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Abstract. We examine the use of semantic web resources in robot nav-
igation; more specifically, in qualitative navigation where uncertain rea-
soning plays a significant role. We propose a framework for robot naviga-
tion that connects existing semantic web resources based on probabilis-
tic description logics, with probabilistic relational learning and planning.
We show the benefits of this framework in a real robot, presenting a case
study on how semantic web resources can be used to face sensor and
mapping uncertainty in a practical problem.
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tion logics, Bayesian networks.

1 Introduction

Recent experience has shown that applications in robotics can benefit from se-
mantic information carrying commonsense facts [1, 3, 12, 13] One particular ex-
ample of semantic knowledge system for robotics is the KnowRob package
(Knowledge Processing for Autonomous Personal Robots) [15, 16]. KnowRob
operates on ontology databases such as OMICS (indoor common-sense knowl-
edge database) [4], mixing description logics [2] and Bayesian networks [11].

However, it is not always easy to effectively bring these semantic web re-
sources into practical use, as it is necessary to combine semantic information
and low-level data, and to handle uncertain sensors and incomplete maps. In
this paper we propose a framework for qualitative robot navigation that uses
the probabilistic description logic knowlege base in KnowRob to learn and rea-
son at a relational level. We explore a scheme where higher level descriptions
are used to reason at an abstract level. This has important advantages. First,
it saves computation as it handles sparser representations. Second, it is a per-
fect match to the level at which knowledge is stored (that is, relations are used
throughout). Third, the use of information in a higher level of abstraction allows



Fig. 1. Overview of the Web-based Relational Robotic Architecture.

knowledge to be generalized and transferred to other agents or used in similar
tasks.

We also describe an implementation with a real robot that demonstrates how
semantic web resources can work within applications that demand substantial
uncertain reasoning. We present our knowledge representation strategy, our sen-
sor gathering blocks, and our ground and abstract reasoning modules. Overall,
our goal is to contribute with a case study on how semantic web resources can
be used in practice. The paper is organized as follows. In Section 2 we give
an overview of the different subsystems that our proposal combines. Section 3
presents the implementation of the system and our experiments. Section 4 con-
cludes the paper.

2 A Framework for Robot Navigation

We consider a robot with three important sources of information. First, sensors
that detect objects in the environment. Second, a map with semantic infor-
mation, that is updated during navigation. Third, and most important, a web
database with commonsense knowledge (for example, likely location of objects
in rooms). In our framework, information processing flows through three ma-
jor modules: Perception, Reasoning and Learning, and Actuation. We call the
whole architecture by Web-based Relational Robotic Architecture (WRRA), as
depicted in Figure 1. From the perspective of uncertain reasoning with seman-
tic web resources, the Perception module (Section 2.1) is the most significant
contribution of this paper. The other two modules are only briefly described as
relevant information can be found in previous publications.



2.1 Perception: semantic information and probabilistic reasoning

This module receives a description of the goal. In the case study of interest here,
the goal is to find a target room inside a house. The Perception module receives
sensory information (detected objects), and must abstract the data into compact
symbolic representations. Upon receiving data, the robot accesses its Semantic
Web resources to determine the most likely room that generated the data, as
described in this section.

Unlike most existing robotic systems, we pursue reasoning at a high level of
abstraction, employing concepts, roles and relations between then as expressed
within KnowRob. It is due to this decision that we can effectively employ
semantic web resources. The situation of the robot is described in terms of a re-
lational representation that not only allows for abstraction of metric and sensory
details, but also enables knowledge to be generalized and reused in new tasks.
During navigation, the robot uses sensor data to build a relational representation
of the environment (the semantic map).

The output of the Perception module is a description of the robot’s situation,
which is specified by a conjunction of active predicates (with truth value true)
such as: seeDoor() that indicates that the robot sees one or more doors in the
room; seeNonVisitedDoor(d1), meaning that the robot sees door d1 that has
not yet been visited; inTargetRoom(), which indicates that the target room is
where the robot is; nonTargetRoom(p1), meaning that the robot is in p1 and it
is not the target room; inRoom(p1) that indicates that p is the most likely room
where the robot is; and others. The truth value of inRoom(p) is computed by
Place Inference block, as we explain now.

The Perception module is heavily based on reasoning facilities available in the
KnowRob package. The knowledge base in KnowRob uses rdf triples to repre-
sent a large ontology, with relationships between objects such as Drawer, a sub-
class of StorageConstruct, or Refrigerator − Freezer, a subclass of FurniturePiece
[16]. Additionally, sentences in OWL indicate relationships between objects. Sen-
tences are attached to probabilities, and for inference they are grounded into
Bayesian networks using facilities in the ProbCog system [5].

Just as an example of rdf triple in the knowledge base, consider the fact,
contained in the OMICS database, that a kitchen contains a refrigerator (XXX
denotes the string http://ias.cs.tum.edu/kb/knowrob.owl):

<rdf:Description rdf:about="XXX#OmicsLocations-1">

<ns1:object rdf:resource="XXX#Kitchen"></ns1:object>

<ns1:subject rdf:resource="XXX#Refrigerator"></ns1:subject>

<rdf:type rdf:resource="XXX#OmicsLocations"></rdf:type>

</rdf:Description>

The Perception module queries KnowRob, which returns, for each observed
object, the probability that the location is each possible room, given the observed
object. Queries are sent to KnowRob through Prolog sentences via function calls
in the Python language; as an example, consider (a complete query is given in
Section 3):



for obj in DetectedObjects:

q="bayes_probability_given(knowrob:’OmicsLocations’,

Room,knowrob:’"+obj+"’,Pr)"

query = prolog.query(q)

Such a query returns probabilities such as

Room = ’knowrob.owl#Kitchen’

Pr = 0.1031101853182014 ;

That is, given a perceived object oi, KnowRob uses inference with its prob-
abilistic description logic [8, 7] to return P (rj |oi) for each room rj . The problem
now is to combine these pieces of information into a probability that the robot
is in room rj , given all detected objects o1, . . . , on. We have:

P (rj |o1, . . . , on) =
P (o1, . . . , on|rj)P (rj)

P (o1, . . . , on)

=
P (o1|rj , o2, . . . , on)P (o2|rj , o3, . . . , on) . . . P (o1|rj)P (rj)

P (o1, . . . , on)
.

We now assume that, given rj , an observation (of an object) is independent of
other observations (of other objects in the same room). Hence:

P (rj |o1, . . . , on) =
P (o1|rj)P (o2|rj) . . . P (o1|rj)P (rj)

P (o1, . . . , on)

=
(P (rj |o1)P (o1)/P (rj)) . . . (P (rj |on)P (on)/P (rj))P (rj)

P (o1, . . . , on)

=

(
n∏
i=1

P (rj |oi)

) ∏n
i=1 P (oi)

P (o1, . . . , on)(P (rj))n−1
.

We now introduce a substantive assumption, namely, that every room has identi-
cal a priori probability P (rj). So, P (rj |o1, . . . , on) is proportional to

∏n
i=1 P (rj |oi).

Once the Perception module gets, for each room, each term of this product from
KnowRob, it compares each room with respect to this product, setting the
truth value of inRoom(p) as true for: p = arg maxrj

∏n
i=1 P (rj |oi), and false

otherwise.
During navigation, a semantic map of the environment is created. Each vis-

ited room and each observed object are represented as vertices of a graph that
describes the topological map (left side of Figure 2). Connectivity between rooms
is represented by graph edges, which are defined through doors conecting the
rooms. While this topological map is built, edges are created by connecting ver-
tices of the topological map to vertices of the conceptual map (right side of Figure
2). Unlike other approaches [1, 3], our map does not involve metric representation
of the environment. Still, our semantic map inserts probabilistic information in
the representation. Every inference and reasoning in WRRA occurs at the level
of objects, rooms and relationships and properties thereof.



Fig. 2. The semantic map built by WRRA.

2.2 Reasoning and Learning, and Actuation

The WRRA uses reinforcement learning (RL) to refine behavior through in-
teractions with the environment [14]. Typical RL solutions learn from scratch;
we instead employ two levels of RL [6], where an abstract and a ground policy
are learned simultaneously. The stochastic abstract policy learned in a source
task is then used in new similar tasks. Our robot navigation problem is mod-
eled as a Relational Markov Decision Process (RMDP) [10], in which situa-
tions s ∈ S are represented as a conjunction of predicates describing prop-
erties of and relations among objects, such as: s1 = inRoom(livingroom) ∧
nonTargetRoom(livingroom) ∧ seeNoDoors() ∧ notAllDoorsVisited(). Other
formalisms are possible to represent decisions and transitions [9].

A conjunction is a ground conjunction if it contains only ground atoms (such
as s1 given in the example). In our discussion each variable in a conjunction is
implicitly assumed to be existentially quantified. An abstract situation σ (and
abstract behavior α) is a conjunction with no ground atom. A relational rep-
resentation enables us to aggregate situations and behaviors by using variables
instead of constants in the predicate terms. For example, ground situation s1 is
covered by abstract situation σ by replacing livingroom with variable X; in this
case, other situation could also be covered by σ, e.g., s1 = inRoom(kitchen) ∧
nonTargetRoom(kitchen) ∧ seeNoDoors() ∧ notAllDoorsVisited().



Denote by Sσ the set of ground situations s ∈ S covered by abstract situation
σ. We assume that each ground situation s is abstracted to only one abstract
situation σ. Similarly, we define Aα(s) as the set of all ground behaviors a ∈ A
covered by an abstract behavior α in ground situation s. We also define Sab and
Aab as the set of all abstract situations and the set of all abstract behaviors in
an RMDP, respectively. To simplify notation, here we use the assumption that
if an atom does not appear in a ground sentence, the negated atom is assumed.

To solve an RMDP is to find an optimal policy π∗ that maximizes a function
Rt of future rewards. In RL tasks the agent does not know the dynamics of
the process and a series of RL algorithms can be used to find a policy [14]. To
translate from ground to abstract level, we define two operations: abstraction
and grounding. Abstraction is the translation from the ground level (perceived
by the robot’s sensors) to the abstract level by replacing constants with variables,
φs : S → Sab. For a ground situation s, the corresponding abstract situation σ
is given by φs(s) = σ so that s ∈ Sσ. Grounding is the translation from the
abstract level to the ground level, a = grounding(α, s). Clearly only ground
states are sensed and visited by the robot, and only ground actions can be
actually applied. Laerning and reasoning must proceed by processing, at time
t, the (ground) experience 〈st, at, rt, st+1, at+1〉, which is related to the tuple
〈σt, αt, rt, σt+1, αt+1〉.

We propose the following scheme to apply an abstract policy in a ground
problem. Consider a stochastic abstract policy defined as πab : Sab×Aab → [0, 1].
After the abstract situation σ = φs(s) is derived from the observed ground sit-
uation s, a transferred abstract policy (learned from source tasks) yields prob-
abilities πab(σ, αk) = P (αk|σ) for all αk ∈ Aab. We select an abstract behavior
αk ∈ Aab according to these probabilities. Then the process remains the same,
with a = grounding(αk, s).

Thus, in our system, the robot initially receives an abstract policy and applies
it. As its knowledge about the new environment increases, due to its perception
and action in the environment, the robot creates and improves a semantic map,
which places restrictions on the actions defined by the policy initially received,
adapting it to the new environment and to the new task. For example, consider
the robot identifies it is in the living room, which is not the target room, and the
living room has two doors, d1 and d2. The abstract policy indicates that it can
randomly choose any one of the two doors and go through it, hoping to reach the
target room. Assume the robot circulates in other rooms, after going through the
chosen door, say d1, and represents what is discovered about the environment in
a semantic map. Upon returning to the living room without having reached the
target room, the reasoning process now indicates that it should choose another
door (d2).

Finally, the Actuation module is divided into a High Level Control (HLC) and
Low Level Control (LLC). HLC receives a behavior selected by the Reasoning
and Learning module. The behavior is divided into simple actions that can be
executed by specific hardware modules. Each simple action is sent to LLC, to
be actually executed. Low-level commands are issued by the Actuation module.



Fig. 3. Left: Simulated house. Right: Experimental setup with real robot.

3 Implementation and Discussion

We now describe our implementation and experiments. The robot we consider
is a wheeled base equipped with 5 sensors: 3 semantic cameras, 1 odometer and
1 laser range scanner. We run tests both in a simulated environment and with
the real robot. The simulated scenario (see Figure 3-Left) was designed with
the open source tool for 3D creation, BLENDER3, with which we have created
a 3D CAD representation of the house and the objects it contains, including
the robot (an ATRV 4-wheeled base); the representation was integrated into the
MORSE simulator4 and the Robot Operating System (ROS)5. The environment
is a house that has eight types of rooms: 1 hallway (with some potted plants),
1 kitchen (with 1 stove, 1 fridge, and a dishwasher), 1 living room (with 1 sofa
and 2 armchairs), 1 bathroom (with 1 toilet and 1 sink), 3 bedrooms (with 1 bed
and 1 bedside), and 1 dining room (with 1 table and 6 chairs). The real robot is
a Pioneer 2DX, and with the real robot we used QR codes to identify doors and
objects, so as to obtain functionality similar to a semantic camera.

The semantic camera is, in essence, a sensor that allows to recognize ob-
jects that the robot sees and the relative position between the robot and objects
viewed. The robot was equipped with two semantic cameras that recognize gen-
eral objects and one semantic camera that recognizes only doors. The odometer
and the laser scanner are used in the Navigation module.

For a better understanding of how the architecture WRRA works, how is
its integration with the information of the semantic web and the technologies
employed, we describe a simple case study executed in the simulated scenario,
where we have great flexibility in defining tasks and measuring behavior. WRRA
was implemented using the Python programming language and was integrated
with the ROS framework. Initially, the robot knows nothing about the house

3 http://www.blender.org/
4 http://www.openrobots.org/wiki/morse/
5 http://wiki.ros.org/



Fig. 4. Sequence of situations faced by the mobile robot in case study.

and has only a generic abstract policy that defines mappings from abstract sit-
uations into abstract behaviors, such as πabs(inRoom(X) ∧ nonTargetRoom(X) ∧
seeNoDoors() ∧ notAllDoorsVisited()) = findDoor(), Indicating that if the
robot is in a certain room that is not the target room and it did not detect any
door in this room and the list of doors visited by it is empty, then the robot
must find a door. The robot is given the goal of reaching the home kitchen. Then,
the robot perceives situations, and selects the appropriate behavior for each sit-
uation and performs it, until the target room is reached. Figure 4 describes a
sequence of five situations faced by the robot.

Situation 1: The Perception module collects information from the environ-
ment using the robot semantic cameras. From the position where the robot is,
two objects are detected: obj1 = sofa and obj2 = armchair. Then the Place
Inference submodule performs a query to the integrated ROS library KnowRob-
OMICS, which estimates the most likely room where the robot is taking into
account the objects detected by the robot:

prolog = json_prolog.Prolog()

for obj in objets:

q="bayes_probability_given(knowrob:’OmicsLocations’,

Room,knowrob:’"+obj+"’,Pr)"



query = prolog.query(q)

for solution in query.solutions():

room=str(solution[’Room’])[37::]

places.place[room].append(solution[’Pr’])

query.finish()

As the queries are implemented using Python and the KnowRob-OMICS
is implemented using the PROLOG logic programming language, the WRRA
uses the ROS library JSON-PROLOG 6 to send the queries from Python code
to PROLOG. When the KnowRob-OMICS is queried, it returns the following
information for each recognized object:

Room = ’knowrob.owl#Kitchen’

Pr = 0.1031101853182014 ;

Room = ’knowrob.owl#DiningRoom’

Pr = 0.12185749173969258 ;

Room = ’knowrob.owl#BedRoom’

Pr = 0.12185749173969258 ;

Room = ’knowrob.owl#LivingRoom’

Pr = 0.3655724752190777 ;

Room = ’knowrob.owl#Hallway’

Pr = 0.14893693434851316 ;

Room = ’knowrob.owl#BathRoom’

Pr = 0.1386654216348226 ;

This information gives the probability that each room is the current location
of the robot, given only one recognized object. Figure 5 shows some probabil-
ities that a room type has certain object type. These probabilities come from
the ROS library KnowRob-OMICS that uses the Lidstone’s law, which redis-
tributes the probability mass assigned to the seen tuples to the unseen tuples
like (bed,bathroom). The Lidstone’s law uses a parameter λ < 1 and when the
parameter λ → 1 much probability is distributed to unseen tuples [4]. In our
experiments, we set λ = 0.5.

Then the Place Inference submodule uses the probabilistic reasoning process
explained in Section 2.1 to infer the most likely place where the robot is by taking
into account all objects recognized by the robot. In situation1 of the case study
reported here, the place inferred as the most likely place is p1 = livingroom.

When objects and doors are detected and the place is inferred, the semantic
map is updated. For this instance the map is updated with the objects obj1 and
obj2 and the place p1 by building the relations obj1 at p1 and obj2 at p1. Next,
the Inference Situation submodule receives information about detected doors,
the inferred place and the updated semantic map. With this information, the
truth values of the predicates are calculated and the conjunction of predicates
with truth value true forms a situation description using the SMACH library 7,

6 http://wiki.ros.org/json prolog
7 http://wiki.ros.org/smach



Fig. 5. Probabilities of room given observed object, by KnowRob-OMICS.

which is a ROS-independent Python library to build hierarchical state machines.
Finally that inferred situation is the output of the Perception module that for this
case is the situation1 = inRoom(livingroom) ∧ nonTargetRoom(livingroom) ∧
seeNoDoors() ∧ notAllDoorsVisited().

Then situation1 is sent as input to the Reasoning and Learning module, and
it is transformed in its corresponding abstract situation. The abstract policy
is then used to define the output to the Actuation module: πabs(inRoom(X) ∧
nonTargetRoom(X)∧seeNoDoors()∧notAllDoorsVisited()) = findDoor() (see
subsection 2.2). In the current version the output of this module is one of four
behaviors: goToDoor(d) meaning that the robot should go to d; goToNextRoom(p)
meaning that the robot should go into the next place p; findDoor() meaning
that the robot should search for doors in the room; exploration() meaning that
the robot should search for objects in the room.

Finally, in the Actuation module, the HLC submodule uses the ActionLIB
ROS library to decompose each behavior into a sequence of simple actions, which
are in turn translated by the LLC submodule to respective velocities of trans-
lation and rotation by using the Move Base ROS library 8, which allows the
robot to reach a certain target pose. The Move Base library in turn uses other
ROS libraries to avoid obstacles during navigation and to build a local path for
the execution of each simple action sent by the HLC. Usually the Move Base
library works with a static metric map of the environment, but in our case the
Move Base library was set to work without it, since WRRA only reasons in
relational level. The robot, controlled by the actuation module, search for a door
in the environment. At the moment its semantics camera detects a door, a new
situation is defined.

Situation 2: When the robot perceives a door (in this case, it sees door
d1), the Perception module updates the semantic map with the door d1 and the

8 http://wiki.ros.org/move base



relation d1 at p1. So a new ground situation is determined by the Perception
module: situation2 = inRoom(livingroom) ∧ nonTargetRoom(livingroom) ∧
seeDoors() ∧ notAllDoorsVisited() ∧ seeNonVisitedDoor(d1). This situation
is turned into its corresponding abstract situation in the Reasoning and Learning
module, and the abstract policy gives: πabs(inRoom(X) ∧ nonTargetRoom(X) ∧
seeDoors()∧notAllDoorsVisited()∧seeNonVisitedDoor(Y)) = goToDoor(Y).
In this case, the grounding of behavior goToDoor(Y) gives goToDoor(d1). Then,
the Navigation module operates properly, using sensory information that gives
the relative position of the robot to d1 and to obstacles, in order to drive the
robot to the front door.

Situation 3: In this situation the robot knows it still is in the living room,
it still sees the door d1 that has not been visited, and now it can see the adja-
cent room p2 through door d1. The map is updated by building the relation p2
connected to p1 through d1. This situation is:
situation3 = inRoom(livingroom)∧nonTargetRoom(livingroom)∧seeDoors()∧
notAllDoorsVisited() ∧ seeNonVisitedDoor(d1) ∧ seeNextPlace(p2).
Given the abstraction of situation3, the behavior indicated by the abstract pol-
icy is goToNextP lace(Z) and the grounding of it results in goToNextPlace(p2).
In this case, the Navigation module drives the robot through the door and the
robot reaches the adjacent room p2.

Situation 4: As the robot has not observed any object in this new room, then
p2 = unknown. In this case, the map does not need to be updated and the only
predicate with truth-value TRUE is inUnknownRoom(). Then the Reasoning and
Learning module outputs the behavior exploration(), meaning that the robot
must explore the room, looking for objects.

Situation 5: Finally, the robot observes objects obj3 = oven and obj4 =
freezer that allow inferring that it is in the p2 = kitchen. Then the map is
updated by bulding the relations obj3 at p2, obj4 at p2. As the kitchen is the
target room, the episode ends and the task is fulfilled.

4 Conclusion

In this paper we have explored the use of semantic web resources to conduct prob-
abilistic relational learning and reasoning in robot navigation. We have presented
an architecture (WRRA) for robot navigation that employs the KnowRob sys-
tem and its knowledge base of probabilistic description logic sentences, together
with relational reinforcement learning. The resulting framework shows how to
use, in practice, semantic web resources that can deal with uncertainty.

We have implemented the WRRA, first in a simulated environment, then in
a real robot. The fact that the WRRA operates with abstract semantic infor-
mation, both in its knowledge base, and in its inputs and outputs, simplifies
the whole process and leads to effective qualitative navigation. Moreover, the
acquired abstract knowledge base can be transferred to other scenarios. Our
experiments indicate that indoor navigation can actually benefit from such a
framework.



Several avenues are open to future work. Additional predicates can be tested
to infer the robot location, and web resources can be mixed with human inter-
vention. Furthermore, we intend to include measures of uncertainty about the
situation of the robot, by associating probabilities with predicates. We also plan
to conduct more extensive tests with the real robot.
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