
Recursion Pruning for the Apriori Algorithm

Christian Borgelt

Department of Knowledge Processing and Language Engineering
School of Computer Science, Otto-von-Guericke-University of Magdeburg

Universiẗatsplatz 2, 39106 Magdeburg, Germany
Email: borgelt@iws.cs.uni-magdeburg.de

Abstract

Implementations of the well-known Apriori algorithm for
finding frequent item sets and associations rules usually rely
on a doubly recursive scheme to count the subsets of a given
transaction. This process can be accelerated if the recur-
sion is restricted to those parts of the tree structure that hold
the item set counters whose values are to be determined in
the current pass (i.e., contain a path to the currently deepest
level). In the implementation described here this is achieved
by marking the active parts every time a new level is added.

1. Introduction

The implementation of the Apriori algorithm described
in [2] uses a prefix tree to store the counters for the differ-
ent item sets. This tree is grown top-down level by level,
pruning those branches that cannot contain a frequent item
set. This tree also makes counting efficient, because it be-
comes a simple doubly recursive procedure: To process a
transaction for a node of the tree, (1) go to the child cor-
responding to the first item in the transaction and process
the rest of the transaction recursively for that child and (2)
discard the first item of the transaction and process it recur-
sively for the node itself (of course, the second recursion is
more easily implemented as a simple loop through the trans-
action). In a node on the currently added level, however, we
increment a counter instead of proceeding to a child node.
In this way on the current level all counters for item sets that
are part of a transaction are properly incremented.

2. Recursion Pruning

Since the goal of the recursive counting is to determine
the values of the counters in the currently deepest level of
the tree (the one added in the current pass through the data),

one can restrict the recursion to those nodes of the tree that
have a descendant on the currently deepest level. Visiting
other nodes is not necessary, since no changes are made to
these nodes or any of their descendants — only the nodes in
the currently deepest level of the tree are changed.

To implement this idea, which I got aware of at FIMI
2003, either from the presentation by F. Bodon [1] or from
a subsequent discussion with B. Goethals, I added markers
to each node of the prefix tree, which indicate whether the
node has a descendant on the currently deepest level. For-
tunately only one bit is necessary for such a marker, which
could be incorporated into an already existing field, so that
the memory usage is unaffected.

These markers are updated each time a new level is
added to the tree, using a recursive traversal, which marks
all nodes that have only marked children. New nodes are,
of course, unmarked, and nodes on the previously deepest
level that did not receive any children are marked to seed the
recursion. Note that the recursion can exploit the markers
set in previous passes, because a node that did not have a
descendant on the deepest level in the previous pass cannot
acquire a descendant on the currently deepest level.

Of course, the other pruning methods for the counting
process described in [2] are applied as well.

3. Experimental Results

I ran experiments on the same five data sets I al-
ready used in [2], relying on the same machine and op-
erating system, though updated to a newer version (an
AMD Athlon XP 2000+ machine with 756 MB main mem-
ory running S.u.S.E. Linux 9.1 and gcc version 3.3.3).
Strangely enough, however, the new versions of the operat-
ing system or the compiler lead to longer(!) execution times
for an identical program, an effect that seems to be a nasty
recurring feature of the S.u.S.E. Linux distribution. There-
fore the experiments were repeated with the old program
version to get comparable results.



34 35 36 37 38 39 40 41 42 43 44 45

0

1

Figure 1. Results on BMS-Webview-1

5 10 15 20 25 30 35 40 45 50 55 60

1

Figure 2. Results on T10I4D100K

The results for these data sets are shown in Figures 1 to 5.
The horizontal axis shows the minimal support of an item
set (number of transactions), the vertical axis the decimal
logarithm of the execution time in seconds. Each diagram
shows as grey and black lines the time without and with
recursion pruning, respectively.

As can be seen from these figures, recursion pruning can
lead to significant improvements on some data set. (Note
that the vertical scale is logarithmic, so that the 20-40% re-
duction, which results for webview1, for example, appears
to be smaller than it actually is.) For census, chess, and
mushroom, however, the gains are negligible.

10 20 30 40 50 60 70 80 90 100
1

Figure 3. Results on census

1500 1600 1700 1800 1900 2000

1

2

Figure 4. Results on chess

200 300 400 500 600 700 800 900 1000

1

2

Figure 5. Results on mushroom

4. Programs

The implementation of the Apriori algorithm described
in this paper (WindowsTM and LinuxTM executables as well
as the source code) can be downloaded free of charge at

http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html

The special program version submitted to the workshop
uses the default parameter setting of this program.

References

[1] F. Bodon. A Fast Apriori Implementation.Proc. 1st
IEEE ICDM Workshop on Frequent Item Set Mining
Implementations (FIMI 2003, Melbourne, FL). CEUR
Workshop Proceedings 90, Aachen, Germany 2003.
http://www.ceur-ws.org/Vol-90/

[2] C. Borgelt. Efficient Implementations of Apriori and
Eclat. Proc. 1st IEEE ICDM Workshop on Fre-
quent Item Set Mining Implementations (FIMI 2003,
Melbourne, FL). CEUR Workshop Proceedings 90,
Aachen, Germany 2003.
http://www.ceur-ws.org/Vol-90/

2


