A Probabilistic OWL Reasoner for Intelligent
Environments

David Ausin!, Diego Lépez-de-Ipifial, and Federico Castanedo?

! Deusto Institute of Technology, DeustoTech. University of Deusto, Avda. de las
Universidades, 24, 48007 Bilbao, Spain. {david.ausin, dipina}@deusto.es
2 Wise Athena. 71 Stevenson Street, San Francisco, USA.
fcastanedo@wiseathena.com *

Abstract. OWL ontologies have gained great popularity as a context
modelling tool for intelligent environments due to their expressivity.
However, they present some disadvantages when it is necessary to deal
with uncertainty, which is common in our daily life and affects the de-
cisions that we take. To overcome this drawback, we have developed a
novel framework to compute fact probabilities from the axioms in an
OWL ontology. This proposal comprises the definition and description
of our probabilistic ontology. Our probabilistic ontology extends OWL
2 DL with a new layer to model uncertainty. With this work we aim
to overcome OWL limitations to reason with uncertainty, developing a
novel framework that can be used in intelligent environments.

Keywords: OWL, Bayesian networks, probability, probabilistic ontol-
ogy

1 Introduction

In Ambient Intelligence applications, context can be defined as any data which
can be employed to describe the state of an entity (a user, a relevant object, the
location, etc.) [6]. How this information is modelled and reasoned over time is
a key component of an intelligent environment in order to assist users in their
daily activities or execute the corresponding actions. An intelligent environment
is any space in which daily activities are enhanced by computation [4].

One of the most popular techniques for context modelling is OWL ontologies
[18]. They have been employed in several Ambient Intelligence projects such as
SOUPA[3], CONON]|20] or CoDAMoS [15], to name a few.

OWL is the common way to encode description logics in real world. However,
when the domain information contains uncertainty, the employment of OWL
ontologies is less suitable [11]. The need to handle uncertainty has created a
growing interest in the development of solutions to deal with it.

As in other domains, uncertainty is also present in Ambient Intelligence [16]
and affects to the decision making process. This task requires context information

* This work is supported by the Spanish MICINN project FRASEWARE (TIN2013-
47152-C3-3-R)

in order to respond to the users’ needs. Data in Ambient Intelligence applications
are provided by several sensors and services in real time. Unfortunately, these
sensors can fail, run out of battery or be forgotten by the user, in the case of
wearable devices. On the other hand, the services can also be inaccessible due
to network connectivity problems or technical difficulties on the remote server.
Nonetheless, that unavailable information may be essential to answer correctly
user’s requirements.

For this reason, we present a novel approach to deal with uncertainty in
intelligent environments. This work proposes a method to model uncertainty,
that combines OWL ontologies with Bayesian networks. The rest of this article
is organized as follows. The next section describes the problem that we address.
Section 3 explains the semantics and syntax of our proposal. Section 4 gives an
exemplary use case where our proposal is applied and describes how to model
it. Finally, section 5 summarizes this work and addresses the future work.

2 Description of the Problem

In intelligent environments, the lack of information causes incomplete context
information and it may be produced by several causes:

— Sensors that have run out of batteries. Several sensors, such as wearable
devices, depend on batteries to work.

— Network problems. Sensors, actuators and computers involved in the envi-
ronment sensing and monitoring are connected to local networks that can
suffer network failures. In these cases, the context information may be lost,
although the sensors, actuators and computers are working properly.

— Remote services’ failures. Some systems rely on remote services to provide
a functionality or to gather context information.

— A system device stops working. Computer, sensors and actuators can suffer
software and hardware failures that hamper their proper operation.

When one of these issues occurs, the OWL reasoner will infer conclusions
that are insufficient to attend the user’s needs. Besides, taking into account that
factors can improve several tasks carried in intelligent environments, such as
ontology-based activity recognition. For instance, WatchingT VActivity can be
defined as an activity performed by a Person who is watching the television in
a room:

WatchingTV Activity = JisDoneBy.(Person M JisIn(Room I
Jeontains Appliance.(TV M JisSwitched. (tryue)))) (1)

If the user is watching the television and the system receives the values of all
the sensors, then it is able to conclude that the user’s current activity is of the
type WatchingT VActivity. In contrast, if the value of the presence sensor is not
available, then it is not possible to infer that the user is watching the television.

In addition, sometimes there is not a rule of thumb to classify an individual
as a member of a class. For instance, we can classify the action that the system
has to perform regarding the current activity of the user. Thus, we can define
that the system should turn off the television, when the user is not watching it:

TurnOf fTV = JrequiredBy.(Person MYisDoing.—W atchingTV Activity
M3hasAppliance.(TV M JisSwitched. (tryue)))(2)

However, this concept definition does not accurately model the reality. The
action can fulfil every condition expressed in the TurnOffTV definition, but the
television should not be turned off. This situation may occur when the user goes
to the toilet or answers a call phone in another room, among others.

In these cases in which the information of the domain comes with quantitative
uncertainty or vagueness, ontology languages are less suitable [11]. Uncertainty
is usually considered as the different aspects of the imperfect knowledge, such as
vagueness or incompleteness. In addition, the uncertainty reasoning is defined as
the collection of methods to model and reason with knowledge in which boolean
truth values are unknown, unknowable or inapplicable [19]. Other authors [1]
[11] consider that there are enough differences to distinguish between uncertainty
and vague knowledge. According to them, uncertainty knowledge is comprised
by statements that are either true or false, but we are not certain about them
due to our lack of knowledge. In contrast, vagueness knowledge is composed of
statements that are true to certain degree due to vague notions.

In our work, we are more interested in the uncertainty caused by the lack
of information rather than the vague knowledge. For this reason, probabilistic
approaches are more suitable to solve our problem.

3 Turambar Solution

Our proposal, called Turambar, combines a Bayesian network model with an
OWL 2 DL ontology in order to handle uncertainty. A Bayesian network [13]
is a graphical model that is defined as a directed acyclic graph. The nodes in
the model represent the random variables and the edges define the dependencies
between the random variables. Each variable is conditionally independent of its
non descendants given the value of its parents.

Turambar is able to calculate the probability associated to a class, object
property or data property assertions. These probabilistic assertions have only
two constraints:

— The class expression employed in the class assertion should be a class.
— For positive and negative object property assertions, the object property
expression should be an object property.

However, these limitations can be solved declaring a class equivalent to a class
expression or an object property as the equivalent of an inverse object property.
Examples of probabilistic assertions that can be calculated with Turambar are:

isIn(John, Bedroom1) 0.7 (3)
WatchingTV Activity(Actionl) 0.8 (4)
isSwitched(TV1,true) 1 (5)

The probabilistic object property assertion expressed in (3) states that John is
in Bedroom1 with a probability of 0.7. On the other hand the probabilistic class
assertion (4) describes that the Actionl is member of the class WatchingT VAc-
tivity with a probability of 0.2. Finally, the probabilistic data property assertion
(5) defines that the television, T'V1, is on with a probability of 1.0. The prob-
ability associated to these assertions is calculated through Bayesian networks
that describe how other property and class assertions influence each other. In
Turambar, the probabilistic relationships should be defined by an expert. In
other words, the Bayesian networks must be generated by hand, since learning
a Bayesian network is out of the scope of this paper and it is not the goal of this
work.

3.1 Turambar Functionality Definition

The classes, object properties and data properties of the OWL 2 DL ontology
involved in the probabilistic knowledge are connected to the random variables
defined in the Bayesian network model. For example, the OWL class Watch-
ingT VActivity is connected to at least one random variable, in order to be able
to calculate probabilistic assertions about that class. The set of data properties,
object properties and classes that are linked to random variables is called V.o
and a member of Vp,op, vprob;; such that vprob; € Vprop.

In Turambar, every random variable (RV) is associated to a Vp,., and every
RV’s domain is composed of a set of functions that determine the values that a
random variable can take, such as Val(RV) = {f1, fa...fn} and f; € Val(RV).
These functions require a property or class and individual to calculate the prob-
abilistic assertion, such as f; : ai,ex — result where a; is an OWL individual,
ex, a class, data property or object property; result, a class assertion, object
property assertion, data property assertion or void (no assertion). In the case,
that every function in the domain of a random variable returns void, it means
that the random variable is auxiliary. In contrast, if any f; in the domain of
a random variable returns a probability associated to an assertion, then the
random variable is called final.

For instance, the data property lieOnBedTime is linked to a random variable
named Sleep Time whose domain is composed of two functions f; that check if
the user has been sleeping for less than 8 hours and f> function that checks if
the user has been sleeping for more than 8 hours. Both functions are not able to
generate assertions, so the random variable Sleep Time is auxiliary. By contrast,
WatchingT VActivity class is linked to a random variable called WatchingTV
whose domain comprises f3 function that checks if an individual is member of
the class WatchingT VActivity (e.g. WatchingTV Activity(Activityl) 0.8) and

the f; function which checks if an individual is a member of the complement of
Watching T VActivity.

It is also important to remark that a vprob; can be referenced from several
random variables. For example, the TurnOffTV depends on the user’s impair-
ments, so if the blind user is deaf, it is more likely that the television needs to be
turned off. Additionally, having an impairment also affects to the probability of
having another impairment: deaf people have a higher probability of also being
mute. In this case, we can link hasImpairment object property with two random
variables in order to model it.

Apart from the conditional probability distribution, nodes connected be-
tween them may have an associated node context. The context defines how
different random variables are related between them and the condition that
must fulfil. This context establishes an unequivocal relationship in which ev-
ery individual involved in that relationship should be gatherer before calcu-
lating the probability of an assertion. If the relationship is not fulfilled then
the probabilistic query cannot be answered. For example, to estimate the prob-
ability for the TurnOffTV, the reasoner needs to know who is the user and
in which room he is. For this case the relationship may be the following one
isIn(Tuser, 7room) A requiredBy(?action, Tuser) A hasAppliance(?user, 7tv) |
being ?user, Taction, 7tv and 7room variables. So, if we ask for the probability
that Action! is member of TurnOffT'V, such as Pr(TurnOffTV(Actionl)), then
the first step to calculate it is to check its context. If everything is right the
evaluation of this relationship should return that the Action! is required only
by one user who is only in one room and has only one television. Otherwise, the
probability cannot be calculated.

Our proposal can be viewed as a SROZQ(D) extension that includes a prob-
abilistic function Pr which maps role assertions and concept assertions to a value
between 0 and 1. The sum of the probabilities obtained for a random variable is
equal to 1. In contrast, the sum of probabilities for the set of assertions obtained
for a vprob; may be different from 1. For instance, the object property haslm-
pairment is related to two random variables one to calculate the probability of
being deaf and another one to calculate the probability of being mute. If both
random variables have a domain with two functions, we can get four probabilis-
tic assertions that sums 2 instead of 1, but the sum of probabilities obtained in
one random variable is 1:

— Random variable deaf’s assertions: hasImpairment(John, Deaf)0.8 and
—hasImpairment(John, Deaf)0.2.

— Random variable mute’s assertions: hasImpairment(John, Mute)0.7 and
—hasImpairment(John, Mute)0.3.

The probability of an assertion that exists in the OWL 2 DL ontology is
always 1 although the data property, object properties or class is not member of
Vprob. For example, if an assertion states that John is a Person (Person(John))
and we ask for the probability of this assertion, then its probability is 1, such
as Person(John)l. However, if the data property, object properties or class is
not member of V},,, and there is not an assertion in the OWL 2 DL ontology

that states it, then the probability for that assertion is unknown. We consider
that the probabilistic ontology is satisfied if the OWL 2 DL ontology is satisfied
and the Bayesian network model is not in contradiction with the OWL ontology
knowledge.

3.2 Turambar Ontology Specification

In Turambar, a probabilistic ontology comprises an ordinary OWL 2 DL ontol-
ogy and the dependency description ontology that defines the Bayesian network
model.

The ordinary OWL ontology imports the Turambar annotations ontology,
which defines the following annotations:

— turambarOntology annotation defines the URI of the dependency description
ontology.

— turambarClass annotation links OWL classes in the ordinary ontology to
random variables in the dependency description ontology.

— turambarProperty annotation connects OWL data properties and object prop-
erties in the ordinary ontology to random variables in the dependency de-
scription ontology.

We choose to separate the Bayesian network definition from the ordinary on-
tology in order to isolate the probabilistic knowledge definition from the OWL
knowledge. We define isolation as the ability of exposing an ontology with an
unique URI that locates the traditional ontology and the probabilistic one. So,
given the URI of a probabilistic ontology, a compatible reasoner loads the ordi-
nary ontology and the dependency description ontology it. In contrast, a tradi-
tional reasoner only loads the ordinary ontology. So, if the Turambar probabilistic
ontology is loaded by a traditional reasoner, the traditional reasoner does not
have access to the knowledge encoded in the dependency description ontology.
In this way, we also want to promote the re-utilization of probabilistic ontologies
as simple OWL 2 DL ontologies by traditional systems and the interoperability
between our proposal and them.

On the other hand, the dependency description ontology defines the proba-
bilistic model employed to estimate the probabilistic assertions. To model that
knowledge, it imports the Turambar ontology, which defines the vocabulary to
describe the probabilistic model. As the figure 1 shows, the main classes and
properties in the Turambar ontology are the following ones:

— Node class represents the nodes in Bayesian networks. Node instances are
defined as auxiliary random variables through the property isAuxiliar. The
hasProbabilityDistibution object property links Node instances with their
corresponding probability distributions and hasState object property asso-
ciates Node instances with their domains. Furthermore, hasChildren object
property and its inverse hasParent set the dependencies between Node in-
stances. Finally, hasContext object property defines the context for a node
and hasVariable object property, the value of the variable that the node
requires.

— MetaNode is a special type of Node that is employed with non functional
object properties and data properties. Its main functionality is to group sev-
eral nodes that share a context and are related to the same property. For
instance, in the case of the hasImpairment object property we can model a
MetaNode with two nodes: Deaf and Mute. Both nodes share the same con-
text but have different parents and states. The object property compriseNode
identifies the nodes that share a context.

— State class defines the values of random variables’ domain. In other words, it
describes the functions which generate probabilistic assertions. These func-
tions are expressed as a string through the data property stateCondition.

— ProbabilityDistribution class represents a probability distribution. Probabil-
ity distributions are given in form of conditional probability tables. Cells of
the conditional probability table are associated to the instances of Probabil-
ityDistribution through hasProbability object property.

— Probability class represents a cell of a conditional probability table, such
P(x1 | x2,x3) = value, where x1, x5 and x5 are State individuals and value
is the probability value. x; State is assigned to an instance of Probability
class through the hasValue object property and zs and x5 conditions through
hasCondition object property. Finally, the data property hasProbability Value
sets the probability value for that cell.

— Context class establishes the relationships between the nodes of a Bayesian
network. Relationships between nodes are expressed as a SPARQL-DL query
through the data property relationship.

— Variable class represents the variables of the context. Their instances iden-
tify the SPARQL-DL variables defined in the context SPARQL-DL query.
The variableName data property establishes the name of the variable. For
example, if the context has been defined with the following SPARQL-DL
expression: select ?a ?b where { PropertyValue(p:livesIn, ?a, b)} , then
we should create two instances of Variable with the variableName property
value of a and b, respectively.

— Plugin class defines a library that provides some functions that are referenced
by State class instances and are not included as member of the Turambar
core. The core functions are the following ones: (i) numbers and strings
comparison, (ii) ranges of number and string comparison, (iii) individual in-
stances comparison, (iv) boolean comparison, (v) class memberships check-
ing and (vi) the void assertion to define the probability that no assertion
involves an individual. Only i, iii and iv are able to generate probabilistic as-
sertions. Every function, except the void function, has their inverse function
to check if that value has been asserted as false.

4 Related Works

We can classify probabilistic approaches to deal with uncertainty in two groups:
probabilistic description logics approaches and probabilistic web ontology lan-
guages [11].

-

nl:isAuxiliar
(DataTypeProperty)
I

nl:hasVariable
(ObjectProperty)
I

n1:hasProbabilityDistribution
(>=>=)

I I
I]

1
1
I
v 14 v
[xsd:boolean] [nl:Variable] [nl:ProbabilityDistribution J
| |

I
|
I
I
nl:variableName
(DataTypeProperty)

1
nl:hasProbability
(ObjectProperty)

|

v

are nl:Probability
7\~
7 ~
’ \ g
Vs \ N
/ \ ~
4 \
_ n1:hasCondition ni:hasvalue n1:probabilityValue
nl:MetaNode (ObjectProperty) (>>=) (DataTypeProperty)
I I |
]] |
I I |
(ni:state) (ni:state) (xsd:fioat)
1
|
I
|
]

nl:stateCondition
(DataTypeProperty)

I
I
v

~ - -
nl:hasState nl:hasContext
(ObjectProperty) (>>=)
I I
| I
| I

v v

[nl :State] [nl:Context]
I

1\
nl:hagChildren
(ObjectProperty)
\

inverse of

\
n1:hasParent

nl:relationship
(ObjectProperty)

1
I
}
v (e
(i)

/
/
/

nl:compriseNode
(ObjectProperty) are

I

1

;

[ni:Nade] [nl:Node]

Fig. 1. Classes and properties defined by the Turambar

(DataTypeProperty)

ni:pluginUrl
(DataTypeProperty)

I
v
()

ontology

In the first group, P-CLASSIC [9] extends description logic CLASSIC to add
probability. In contrast, Pronto [8] is a probabilistic reasoner for P-SROIQ, a
probabilistic extension of SROIQ. Pronto models probability intervals with its
custom OWL annotation pronto# certainty. Apart from the previously described
works, there are several other approaches that have been explained in different
surveys such as [14].

In contrast, probabilistic web ontology languages combine OWL with prob-
abilistic formalisms based on Bayesian networks. Since our proposal falls under
this group, we will review in depth the most important works in this category:
BayesOWL, OntoBayes and PR-OWL. The BayesOWL [7] framework extends
OWL capacities for modelling and reasoning with uncertainty. It applies a set
of rules to transform the class hierarchy defined in an OWL ontology into a
Bayesian network. In the generated network there are two types of nodes: con-
cept nodes and L-Nodes. The former one represents OWL classes and the latter
one is a special kind of node that is employed to model the relationships defined
by owl:intersectionOf, owl:unionOf, owl:complementOf, owl:equivalentClass and
owl:disjoint With constructors. Concept nodes are connected between them by
directed arcs that link superclasses with their classes. On the other hand, L-
Nodes and concept nodes involved in a relationship are linked following the
rules established for each constructor. The probabilities are defined with the
classes PriorProb, for prior probabilities, and CondProb, for conditional proba-
bilities. For instance, BayesOWL [22] recognizes some limitations: (i) variables
should be binaries, (ii) probabilities should contain only one prior variable, (iii)
probabilities should be complete and (iv) in case of inconsistency the result may
not satisfy the constraints offered. BayesOWL approach is not valid for our pur-
pose, because it only supports uncertainty to determine the class membership
of an individual and this may not be enough for context modelling. For exam-
ple, sensors’ values may be represented as data and object properties values and
knowing the probability that a sensor has certain value may be very useful for
answering user’s needs.

In contrast to BayesOWL, OntoBayes [21] focuses on properties. In Onto-
Bayes, every random variable is a data or object property. Dependencies between
them are described via the rdfs:dependsOn property. It supports to describe
prior and conditional probabilities, besides it contains a property to specify the
full disjoint probability distribution. Another improvement of OntoBayes over
BayesOWL is that it supports multi-valued random variables. However, it is not
possible to model relationships between classes in order to prevent errors when
extracting Bayesian network structure from ontologies. OntoBayes offers us a
solution for the limitation presented in BayesOWL regarding OWL properties,
but its lack of OWL class support makes it unsuitable for our goal.

PR-OWL [5] is an OWL extension to describe complex bayesian models. It
is based on the Multi-Entity Bayesian newtworks (MEBN) logic. MEBN [10]
defines the probabilistic knowledge as a collection of MEBN fragments, named
MFrags. A set of MFrags configures a MTheory and every PR-OWL ontology
must contain at least one MTheory. To consider a MFrag set as a MTheory, it

must satisfy consistency constraints ensuring that it only exists a joint prob-
ability distribution over MFrags’ random variables. In PR-OWL, probabilistic
concepts can coexist with non probabilistic concepts, but these are only bene-
fited by the advantages of the probabilistic ontology. Each MFrag is composed
of a set of nodes which are classified in three groups: resident, input and con-
text node. Resident nodes are random variables whose probability distribution
is defined in the MFrag. Input nodes are random variables whose probability
distribution is defined in a distinct MFrag than the one where is mentioned.
In contrast, context nodes specify the constraints that must be satisfied by an
entity to substitute an ordinary variable. Finally, node states are modelled with
the object property named hasPossible Values.

The last version of PR-OWL [2], PR-OWL 2, addresses the PR-OWL 1 lim-
itations regarding to its compatibility with OWL: no mapping to properties of
OWL and the lack of compatibility with existing types in OWL. Although, PR-
OWL offers a good solution to deal with uncertainty, it does not provide some
characteristics that we covet for our systems, such as isolation.

Our proposal is focused on computing the probability of data properties asser-
tions, object properties assertions and class assertions. This issue is only covered
by PR-OWL, because BayesOWL only takes into account class membership and
OntoBayes, object and data properties.

In addition, we pretend to offer a way to keep the uncertainty information iso-
lated as much as possible from the traditional ontology. With this policy, we want
to ease the reutilization of our probabilistic ontologies by traditional systems that
do not offer support for uncertainty and the interoperability between them. Fur-
thermore, we aim to avoid that traditional reasoners load unnecessary informa-
tion about the probabilistic knowledge that they do not need. Thus, if we load the
Turambar probabilistic ontology located in http://www.example.org/ont.owl,
traditional OWL reasoners load only the knowledge defined in the ordinary OWL
ontology and do not have access to the probabilistic knowledge. In contrast, Tu-
rambar reasoner is able to load the ordinary OWL ontology and the dependency
description ontology. The Turambar reasoner needs to access to the ordinary
OWL ontology to answer traditional OWL queries and to find the evidences of
the Bayesian networks defined in the dependency description ontology. It is also
important to clarify that a class or property can have deterministic assertions
and probabilistic assertions without duplicating them due to the links between
Bayesian networks’ nodes and OWL classes and properties through turambar-
Class and turambarProperty, respectively. Thanks to this feature, a Turambar
ontology has a unique URI that allows it to be used as an ordinary OWL 2 DL
ontology without loading the probabilistic knowledge. This characteristic is not
offered by other approaches as far as we know.

Another difference with other approaches is that we have taken into account
the extensibility of our approach through plug-ins to increase the basis function-
alities. We believe that it is necessary to offer a straightforward, transparent and
standard mechanism to extend reasoner functionality in order to cover hetero-
geneous domains’ needs.

However, our approach has the shortcoming of assuming a simple attribute-
value representation in comparison to PR-OWL. That means that each prob-
abilistic query involves reasoning about the same fixed number of nodes, with
only the evidence values changing from query to query. To solve this drawback,
we can opt to employ situation specific Bayesian networks [12], as PR-OWL
does. However, the development of custom plug-ins can overcome this limita-
tion in some cases. Besides, thanks to this expressiveness restriction we are able
to know the size of the Bayesian network and give a better estimation of the
performance of the Turambar probabilistic ontology.

5 Conclusions and Future Work

In this work we have presented a proposal to deal with uncertainty in intelligent
environments. Its main features are: a) it isolates the probabilistic information
definition from traditional ontologies, b) it can be extended easily and c) it is
oriented to intelligent environments.

As ongoing work, we are developing an extension to SPARQL-DL [17] in
order to offer a simple mechanism to execute complex queries in a declara-
tive way that abstracts developers from the reasoner implementation employed
and its API. This extension proposes the addition of two new query atoms to
query probabilistic knowledge: ProbType for probabilistic class assertions and
ProbPropertyValue for probabilistic property assertions. We believe that this
extension can ease the development of applications that employ Turambar.

As future work, we plan to create a graphical tool to ease the creation of
probabilistic ontologies in order to promote its adoption. On the other hand,
we plan to extend its expressivity and evaluate new and better ways to define
the probabilistic description ontology in order to improve its maintainability. In
addition, we are studying a formalism that allows us the definition of custom
function for state evaluation that was independent of the programming language
employed.

References

1. Baader, F., Kiisters, R., Wolter, F.: The description logic handbook. chap. Exten-
sions to description logics, pp. 219-261. Cambridge University Press, New York,
NY, USA (2003), http://dl.acm.org/citation.cfm?id=885746.885753

2. Carvalho, R.N.: Probabilistic Ontology: Representation and Modeling Methodol-
ogy. Ph.D. thesis, George Mason University (2011)

3. Chen, H., Perich, F., Finin, T., Joshi, A.: Soupa: standard ontology for ubiquitous
and pervasive applications. In: Mobile and Ubiquitous Systems: Networking and
Services, 2004. MOBIQUITOUS 2004. The First Annual International Conference
on. pp. 258-267 (Aug 2004)

4. Coen, M.H.: Design principles for intelligent environments. In: Proceedings of
the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Ap-
plications of Artificial Intelligence. pp. 547-554. AAAI ’98/TAAI ’98, Amer-
ican Association for Artificial Intelligence, Menlo Park, CA, USA (1998),
http://dl.acm.org/citation.cfm?id=295240.295733

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Costa, P.C.G.: Bayesian semantics for the Semantic Web. Ph.D. thesis, George
Mason University (2005)

Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1),
4-7 (Jan 2001), http://dx.doi.org/10.1007/s007790170019

Ding, Z.: Bayesowl: A Probabilistic Framework for Uncertainty in Semantic Web.
Ph.D. thesis, Catonsville, MD, USA (2005)

Klinov, P.: Practical reasoning in probabilistic description logic. Ph.D. thesis, Uni-
versity of Manchester (2011)

Koller, D., Levy, A., Pfeffer, A.: P-CLASSIC: A tractable probabilistic description
logic. In: In Proceedings of AAAI-97. pp. 390-397 (1997)

Laskey, K.: MEBN: A language for first-order bayesian knowledge bases. Artificial
Intelligence 172(2-3), 140-178 (2008)

Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. Web Semantics: Science, Services and Agents on the
World Wide Web 6(4), 291-308 (2008)

Mahoney, S.M., Laskey, K.B.: Constructing situation specific belief networks. In:
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence.
pp- 370-378. UAI’98, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1998), http://dl.acm.org/citation.cfm?id=2074094.2074138

Pearl, J.: Fusion, propagation, and structuring in be-
lief networks. Artificial Intelligence 29(3), 241 - 288 (1986),
http://www.sciencedirect.com/science/article/pii/000437028690072X

Predoiu, L., Stuckenschmidt, H.: Probabilistic models for the semantic web. The
Semantic Web for Knowledge and Data Management: Technologies and Practices
pp. 74-105 (2009)

Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx,
T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.: Towards an extensible
context ontology for ambient intelligence. In: Ambient Intelligence, Lecture Notes
in Computer Science, vol. 3295, pp. 148-159. Springer Berlin Heidelberg (2004)
Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligencethe next step for arti-
ficial intelligence. Intelligent Systems, IEEE 23(2), 15-18 (March 2008)

Sirin, E., Parsia, B.: SPARQL-DL: SPARQL query for OWL-DL. In: OWLED. vol.
258 (2007)

Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: In: Workshop on
Advanced Context Modelling, Reasoning and Management, UbiComp 2004 - The
Sixth International Conference on Ubiquitous Computing, Nottingham/England
(2004)

W3C: Uncertainty reasoning for the world wide web. Tech. rep., W3C (2008),
http://www.w3.0rg/2005/Incubator /urw3/XGR-urw3/

Wang, X., Zhang, D., Gu, T., Pung, H.: Ontology based context modeling and
reasoning using owl. In: Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops, 2004. pp. 18-22 (2004)
Yang, Y., Calmet, J.: Ontobayes: An ontology-driven uncertainty model. In: Com-
putational Intelligence for Modelling, Control and Automation, 2005 and Interna-
tional Conference on Intelligent Agents, Web Technologies and Internet Commerce,
International Conference on. vol. 1, pp. 457-463. IEEE (2005)

Yun Peng, Z.D.: Bayesowl: Reference manual (Feb 2013),
http://www.csee.umbc.edu/ ypeng/BayesOWL/manual/index.html

