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Abstract

Frequency mining problem comprises the core of
several data mining algorithms. Among frequent pat-
tern discovery algorithms, FP-GROWTH employs a
unique search strategy using compact structures re-
sulting in a high performance algorithm that requires
only two database passes. We introduce an enhanced
version of this algorithm called FP-GROWTH-TINY

which can mine larger databases due to a space op-
timization eliminating the need for intermediate con-
ditional pattern bases. We present the algorithms re-
quired for directly constructing a conditional FP-Tree
in detail. The experiments demonstrate that our imple-
mentation has a running time performance compara-
ble to the original algorithm while reducing memory
use up to twofold.

1. Introduction

Frequency mining is the discovery of all frequent
patterns in a transaction or relational database. Fre-
quent pattern discovery comprises the core of several
data mining algorithms such as association rule min-
ing and sequence mining [10], dominating the running
time of these algorithms. The problem involves a trans-
action database T = {X |X ⊆ I} that consists in a set
of transactions each of which are drawn from a set I of
items. The mining algorithm finds all patterns that oc-
cur with a frequency satisfying a given absolute sup-
port threshold ε. In practice, the number of items |I| is
in the order of magnitude of 103 and more. The number
of transactions is much larger, at least 105. A pattern is
X ⊆ I , a subset of I , and the set of all patterns is 2I .
The frequency function f(T, x) = |{x ∈ Y |Y ∈ T }|

computes the number of times a given item x ∈ I oc-
curs in the transaction set T ; it is extended to sets of
items f(T, X) = |{X ⊆ Y |Y ∈ T }| to compute the
frequency of a pattern.

Frequency mining is the discovery of all frequent
patterns in a transaction set with a frequency of sup-
port threshold ε and more. The set of all frequent pat-
terns is F(T, ε) = {X |X ∈ 2I ∧ f(T, X) ≥ ε}. In
the algorithms, the set of frequent items F = {x ∈
I | f(T, x) ≥ ε} may require special consideration.
A significant property of frequency mining known as
downward closure states that if X ∈ F(T, ε) then
∀Y ⊂ X, Y ∈ F(T, ε) [2].

An inherent limitation of frequency mining is the
amount of main memory available [8]. In this paper,
we present a space optimization to FP-Growth algo-
rithm and we demonstrate its impact on performance
with experiments on synthetic and real-world datasets.
In the next section, we give the background on the FP-
GROWTH algorithm. Section 3 and Section 4 explain
our algorithm and implementation. Section 5 presents
the experiments, following that we offer our conclu-
sions.

2. Background

2.1. Compact structures

Compact data structures have been used for efficient
storage and query/update of candidate item sets in fre-
quency mining algorithms. SEAR [12], SPEAR [12],
and DIC [6] use tries (also known as prefix trees) while
FP-GROWTH [10] uses FP-Tree which is an enhanced
trie structure.

Using concise structures can reduce both running
time and memory size requirements of an algorithm.
Tries are well known structures that are widely used



for storing strings and have decent query/update per-
formance. The aforementioned algorithms exploit this
property of the data structure for better performance.
Tries are also efficient in storage. A large number of
strings can be stored in this dictionary type which
would not otherwise fit into main memory. For fre-
quency mining algorithms both properties are criti-
cal as our goal is to achieve efficient and scalable al-
gorithms. In particular, the scalability of these struc-
tures is quite high [10] as they allow an algorithm to
track the frequency information of the candidate pat-
terns for very large databases. The FP-Tree structure in
FP-GROWTH allows the algorithm to maintain all fre-
quency information in the main memory obtained from
two database passes. Using the FP-Tree structure has
also resulted in novel search strategies.

A notable work on compact structures is [15] in
which a binary-trie based summary structure for repre-
senting transaction sets is proposed. The trie is further
compressed using Patricia tries. Although significant
savings in storage and improvements in query time are
reported, the effectiveness of the scheme in a frequency
mining algorithm remains to be seen. In another work
in FIMI 2003 workshop [3], an algorithm called PATRI-
CIAMINE using Patricia tries has been proposed [13].
The performance of PATRICIAMINE has been shown to
be consistently good in the extensive benchmark stud-
ies of FIMI workshop [3]; it was one of the fastest
algorithms although it was not the most efficient. For
many applications, the average case performance may
be more important than performing well in a small
number of cases, therefore further research on this PA-
TRICIAMINE would be worthwhile.

In this paper, we introduce an optimized version of
FP-GROWTH. A closer analysis of it is in order.

2.2. FP-Growth algorithm

The FP-GROWTH algorithm uses the frequent pat-
tern tree (FP-Tree) structure. FP-Tree is an improved
trie structure such that each itemset is stored as a string
in the trie along with its frequency. At each node of the
trie, item, count and next fields are stored. The items
of the path from the root of the trie to a node consti-
tute the item set stored at the node and the count is
the frequency of this item set. The node link next is a
pointer to the next node with the same item in the FP-
Tree. Field parent holds a pointer to the parent node,
null for root. Additionally, we maintain a header table

which stores heads of node links accessing the linked
list that spans all same items. FP-Tree stores only fre-
quent items. At the root of the trie is a null item, and
strings are inserted in the trie by sorting item sets in a
unique1 decreasing frequency order [10].

Table 1 shows a sample transaction set and frequent
items in descending frequency order. Figure 1 illus-
trates the FP-Tree of sample transaction set in Table 1.
As shown in [10], FP-Tree carries complete informa-
tion required for frequency mining and in a compact
manner; the height of the tree is bounded by maxi-
mal number of frequent items in a transaction. MAKE-
FP-TREE (Algorithm 1) constructs an FP-Tree from a
given transaction set T and support threshold ε as de-
scribed.

Transaction Ordered Frequent Items

t1 = {f, a, c, d, g, i, m, p} {f, c, a, m, p}
t2 = {a, b, c, f, l, m, o} {f, c, a, b, m}
t3 = {b, f, h, j, o} {f, b}
t4 = {b, c, k, s, p} {c, b, p}
t5 = {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Table 1. A sample Transaction Set

In Algorithm 3 we describe FP-GROWTH which has
innovative features such as:

1. Novel search strategy

2. Effective use of a summary structure

3. Two database passes

FP-GROWTH turns the frequency k-length pattern min-
ing problem into “a sequence of k-frequent 1-item
set mining problems via a set of conditional pattern
bases” [10]. It is proposed that with FP-GROWTH there
is “no need to generate any combinations of candidate
sets in the entire mining process”. With an FP-Tree
Tree given as input the algorithm generates all fre-
quent patterns. There are two points in the algorithm
that should be explained: the single path case and con-
ditional pattern bases. If an FP-Tree has only a single
path, then an optimization is to consider all combina-
tions of items in the path (single path case is the ba-

1 All strings must be inserted in the same order; the order of items
with the same frequency must be the same.
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Figure 1. An FP-Tree Structure.

sis of recursion in FP-GROWTH). Otherwise, the algo-
rithm constructs for each item ai in the header table a
conditional pattern base and an FP-Tree Treeβ based
on this structure for recursive frequency mining. Con-
ditional pattern base is simply a compact representa-
tion of a derivative database in which only a i and its
prefix paths in the original Tree occur. Consider path
< f : 4, c : 3, a : 3, m : 2, p : 2 > in Tree. For min-
ing patterns including m in this path, we need to con-
sider only the prefix path of m since the nodes after m
will be mined elsewhere (in this case only p). In the pre-
fix path < f : 4, c : 3, a : 3 > any pattern including m
can have frequency equal to the frequency of m, there-
fore we may adjust the frequencies in the prefix path
as < f : 2, c : 2, a : 2 > which is called a trans-
formed prefix path [10]. The set of transformed prefix
paths of ai forms a small database of patterns which co-
occur with ai and thus contains complete information
required for mining patterns including a i. Therefore,
recursively mining conditional pattern bases for all a i

in Tree is equivalent to mining Tree (which is equiva-
lent to ning the complete DB.). Treeβ in FP-GROWTH

is the FP-Tree of the conditional pattern base.
FP-GROWTH is indeed remarkable with its unique

divide and conquer approach. Nevertheless, it may be
profitable for us to view it as generating candidates de-
spite the title of [10]. The conditional pattern base is

a set of candidates among which only some of them
turn out to be frequent. The main innovation how-
ever remains intact: FP-GROWTH takes advantage of
a tailored data structure to solve the frequency min-
ing problem with a divide-and-conquer method and
with demonstrated efficiency and scalability. Besides,
the conditional pattern base is guaranteed to be smaller
than the original tree, which is a desirable property. An
important distinction of this algorithm is that, when ex-
amined within the taxonomy of algorithms, it employs
a unique search strategy. When the item sets tested
are considered, it is seen that this algorithm is neither
DFS nor BFS. The classification for FP-GROWTH in
Figure 3 of [11] may be slightly misleading. As Hipp
later mentions in [11], “FP-Growth does not follow the
nodes of the tree . . . , but directly descends to some part
of the itemsets in the search space”. In fact, the part is
so well defined that it would be unfair to classify FP-
GROWTH as conducting a DFS. It does not even start
with item sets of small length and proceed to longer
item sets. Rather, it considers a set of patterns at the
same time by taking advantage of the data structure.
This unique search strategy makes it hard to classify
FP-GROWTH in the context of traditional uninformed
search algorithms.

Algorithm 1 MAKE-FP-TREE(DB, ε)
1: Compute F and f(x) where x ∈ F
2: Sort F in frequency decreasing order as L
3: Create root of an FP-Tree T with label “null”
4: for all transaction ti ∈ T do
5: Sort frequent items in ti according to L. Let

sorted list be [p|P ] where p is the head of the
list and P the rest.

6: INSERT-TRIE([p|P ])
7: end for

3. An improved version of FP-Growth

During experiments with large databases, we have
observed that FP-GROWTH was costly in terms of
memory use. Thus, we have experimented with im-
provements to the original algorithm. In this section,
we propose FP-GROWTH-TINY (Algorithm 4) which
is an enhancement of FP-GROWTH featuring a space
optimization and minor improvements. An important
optimization eliminates the need for intermediate con-
ditional pattern bases. A minor improvement comes



Algorithm 2 INSERT-TRIE([p|P ], T )
1: if T has a child N such that item[N ] = item[p]

then
2: count[N ] ← count[N ] + 1
3: else
4: Create new node N with count = 1, parent

linked to T and node-link linked to nodes with
the same item via next

5: end if
6: if P 	= ∅ then
7: INSERT-TRIE(P, N)
8: end if

Algorithm 3 FP-GROWTH(Tree, α)
1: if Tree contains a single path P then
2: for all combination β of the nodes in path P do
3: generate pattern β ∪α with support minimum

support of nodes in β
4: end for
5: else
6: for all ai in header table of Tree do
7: generate pattern β ← ai ∪ α with support =

support[ai]
8: construct β’s conditional pattern base and

then β’s conditional FP-Tree Treeβ

9: if Treeβ 	= ∅ then
10: FP-GROWTH(Treeβ , β)
11: end if
12: end for
13: end if

from not outputting all combinations of the single path
in the basis of recursion. Instead, we output a repre-
sentation of this task since subsequent algorithms can
take advantage of a compact representation for gener-
ating association rules and so forth.2 Another improve-
ment is pruning the infrequent nodes of the single path.

In the following subsection, the space optimization
is discussed.

3.1. Eliminating conditional pattern base con-
struction

The conditional tree Treeβ can be constructed di-
rectly from Tree without an intermediate condi-
tional pattern base. The conditional pattern base in

2 For the FIMI workshop, we output all patterns separately as re-
quired. It can be argued that a meaningful mining of all frequent
patterns must output them one by one.

Algorithm 4 FP-GROWTH-TINY(Tree, α)
1: if Tree contains a single path P then
2: prune infrequent nodes of P
3: if |P | > 0 then
4: output “all patterns in 2P and α”
5: end if
6: else
7: for all ai in header table of Tree do
8: Treeβ ← CONS-CONDITIONAL-FP-TREE(Tree, ai)
9: output pattern β ← ai ∪ α with count =

f(ai) � f(x) of Tree
10: if Treeβ 	= ∅ then
11: FP-GROWTH(Treeβ, β)
12: end if
13: end for
14: end if

FP-GROWTH can be implemented as a set of pat-
terns. A pattern in FP-GROWTH consists of a set of
symbols and an associated count. With a counting al-
gorithm and retrieval/insertion of patterns directly into
the FP-Tree structure, we can eliminate the need for
such a pattern base. Algorithm 5 constructs a con-
ditional FP-Tree from a given Tree and a symbol
s for which the transformed prefix paths are com-
puted.

The improved procedure first counts the symbols in
the conditional tree without generating an intermedi-
ate structure and constructs the set of frequent items.
Then, each transformed prefix path is computed as pat-
terns retrieved from Tree and are inserted in Treeβ .

COUNT-PREFIX-PATH presented in Algorithm 6
scans the prefix paths of a given node. Since the pat-
tern corresponding to the transformed prefix path has
the count of the node, it simply adds the count to the
count of all symbols in the prefix path. This step is re-
quired for construction of a conditional FP-Tree
directly since an FP-Tree is based on the decreas-
ing frequency order of F . This small algorithm allows
us to compute the counts of the symbols in the condi-
tional tree in an efficient way, and was the key obser-
vation in making the optimization possible.

Algorithm 7 retrieves a transformed prefix path for
a given node excluding node itself and Algorithm 8 in-
serts a pattern into the FP-Tree. GET-PATTERN com-
putes the transformed prefix path as described in [10].
INSERT-PATTERN prunes the items not present in the
frequent item set F of Tree (which does not have to
be identical to the F of calling procedure) and sorts the
pattern in decreasing frequency order to maintain FP-



Algorithm 5 CONS-CONDITIONAL-FP-TREE(Tree, s)
1: table ← itemtable[Tree]
2: list ← table[symbol]
3: Tree′ ← MAKE-FP-TREE

4: � Count symbols without generating an interme-
diate structure

5: node ← list
6: while node 	= null do
7: COUNT-PREFIX-PATH(node, count[Tree])
8: node ← next[node]
9: end while

10: for all sym ∈ range[count] do
11: if count[sym] ≥ ε then
12: F [Tree′] ← F [Tree′] ∪ sym
13: end if
14: end for
15: � Insert conditional patterns to Treeβ

16: node ← list
17: while node 	= null do
18: pattern ← GET-PATTERN(node)
19: INSERT-PATTERN(Tree′, pattern)
20: node ← next[node]
21: end while
22: return Tree′

Algorithm 6 COUNT-PREFIX-PATH(node, count)
1: prefixcount ← count[node]
2: node ← parent[node]
3: while parent[node] 	= null do
4: count[symbol[node]] ←

count[symbol[node]] + prefixcount
5: node ← parent[node]
6: end while

Algorithm 7 GET-PATTERN(node)
1: pattern ← MAKE-PATTERN

2: if parent[node] 	= null then
3: count[pattern] ← count[node]
4: currnode ← parent[node]
5: while parent[node] 	= null do
6: symbols[pattern] ← symbols[pattern] ∪

symbol[currnode]
7: currnode ← parent[currnode]
8: end while
9: else

10: count[pattern] ← 0
11: end if
12: return pattern

Tree properties and adds the obtained string to the FP-
Tree structure. The addition is similar to insertion of a
single string, with the difference that insertion of a pat-
tern is equivalent to insertion of the symbol string of
the pattern count[pattern] times.

Algorithm 8 INSERT-PATTERN(Tree, pattern)
1: pattern ← pattern ∩ F [Tree]
2: Sort pattern in a predetermined frequency decreas-

ing order
3: Add the pattern to the structure

The optimization in Algorithm 5 makes FP-
GROWTH more efficient and scalable by avoiding
additional iterations and cutting down storage re-
quirements. An implementation that uses an inter-
mediate conditional pattern base structure will scan
the tree once, constructing a linked list with trans-
formed prefix paths in it. Then, it will construct the
frequent item set from the linked list, and in a sec-
ond iteration insert all transformed prefix paths
with a procedure similar to INSERT-PATTERN. Such
an implementation would have to copy the trans-
formed prefix paths twice, and iterate over all pre-
fix paths three times, once in the tree, and twice
in the conditional pattern list. In contrast, our op-
timized procedure does not execute any expensive
copying operations and it needs to scan the pat-
tern bases only twice in the tree. Besides efficiency,
the elimination of extra storage requirement is signif-
icant because it allows FP-GROWTH to mine more
complicated data sets with the same amount of mem-
ory.

An idea similar to our algorithm was independently
explored in FP-GROWTH∗ by making use of informa-
tion in 2-items [9]. In their implementations, Grahne
and Zhu have used strategies based on 2-items to im-
prove running time and memory usage, and they have
reported favorable performance, which has also been
demonstrated in the benchmarks of the FIMI ’03 work-
shop [3].

4. Implementation notes

We have made a straightforward implementation of
FP-GROWTH-TINY and licensed it under GNU GPL
for public use. It has been written in C++, using GNU
g++ compiler version 3.2.2.



For variable length arrays, we used vector<T> in
standard library. For storing transactions, patterns and
other structures representable as strings we have used
efficient variable length arrays. We used set<T> to
store item sets in certain places where it would be fast
to do so, otherwise we have used sorted arrays to im-
plement sets.

No low level memory or I/O optimizations were em-
ployed.

A shortcoming of the pattern growth approach is
that it does not seem to be very memory efficient. We
store many fields per node and the algorithm consumes
a lot of memory in practice.

The algorithm has a detail which required a special
code: sorting the frequent items in a transaction accord-
ing to an order L, in line 2 of Algorithm 1 and line 2
of Algorithm 8. For preserving FP-Tree properties all
transactions must be inserted in the very same order. 3

The items are sorted first in order of decreasing fre-
quency and secondarily in order of indices to achieve
a unique frequency decreasing order. Using this proce-
dure, we are not obliged to maintain an L.

5. Performance study

In this section we report on our experiments demon-
strating the performance of FP-GROWTH-TINY. We
have measured the performance of Algorithm 3 and Al-
gorithm 4 on a 2.4Ghz Pentium 4 Linux system with
1GB memory and a common 7200 RPM IDE hard disk.
Both algorithms were run on four synthetic and five
real-world databases with varying support threshold.
The implementation of the original FP-GROWTH al-
gorithm is due to Bart Goethals.4

We describe the data sets used for our experiments
in the next two subsections. Following that, we present
our performance experiments and interpret the results
briefly, comparing the performance of the improved al-
gorithm with the original one.

5.1. Synthetic data

We have used the association rule generator de-
scribed in [2] for synthetic data. Synthetic databases in
our evaluation have been selected from [17] and [16].

3 For patterns also in our implementation.
4 Goethals has made his implementation publicly available at

http://www.cs.helsinki.fi/u/goethals/

These databases have been derived from previous stud-
ies [1, 2, 14]. Table 2 explains the symbols we use
for denoting the parameters of association rule gener-
ator tool. The experimental databases are depicted in
Table 3. In all synthetic databases, |I| is 1000, and
|Fmax| is 2000. The original algorithm could not pro-
cess T20.I6.D1137 in memory therefore the number of
transactions was decreased to 450K.

|T | Number of transactions in transaction set
|t|avg Average size of a transaction ti

|fm|avg Average length of maximal pattern fm

I Number of items in transaction set
|Fmax| Number of maximal frequent patterns

Table 2. Dataset parameters

Name |T | |t|avg |fm|avg

T10.I6.1600K 1.6 × 106 10 6
T10.I4.1024K 1.024 × 106 10 4
T15.I4.367K 3.67 × 105 15 4
T20.I6.450K 4.5 × 105 20 6

Table 3. Synthetic data sets

5.2. Real-world data

We have used five publicly available datasets in the
FIMI repository. accidents is a traffic accident data
[7]. retail is market basket data from an anony-
mous Belgian retail store [5]. The bms-webview1,
bms-webview2 and bms-pos datasets are from a
benchmark study described in [4]. Some statistics of
the datasets are presented in Table 4.

5.3. Memory consumption and running time

The memory consumption and running time of FP-
GROWTH-TINY and FP-GROWTH are plotted for vary-
ing relative supports from 0.25% to 0.75% in Figure 2
and Figure 3 for synthetic databases and Figure 4 and
Figure 5 for real-world databases except for accidents
database which is a denser database that should be
mined at 10% and more. The implementations were run
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Figure 2. Memory consumption of FP-
GROWTH-TINY and FP-GROWTH on syn-
thetic databases
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Figure 3. Running time performance of
FP-GROWTH-TINY and FP-GROWTH on
synthetic databases
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Figure 4. Memory consumption of FP-
GROWTH-TINY and FP-GROWTH on real-
world databases
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Figure 5. Running time performance of
FP-GROWTH-TINY and FP-GROWTH on
real-world databases



Name |T | |I| |t|avg

accidents 3.41 × 105 469 33.81
retail 8.82 × 104 16470 10.31
bms-pos 5.16 × 105 1657 6.53
bms-webview1 5.96 × 104 60978 2.51
bms-webview2 7.75 × 104 330286 4.62

Table 4. Real-world data sets

inside a typical KDE desktop session. The running time
is measured as the wall-clock time of the system call.
The memory usage is measured using the GNU glibc
tool memusage, considering only the maximum heap
size since stack use is much smaller than heap size.

The plots for synthetic datasets are similar among
themselves, while we observe more variation in real-
world datasets. Memory is saved in all databases, ex-
cept in bms-webview2, which requires 2.74 times the
memory used in FP-GROWTH; this has an adverse ef-
fect on running time as discussed below. In others, we
observe that memory usage reduces down to 41.5% in
accidents database with 4% support, which is 2.4 times
smaller than FP-GROWTH.

Due to the optimization, our implementation can
process larger databases than the vanilla version. For
most problem instances, the memory consumption has
been reduced more than twofold compared to the orig-
inal algorithm. An advantage of our approach is that
with the same amount of memory, we can process more
complicated databases.5 The experiments overall show
that the conditional pattern base construction which we
have eliminated has a significant space cost during the
recursive construction of conditional FP-Trees.

The running time behaviors of two algorithms are
quite similar on the average. Our algorithm tends to
perform better and is faster in higher support thresh-
olds, while in lower thresholds the performance gap
becomes closer. FP-GROWTH-TINY runs faster ex-
cept in bms-webview1, bms-webview2 and lower
thresholds of T10.I4.1024K. In bms-webview1
database, FP-GROWTH-TINY runs 10-27% slower;
in bms-webview2 database we observe that FP-
GROWTH-TINY has slowed down by a factor of 5.56
for 0.25% support threshold, and slowdown is ob-
served also for other support thresholds (down to

5 Note that FP-GROWTH uses a compressed representation of fre-
quency information, whose size may be thought of as related to
complexity of the dataset.

50%). In T10.I4.1024K we see 12% slowdown for
0.25% support and 2% slowdown for 0.3% sup-
port. In other problem instances FP-GROWTH-TINY,
runs faster, up to 28.5% for retail dataset at 0.75% sup-
port.

In the figures, we observe a relation between mem-
ory saving and decreased running time. We had ex-
pected that improving space utilization would remark-
ably decrease the running time. However, we have
not observed as large an improvement as we would
have liked in running time. On the other hand, our tri-
als show significant improvement in memory use con-
trasted to vanilla FP-GROWTH, allowing us to mine
more complicated/larger datasets with the same amount
of memory.

The adverse situation with bms-webview1 and bms-
webview2 shows that the performance study must be
extended to determine whether the undesirable behav-
ior recurs at a large scale, since these are both sparse
data sets coming from the same source. At any rate, a
closer inspection of FP-GROWTH-TINY seems neces-
sary. We anticipate that the benchmark studies at the
FIMI workshop will illustrate its performance more
precisely.

6. Conclusions

We have presented our version of FP-GROWTH

which sports multiple improvements in Section 3. An
optimization over the original algorithm eliminates a
large intermediate structure required in the recursive
step of the published FP-GROWTH algorithm in addi-
tion to two other minor improvements.

In Section 5, we have reported the results of our
performance experiments on synthetic and real-world
databases. The performance of the optimized algo-
rithm has been compared with a publicly available
FP-GROWTH implementation. We have observed more
than twofold improvement in memory utilization over
the vanilla algorithm. In the best case, memory size
has become 2.4 times smaller, while in the worst case
memory saving was not possible in a small real-world
database. Typically, our implementation makes better
use of memory, enabling it to mine larger and more
complicated databases that cannot be processed by
the original algorithm. The running time behavior of
both algorithms are quite similar on the average; FP-
GROWTH-TINY runs up to 28.5% percent faster, how-
ever it may run slower in a minority of instances.
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[11] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms
for association rule mining – a general survey and com-
parison. SIGKDD Explorations, 2(1):58–64, July 2000.

[12] A. Mueller. Fast sequential and parallel algorithms for
association rule mining: A comparison. Technical Re-
port CS-TR-3515, College Park, MD, 1995.

[13] A. Pietracaprina and D. Zandolin. Mining frequent
itemsets using patricia tries. In Proceedings of the First
IEEE ICDM Workshop on Frequent Itemset Mining Im-
plementations (FIMI’03).

[14] A. Savasere, E. Omiecinski, and S. B. Navathe. An ef-
ficient algorithm for mining association rules in large
databases. In The VLDB Journal, pages 432–444, 1995.

[15] D.-Y. Yang, A. Johar, A. Grama, and W. Szpankowski.
Summary structures for frequency queries on large
transaction sets. In Data Compression Conference,
pages 420–429, 2000.

[16] M. J. Zaki, S. Parthasarathy, and W. Li. A localized al-
gorithm for parallel association mining. In ACM Sym-
posium on Parallel Algorithms and Architectures, pages
321–330, 1997.

[17] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
Parallel algorithms for discovery of association rules.
Data Mining and Knowledge Discovery, 1(4):343–373,
1997.


