguish β2
and β4, but not yet the two other ones: there are both blank nodes pointing to
another blank node and the C node. We can only discern every node by taking
more of the context into account: not only direct neighbours, but neighbouring
nodes one hop away. Consequentially, the identity of a blank node can only be
constructed when following all of the transitive blank nodes, reachable from the
original one. Using this scheme, we are able to establish an identity for blank

nodes. Having identity for both: blank nodes, and IRI nodes, we can generate a
characteristic, implementation-independent string for both node types. As RDF
only allows these two types of nodes as subjects, we are now able to create a list
of so-called “subject strings”. To solve the issue of implementation-dependent
statement order, it is necessary to establish an overall ordering criterium over
this list. We are using a simple lexicographical ordering based on the unicode
value of each character in a string. As we are solely relying on subject nodes to
calculate the hash value, we need to also encode the predicates and objects of the
RDF graph into the subject strings, as well. This way of encoding graph structure
into the overall data used to calculate the hash value is a major difference to
other algorithms striving for the same goal. Usually, only flat triple lists are
processed and the hash function calculates a value for each triple. To encode the
graph structure we are using special delimiter symbols. Without these symbols,
differing graph topology might lead to the same string representation and thus,
the same hash value. For the final cryptographic calculation of the hash value,
we are using SHA-256 on UTF-8 [17] encoded data. SHA-256 was chosen as
the amount of characters in the overall data string seems to be moderate. It is
recommended to use SHA-256 for less than 264 bits of input [4, Section 1].

3.1 Preconditions and Remarks

To calculate the digest of a single RDF graph g, the graph has to reside in
memory first, as we are not concerned with any network or file-based represen-
tations of the graph. We require that the graph’s content is accessible as a set of
< S,P,O > triples 3. It is beneficial to have fast access to all subject nodes of
the graph, and to all properties of a node and we are using matching patterns to
express this type of access, e.g. <?ns, ?, ? > to denote any node ns that appears
in the role of a subject in the RDF triple data4. Literals and IRI identifiers need
to be stored as unicode characters. There are no restrictions on the blank node
identifiers, as we do not use them for calculation of the digest. For sake of clarity,
we present our algorithm broken down in four separate sub-aglorithms: A func-
tion that calculates the hash value for a given graph (Algorithm 1), a procedure
that calculates the string representation for a given subject node (Algorithm 2),
another one for the string representation of the properties of a given subject
node (Algorithm 3), and a last one for calculation of the string representation
of an object node (Algorithm 4). These sub-algorithms call each other and thus,
could be combined in a single operation. It should be noted, that the algorithm
uses reentrance to establish the transitive relationship needed to assign identities
to the blank nodes.

Our algorithm uses a number of different delimiter symbols with strictly
defined, constant values, which we assigned greek letters to. Table 1 gives an
overview of these symbols.

3 Triples with a Subject, P redicate, and Object
4 The question mark notation is inspired by the SPARQL query syntax [3]

Symbol Symbol Name Value (Unicode) Value Name
αs Subject start symbol { (U+007B) Left curly bracket

ωs Subject end symbol } (U+007D) Right curly bracket

αp Property start symbol ((U+0028) Left parentheses

ωp Property end symbol) (U+0029) Right parentheses

αo Object start symbol [(U+005B) Left square bracket

ωo Object end symbol] (U+005D) Right square bracket

β Blank node symbol ∗ (U+002A) Asterisk
Table 1. Guide to delimiters and symbols used in the algorithms

Use of these symbols is unproblematic in regard to their appearance as part
of the RDF content. As we use two symbols to delimit a scope in the string, we
can clearly distinguish between use as delimiter and use as content. As our goal
is the creation of a string representation for each subject node, the algorithm
makes heavy use of string concatenation and we are using the ⊕ symbol to
denote this operation. In several places, strings are nested between start and
stop delimiters, like this: α⊕ string ⊕ ω.

Some final remarks regarding the implementation before delving into the
specifics of the algorithm: We are using some variables (visitedNodes, g) as
parameters for functions and procedures. Of course, these should be better put
away as shared variables (e.g. attributes in an object). The variable result is
always local and needs to be empty at the start of each function. Furthermore,
there are some functions that dependent on a concrete implementation and are
quite trivial to use. We skip an in-depth discussion of those, e.g., predicates(...).

3.2 Calculating the Hash Value

Algorithm 1 Calculating a hash value for a RDF graph g

1: function calculateHashValue(g)
2: for all ns ∈ g that match <?ns, ?, ? > do . All subject nodes
3: visitedNodes← ∅
4: subjectStrings← subjectStrings ∪ encodeSubject(ns, visitedNodes, g)
5: end for
6: sort subjectStrings in unicode order
7: for all s ∈ subjectStrings do
8: result← result⊕ αs ⊕ s⊕ ωs

9: end for
10: return hash(result) . Using SHA-256 and UTF-8
11: end function

To calculate the hash value for a given RDF graph, Algorithm 1 is used. The
function takes a single parameter: the RDF graph g to use for calculation of

its hash value. At first the algorithm iterates over all of the subject nodes ns
that exist in g (lines 2–5). A subject node is any node that appears in the role
of a subject in a RDF triple contained in g. For each of the subject nodes we
create a data structure, called visitedNodes, which is used to record if we already
processed some blank node. This is necessary for termination of the construction
of the blank node identities. visitedNodes needs to be empty before calculating
the string representation for ns by calling the procedure encodeSubject(...) in
line 4, which is explained in the next section. After all subject nodes are encoded,
the resulting list needs to be sorted. Any sorting order could be used and as we
do not require specific semantics for this step, we are establishing an ordering
simply by comparing the unicode numbering of letters. The sorting operation
in line 6 is key to deterministically create a hash value, as the result would
otherwise build upon the (implementation-dependent) order of nodes in g. All of
the sorted subject-strings are then concatenated to form an overall result string,
while each single subject string is enclosed with the subject delimiter symbols
(line 8). Finally, the result string is subjected to a cryptographic hash function
and returned (line 10).

3.3 Encoding the Subject Nodes

In RDF, subject nodes can be of two types: they can either be blank nodes or
IRIs [2, Section 3.1]. The procedure encodeSubject(...), shown in Algorithm 2
and used by Algorithm 1, needs to take care of this. The procedure has three
arguments: ns – the subject node to encode as a string, visitedNodes – our data
structure for tracking already visited nodes, and g – the RDF graph.

Algorithm 2 Encoding a subject node ns
1: procedure encodeSubject(ns, visitedNodes, g)
2: if ns is a blank node then
3: if ns ∈ visitedNodes then
4: return ∅ . This path terminates
5: else
6: visitedNodes← visitedNodes ∪ ns . Record that we visited this node
7: result← β
8: end if
9: else

10: result← IRI of ns . ns has to be a IRI
11: end if
12: result← result⊕ encodeProperties(ns, visitedNodes, g)
13: return result
14: end procedure

The discrimination of types comes first: lines 2–8 process blank nodes and
lines 9–11 take care of IRIs. For the blank nodes, we have to distinguish between
the case where we already met a blank subject node (line 3–4), and the case where

we didn’t (line 5–7). In the case that the subject node was already encountered,
the graph traversal ends and we return an empty string. If the blank subject
node is hitherto unknown, then result is set to the blank node symbol β (see
Table 1) and the node is recorded in visitedNodes as being processed. If the
subject is not a blank node, but an IRI, we simply set result to be the IRI itself.
Only encoding the subject node itself is not sufficient for our purposes, as we
need to establish an identity based on the context of the current subject node. In
line 12 this process is triggered by calling the encodeProperties(...) procedure
(see Algorithm 3) and concatenating the returned string with the existing result.
The result itself is returned in line 13.

3.4 Encoding the Properties of a Subject Node

Algorithm 3 is responsible for encoding all of the properties of a given subject
node ns into a single string representation. We understand properties as the
predicates (p) and objects (o) that fullfil < ns, ?p, ?o >, where ns is a given
subject. Apart from ns, the procedure encodeProperties(...) needs visitedNodes
as a second, and g as a third argument.

Algorithm 3 Encode properties for a subject node

1: procedure encodeProperties(ns, visitedNodes, g)
2: p← predicates(ns, g) . Retrieve all predicate IRIs that have ns as subject
3: sort p in unicode order
4: for all iri ∈ p do
5: result← result⊕ αp ⊕ iri
6: for all no ∈ g that match < ns, iri, ?no > do . All objects for ns and iri
7: objectStrings← objectStrings ∪ encodeObject(no, visitedNodes, g)
8: end for
9: sort objectStrings in unicode order

10: for all o ∈ objectStrings do
11: result← result⊕ αo ⊕ o⊕ ωo

12: end for
13: result← result⊕ ωp

14: end for
15: return result
16: end procedure

The algorithmic structure reflects the complexity of graph composition using
RDF predicates: a subject node can be associated with multiple predicates, and
the predicates are allowed to be similar, if associated with different objects. We
use a two stage process to encode properties: First, all unique predicate IRIs of
the given subject node ns are retrieved and ordered (lines 2–3). We are postulat-
ing a function predicates(...) that returns all predicate IRIs for a given subject
node ns by searching all triples for matches to < ns, ?px, ? >, extracting the IRI
of the identified predicate px, and eliminating double entries. In a second step,

we encode each predicate IRI and the set of objects associated with it (line 4–14).
The property encoding starts in line 5, where the result is concatenated with
the property start symbol αp and the predicate IRI. Subsequently, we retrieve
all object nodes (nodes that appear in triples with ns as subject and iri as pred-
icate), encode each object node using the procedure encodeObject(...), and store
their respective string representations in a objectStrings list (line 6–8). The
encodeObject(...) procedure is detailed in Algorithm 4. After collecting all the
encoded object strings, the resulting list has to be sorted (line 9). In line 10–12
each object string is appended to result, while taking care to enclose the string
in delimiter symbols. Encoding of a single property (one pass of the loop started
in line 4) ends with appending the property stop symbol ωp to result. Once the
procedure has encoded all properties it returns with the complete result string
in line 15.

3.5 Encoding the Object Nodes

Processing the object nodes itself is trivial when compared to the property encod-
ing. Objects in RDF triples can be three things: an IRI, a literal, or a blank node
[2, Section 3.1]. The encodeObject(...) procedure needs to return an appropriate
string representation for each of these three cases. It takes three arguments: an
object node no, visitedNodes, and the RDF graph g.

Algorithm 4 Encode an object node

1: procedure encodeObject(no, visitedNodes, g)
2: if no is a blank node then
3: return encodeSubject(no, visitedNodes, g) . Re-enter Algorithm 2
4: else if no is a literal then
5: return literal representation of no . Consider language and type
6: else
7: return IRI of no . no has to be a IRI
8: end if
9: end procedure

The three aforementioned cases are treated as follows. If no is a blank node,
we continue with re-entering Algorithm 2 (see line 3). The re-entrance allows
us to construct a path through neighbouring blank nodes. Together with having
potentially many object nodes associated with a single subject, this yields a
connected graph, similar to the MSGs of Tummarello et al. If no is a literal,
it is returned in a format according to [2, Section 3.3] in line 5, including any
language and type information. If no is neither a blank node, nor a literal, it
has to be an IRI and we return it verbatim. After all objects, properties, and
subjects have been encoded, all sub-algorithms have returned and Algorithm 1
terminates.

3.6 An Example

Consider the RDF graph shown in Figure 1 at the beginning of Section 3. When
applying the algorithm to the given graph, we end up with the following string
before calculating the SHA-256 hash (see Algorithm 1, line 10):

{∗(−[∗(−[A][C])][C])} {∗(−[∗(−[B][C])][C])} {∗(−[A][C])} {∗(−[B][C])}

Please note that this string is not valid RDF, as scheme and path information
are missing from the employed IRIs5 used by A, B, and C. Also the symbol “−”
is used to indicate an arbitrary IRI employed for all predicates.
Thanks to the delimiters, it is quite easy to understand the string’s structure. The
four subject node strings for β1, β3, β2, and β4 (in this order) are encapsulated
between curly brackets each. A, B, and C only appear as object nodes and thus do
not trigger the creation of additional subject strings. Instead, they are encoded
as part of the blank node subject strings. Let’s take a look at the first subject
string for node β1: {∗(−[∗(−[A][C])][C])}. Apart from the curly brackets, the
string starts with the blank node symbol “∗”, followed by the properties of that
node, delimited in parentheses. The node has only a single predicate, used with
two different objects: [∗(−[A][C])] and [C]. If we would have additional predicate
types, there would also be further parentheses blocks. Objects are delimited by
square brackets and due to the re-entrant nature of the algorithm object strings
follow the same syntax as just discussed.

4 Conclusion and Future Work

The presented algorithm calculates a hash value for RDF graphs including blank
nodes. It is not necessary to alter the RDF data or to record additional informa-
tion. It is not dependent on any concrete syntax. It solves the blank node labeling
problem by encoding the complete context of a blank node, including the RDF
graph structure, into the data used to calculate the hash value. The algorithm
has a runtime complexity of O(nn), which is consistent with current research on
algorithms for solving the graph isomorphism problem [9]. The worst-case sce-
nario is a fully meshed RDF graph of blank nodes, which does not seem to make
any sense whatsoever — usually, we would expect the amount of blank nodes in
a graph to be far smaller, thus the real execution speed to be less catastrophic.
We concentrated on solving the primary problem, not on runtime optimisations
and we are certain, that there is room for improvement in the given algorithm.
There are some obvious starting points for doing this. For example, there are
redundancies in the string representations for transitive blank node paths (the
string representations for β2 and β4 appear twice in the example given in Section
3.6). One could cache already computed subject-strings, pulling them from the
cache when needed. Also, the interplay between the SHA-256 digest computation
and the subject string calculations has not been researched in sufficient detail.

5 For example A instead of http://a/

It might be possible to reduce processing and storage overhead by combining
these two operations, calling the digest operation on each subject string and
combining the resulting values in order of the final sorted list. The sensibility
of such optimizations should largely depend on the susceptibility of the digest
algorithm implementation to the length of the given input strings. This, in turn,
depends on the usage of blank nodes in the input RDF data. More blank nodes
in the input data and more references between blank nodes means longer sub-
ject strings. Consequentially, to come to a more substantial assessment of the
presented algorithm, we will need to study its performance on a number of real
(and larger) data sets.

While we trust the general approach for solving the blank node labeling
problem through an assignment of identity based on the surrounding context
of the node, we did not proof that the algorithm works correctly. To assure
that it works properly, we did test it: on the one hand in regard to its ability
to process all possible RDF constructs using tests from W3C’s RDF test cases
recommendation [18], on the other hand in regard to the correctness of the blank
node labeling approach using manually constructed graphs. These graphs range
from simple, non cyclic ones with a single blank node to all possible permutations
of a fully meshed graph of blank nodes with variations on the attachment of IRI
nodes and predicate types.

Acknowledgments. We would like to thank Thomas Pilger and Abdul Saboor
for their collection of material documenting the current state of the art and for
tireless implementation work.

References

1. Höfig, E. Supporting Trust via Open Information Spaces. Proc IEEE 36th Annual
Computer Software and Applications Conference, pp. 87–88, (2012)

2. World Wide Web Consortium.: RDF 1.1 Concepts and Abstract Syntax, W3C Rec-
ommendation, http://www.w3.org/TR/rdf11-concepts/ (2014)

3. World Wide Web Consortium.: SPARQL 1.1 Query Language, W3C Recommenda-
tion, http://www.w3.org/TR/sparql11-query/ (2013)

4. National Institute of Standards and Technology.: Secure Hash Standard (SHS). Fed-
eral Information Processing Standards Publication 180–4 (2012)

5. World Wide Web Consortium.: XML Signature Syntax and Processing (Second
Edition), W3C Recommendation, http://www.w3.org/TR/xmldsig-core/ (2008)

6. Cloran, R., Irwin B.: XML Digital Signature and RDF. Proc. Information Security
South Africa (2005)

7. Duerst, M., Suignard, M.: Internationalized Resource Identifiers (IRIs). Internet
Engineering Task Force – Request for Comments 3987 (2005)

8. World Wide Web Consortium.: RDF 1.1 XML Syntax, W3C Recommendation,
http://www.w3.org/TR/rdf-syntax-grammar/ (2014)

9. Carroll, J. J.: Signing RDF Graphs. Proc. of the Second International Semantic
Web Conference, LNCS 2870, pp. 369–384 (2003)

10. Carroll, J. J.: Matching RDF Graphs. Proc. of the First International Semantic
Web Conference, LNCS 2342, pp. 5–15 (2002)

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/rdf-syntax-grammar/

11. Carroll, J. J., Bizer, C., Hayes, P., Stickler, P.: Named Graphs, Provenance and
Trust. Proc. International World Wide Web Conference, pp. 613–622 (2005)

12. Sayers, C., Karp. A. H.: Computing the Digest of an RDF Graph. Hewlett-Packard
Labs Technical Report HPL-2003-235 (2003)

13. Sayers, C., Karp. A. H.: RDF Graph Digest Techniques and Potential Applications.
Hewlett-Packard Labs Technical Report HPL-2004-95 (2004)

14. Giereth, M.: On Partial Encryption of RDF-Graphs. Proc. of the Fourth Interna-
tional Semantic Web Conference, LNCS 3729, pp. 308–322 (2005)

15. Kuhn, T., Dumontier, M.: Trusty URIs: Verifiable, Immutable, and Permanent
Digital Artifacts for Linked Data. Proc. Eleventh European Semantic Web Confer-
ence, LNCS 8465, pp. 395–410 (2014)

16. Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F.: Signing Individual Fragments
of an RDF Graph. International World Wide Web Conference, pp. 1020–1021 (2005)

17. Yergeau, F.: UTF-8, a Transformation Format of ISO 10646. Internet Engineering
Task Force – Request for Comments 3629 (2003)

18. World Wide Web Consortium.: RDF Test Cases, W3C Recommendation, http:
//www.w3.org/TR/2004/REC-rdf-testcases-20040210/ (2004)

http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/

	Hashing of RDF Graphs and a Solution to the Blank Node Problem
	Introduction
	Motivation
	Paper Structure

	Problems and Related Work
	The Algorithm
	Preconditions and Remarks
	Calculating the Hash Value
	Encoding the Subject Nodes
	Encoding the Properties of a Subject Node
	Encoding the Object Nodes
	An Example

	Conclusion and Future Work

