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Abstract different from those usually associated with the basic algo-
rithms.
Nowadays basic algorithms such as Apriori and Eclatof-  In this paper, we would like to challenge that point

ten are conceived as mere textbook examples without muclof view by presenting an Eclat algorithm that for dense
practical applicability: in practice more sophisticated al- datasets outperforms all its more sophisticated competitors.
gorithms with better performance have to be used. We We will start with a formal outline of Eclat algorithm
would like to challenge that point of view by showing that in section 2. In section 3 we investigate several algorith-
a carefully assembled implementation of Eclat outperforms mic features of Eclat, partly gathered from other algorithms
the best algorithms known in the field, at least for dense as Ilcm, fpgrowth, and Apriori, partly new ones, review their
datasets. For that we view Eclat as a basic algorithm and a usefulness in Eclat and shortly discuss their possible perfor-
bundle of optional algorithmic features that are taken partly mance impact along with possible reasons thereof. In sec-
from other algorithms like lcm and Apriori, partly new ones. tion 4 we present an empirical evaluation of that impact as
We evaluate the performance impact of these different fea-well as a comparison with the competitor algorithms from
tures and report about results of experiments that support FIMI 03 mentioned above. — We will stick to Eclat. See
our claim of the competitiveness of Eclat. [2] for an excellent discussion and evaluation of different

features of Apriori.

Let us fix notations for the frequent itemset mining prob-

1. Introduction lem in the rest of this section. Let be a set, calledet

of items or alphabet Any subsetX € P(A) of A is

Algorithms for mining frequent itemsets often are pre- Called anitemset Let7 C P(A) be a multiset of item-
sented in a monolithic way and labeled with a fancy name S€tS; calledransaction database and its elements’ € 7
for marketing. Careful inspection often reveals similarities C@llédtransactions For a given itemseX € P(A), the set
with other mining algorithms that allow the transfer from ©f transactions that contaili
a smart solution of a specific (detail) problem in one algo-
rithm to another one. We would like to go one step further
33gJf\gfsﬁggr:mmgfigﬁ?;?s as a basic algorithm and ais called(transaction) cover of X in 7 and its cardinality

Basically, there are only two large families of mining al-
gorithms, Apriori [1] and Eclat [10] (counting fpgrowth [5] Sl}p(X) = |T(X)]
in the Eclat family what might be arguable). As the basic
computation schemes of both of these algorithms are quite(absolute) support of X in 7. An (all) frequent item-
simple, one might get the impression, that nowadays theyset mining task is specified by a datasét and a lower
are good only as examples how mining algorithms work in boundminsup € N on support, callegninimum support,
principle for textbooks, but in practice more sophisticated and asks for enumerating all itemsets with support at least
algorithms have to be applied to get good performance re-minsup, calledfrequent or (frequent) patterns.
sults: for example, the four best-performing algorithms of  An itemsetX is calledclosed if
the FIMI-03 workshop, patricia, kdci, lcm, and fpgrowth*

(see[7, 6,9, 8], for the implementations and [3] for a perfor- X = ﬂ T(X)
mance evaluation of these algorithms, respectively) do use
candidate generation procedures and data structures quitee., if any super-itemset of has lower support.

T(X)={TeT|XCT}



2. Basic Eclat Algorithm Algorithm 1 Basic Eclat algorithm.
input: alphabet4 with ordering<,
Most frequent itemset mining algorithms as Apriori [1] ~ multisetT C P(A) of sets of items,
and Eclat [10] use a total order on the iterh®f the alpha- minimum support valueninsup € N.
bet and the itemse®(A) to prevent that the same itemset, output: setF’ of frequentitemsets and their support counts.
calledcandidate, is checked twice for frequency. ltems or-  F := {(0,|7])}.

derings< are in one-to-one-correspondence viiém cod- Cyp:={(z, T({z})) |z € A}.

ings, i.e., bijective map® : A — {1,...,n} via natural Cy = freq(Cy) := {(2, T2) | (z, ;) € Cy,
ordering onN. — For itemsetsX,Y € P(A) one defines | 72| > minsup}.
their prefix as F={0}.

addFrequentSuperseisCy ).

prefix(X, V) :={{z € X |z < z} [ maximalz € X N V" function addFrequentSupersets():
{reX|z<zp={yeY|y<z}} input: frequent itemsep € P(A) called prefix,
incidence matrbxC' of frequent 1-item-extensions pf

Any order onA uniquely determines a total order 8t A), output: add all frequent extensions pfto global variable

calledlexicographic order, by F.
X <Y i min(X\prefix(X, Y)) < min(Y\prefix(X, Y)) forq(?ﬁ R ?g do
For an itemsetX € P(A) an itemsefy’ € P(A) with Cg ={,TN7)[(y. 7)) € C.y > x}.
X C Y andX <Y is called anextension ofX. An ex- Oy = frea(Co) :={(y, 7y) | (y, T) € Cy,
tensionY of X with Y = X U {y} (and thugy > max X) . |7y| = minsup}.
is called anl-item-extension of X. The extension rela- if C; 7 0 then
tion organizes all itemsets in a tree, caledension treeor addFrequentSupersefsC’).
search tree end if
Eclat starts with the empty prefix and the item- F=FU{(q,|T:))}-
transaction incidence matriy, shortly calledincidence end for
matrix in the following, and stored sparsely as list of item
covers:Cy := {(z,7 ({z})) |z € A}. The incidence ma-
trix is filtered to only contain frequent items by 3.1. Transaction Recoding

freq(C) = {(I7,TI) | (SC,’];) eC, |,Tz| > minsup}'
Before the first incidence matrig'y is built, it is usu-
that represent frequent 1-item-extensions of the prefix. Fora|ly beneficial 1) to remove infrequent items from the trans-
any prefixp € P(A) and incidence matrik’ of frequent 1-  actions, 2) to recode the items in the transaction database
item-extensions of one can compute the incidence matrix s t. they are sorted in a specific order, and 3) to sort the
C, of 1-item-extensions gf U {z} by intersection rows: transaction in that order. As implementations usually use
the natural order on item codes, item recoding affects the
Co ={(:%NT) (1) € Cy >z} order in which candidates are checked. There are several
recodings used in the literature and in existing implemen-
tations of Eclat and other algorithms as Apriori (see e.g.,
[2]). The most common codings are coding by increasing
frequency and coding by decreasing frequency. For Eclat
in most cases recoding items by increasing frequency turns
out to give better performance. Increasing frequency means
that the length of the rows of the (initial) incidence matrix
Cy grows with increasing index. Let there Pe frequent
3. Features of Eclat items. As a row at index is usedf; — i times at left side
(z in the formulas above) and— 1 times at right sidey
The formal description of the Eclat algorithm in the last in the formulas above) of the intersection operator, the or-
section allows us to point to several algorithmic features thatder of rows is not important from the point of view of total
this algorithm may have. These sometimes are described asisage in intersections. But assume the data is gray, i.e., the
implementation details, sometimes as extensions of Eclat,mining task does not contain any surprising associative pat-
and sometimes as new algorithms. terns, where surprisingness of an item&eis defined in

where (z,7,) € C is the row representing U {z}. C,

has to be filtered to get all frequent 1-item-extensions of
p U {z} and then this procedure is recursively iterated until
the resulting incidence matrik’, is empty, signaling that
there are no further frequent 1-item-extensions of the prefix.
See alg. 1 for an exact description of the Eclat algorithm.



terms of lift: Thus, the usage of defects can improve performance only

by leading to smaller incidence matrices. For dense datasets
sup(X sup {x} . : .
lift(X) := ] / H 7] where covers overlap considerably, intersection reduces the

size of the incidence matrix only slowly, while defects cut

down considerably. On the other side, for sparse data using

defects may deteriorate the performance. — Common items

'in covers also can be removed by omitting equisupport ex-

tensions (see section 3.5).

lift(X) = 1 means thatX is found in the data exactly
as often as expected from the frequencies of its items,.
lift(X) > 1 orlift(X) < 1 means that there is an asso-
ciative or dissociative effect, i.e., it is observed more often . . o -
. While there is an efficient transition from covers to de-
or less often than expected. Nowliift ~ 1 for all or most . L
o ) fects as given by the formula above, the reverse transition
patterns, as it is typically for benchmark datasets, then the -
. ; ) from defects to covers seems hard to perform efficiently as
best chances we have to identify a patt&fras infrequent
. . .._all defects on the path to the root of the search tree would
before we actually have counted its support, is to check its

: : have to be accumulated.
subpattern made up from its least frequent items. And that ; o . .
) ) ) : Regardless which type of incidence matrix is used, it can
is exactly what recoding by increasing frequency does.

be stored as sparse matrix (i.e., as list of lists as discussed
so far) or as dense (bitymatrix (used e.g, by [2]).

A third alternative for keeping track of item-transaction
incidences is not to store item covers as a set of incident
transaction IDs per 1-item-extension, but to store all trans-
actions7 (p) that contain a given prefix in a trie (plus
some index structure, known as frequent pattern tree and
first used in fp-growth; see [5]). Due to time restrictions,
we will not pursue this alternative further here.

3.2. Types of Incidence Structures: Covers vs. Diff-
sets

One of the major early improvements of Eclat algorithms
has been the replacement of item covers in incidence ma-
trices by their relative complement in its superpattern, so
calleddiffsets, see [11]. Instead of keeping track ®fq)
for a patterng, we keep track of7 (p) \ 7 (¢) for its su-
perpatterrp, i.e., ¢ := p U {z} for an itemz > max(p).

7 (p)\7 (q) are those transactions we loose if we extgtal

q, i.e., its additionatefectrelative top. From an incidence
matrix C' of item covers and one of the 1-item-extensions
(x,T) € C of its prefix we can derive the incidence matrix
D of item defects of this extension by

3.3. Incidence Matrix Derivation

For both incidence matrices, covers and defects, two dif-
ferent ways of computing the operator that derives an inci-
dence matrix from a given incidence matrix recursively, i.e.,
intersection and set difference, respectively, can be chosen.

D, ={(y,T.\T)) | (y,T,) € C,y >z} The straightforward way is to implement both operators as
o _ _ _ set operators operating on the sets of transaction IDs.
From an incidence matri® of item defects and one of its Alternatively, intersection and difference of several sets

l-item-extension¢z, 7,) € D of its prefix we can derive 7, y > z of transactions by another sgt of transactions
the incidence matrixD,, of item defects of this extension by  also can be computed in parallel using the original trans-
action database by counting in IDs of matching transactions
» =T\ 1) |y, Ty) € Dy > o} (called occurrence deliver in [9]). To compug := 7,17,

If we expand first by and then byy in the second step, ~for severaly > x one computes
we loose transactions that not contgianless we have lost o
them before as they did not contain VI e T,VyeT:T) =T, U{T}.

Defects computed from covers may have at most size Similar, to computeZ;’ := 7, \ 7, for severaly > z one

InaXdefp = ‘T(p)| — 1’ninsup7 COmputeS

Ry N o
those computed recursively from other defects at most size VI ey ¢T:T,:=7,U{T}.

maxdef,, ;) := maxdef, —| 7| 3.4. Initial Incidence Matrix

1-item-extensions exceeding that maximal defect are re-

) Basic Eclat first builds the incidence matti¥ of single
moved by a filter step: % g

item covers as initial incidence matrix and then recursively
freq(D) == {(2,T;) | (z, T) € C,|T,| < maxdef}. Qerives incidence matric&s, of covers of increasing pre-
fixesp or D,, of defects.
Computing intersections of covers or set differences  Obviously, one also can start wifhy, the matrix of item
for defects are computationally equivalent complex tasks. cover complements. This seems only useful for very dense



datasets as it basically inverts the encoding of item occur-sorted, intersections are computed by iterating over the lists

rence and non-occurrence (dualization). of transaction IDs and comparing items. Once one of the
It seems more interesting to start already with incidence tails of the lists to intersect is shorter tharinsup minus

matrices for 1-item-prefixes, i.e., not to use Eclat compu- the length of the intersection so far, we can stop and drop

tation schemes for the computation of frequent pairs, butthat candidate, as it never can become frequent. — For set

count them directly from the transaction data. For Apri- difference of maximal lengtimaxdef a completely analo-

ori this is a standard procedure. The cover incidence ma-gous procedure can be used.

trix C, = {(y,7,)} for an frequent iteme, i.e., 7, =

7 ({z}) N T ({y}), is computed as follows: 3.7. Omission of Final Incidence Matrix Derivation

VIeT:fzeT:vyeTy>z:T,:=T,U{T} Finally, once the incidence matrix has only two rows,

The test forz € T looks worse than it is in practice: if .the. result of th(_a next inci<_jence matrix de_riyation I
. . e . incidence matrix with a single row. As this is only checked

transactions are sorted, itemsre prqcessed N Increasing ¢, frequency, but its items are not used any further, we can
order', and deleted fr'om.the tran_sactlpn database.aftgr COMGSmit to generate the list of transaction IDs and just count its
putation of C, then if z is contained in a transactidh it length
has to be its first item. '

Similarly, a defect incidence matri®, = {(y,7,)} for
afrequentitenx,i.e., 7, = 7({z})\ 7 ({y}), can be com-
puted directly from the transaction database by

3.8.10

So far we have investigated features that are specific to
VIeT:ifzeT:VygT,y>a:T,:=T,U{T}. Eclat and the frequent itemset mining problem. Though
these specific algorithmic features are what should be of
If C, or D, is computed directly from the transaction primary interest, we noticed in our experiments, that of-
database, then it has to be filtered afterwards to remove inten different IO mechanism dominate runtime behavior. At
frequent extensions. An additional pass o¥ein advance  least three output schemes are implemented in several of
can count pair frequencies for all y in parallel, so that  the algorithms available: 10 using C++ streams, 10 using
unnecessary creation of covers or defects of infrequent ex-printf , and 10 using handcrafted rendering of integer

tensions can be avoided. itemsets to a char buffer and writing that buffer to files using
low-level fwrite  (for the latter see e.g., the implementa-
3.5. Omission of Equisupport Extensions tion of Icm, [9]). Handcrafted rendering of itemsets to char

buffers is by far the fastest method; especially for low sup-

Whenever an extensianhas the same support as its pre- Port values, when huge numbers of patterns are output, the
fix p, it is contained in the closurf) 7 (p) of the prefix. runtime penalty from slower output mechanisms cannot be
That means that one can add any such equisupport extensiofompensated by better mining mechanisms whatsoever.
to any extension g without changing its support; thus, one
can omit to explicitly check its extensions. Equisupport ex- 4, Evaluation
tensions can be filtered out and kept in a separatélistr
the active branch: whenever an itemsets output, all its By evaluating different features of Eclat we wanted to
2/F! supersetsy’ C X U E are also output. answer two questions:

Omission of equisupport extensions is extremely cheap
to implement as it can be included in the filtering step that 1. What features will make Eclat run fastest? Especially,
has to check support values anyway. For dense datasets with ~ What is its marginal runtime improvement of each fea-
many equisupport extensions, the number of candidates that  ture in a sophisticated Eclat implementation?
have to be checked and accordingly the runtime can be re-

duced drastically. 2. Is Eclat competitive compared with more complex al-

gorithms?
3.6. Interleaving Incidence Matrix Computation To answer the question about the runtime improvement
and Filtering of the different features, we implemented a modular ver-

sion of Eclat in C++ (basically mostly plain C) that allows

When the intersectioff, N T, of two sets of transaction  the flexible inclusion or exclusion of different algorithmic

IDs is computed, we are interested in the result of this com- features. At the time of writing the following features are
putation only if it is at least of sizeninsup, as otherwise it  implemented: the incidence structure types covers and diff-
is filtered out in the next step. As the sets of transactions aresets (COV, DIFF), transaction recoding (none, decreasing,



increasing; NREC, RECDEC, RECINC), omission of eg- and fpgrowth* (see [7, 6, 9, 8], for the implementations
uisupport extensions (NEE), interleaving incidence matrix and [3] for a performance evaluation of these algorithms,
computation and filtering (IFILT), and omission of final in- respectively).
cidence matrix (NFIN). As initial incidence matrix alway Again, a sample from the results of these experiments
covers of frequent 1-itemset€{) was used. can be seen in fig. 2 (the remaining charts also can
To measure the marginal runtime improvement of a fea- be found at http://www.informatik.uni-freiburg.de/cgnm/-
ture we configured a sophisticated Eclat algorithm with papers/fimi04). For several datasets (chess, connect,
all features turned on (SOPH:= DIFF, RECINC, NEE+, mushroom, pumsb, and — not shown — pumsbstar),
IFILT+, NFIN+) and additionally for each feature an Eclat-SOPH is faster than all other algorithms. For
Eclat algorithm derived from SOPH by omitting this fea- some datasets it is faster for high minimum support
ture (SOPH-DIFF, SOPH-RECINC (decreasing encoding), values, but beaten by fpgrowth* when support values
SOPH-REC (no recoding at all), SOPH-NEE+, SOPH- get smaller (accidents, T30115N1KP5KC0-25D200K) and
IFILT+, SOPH-NFIN+). for some datasets its performance is really poor (retail,
We used several of the data sets and mining T20110N1KP5KCO0-25D200K, and — not shown — kosarak
tasks that have been used in the FIMI-03 workshop and T10I5N1KP5KC0.25D200K). We can draw two con-
([4]): accidents, chess, connect, kosarak, mushroom,clusions from this observations: 1) at least for dense
pumsb, pumsbstar, retail, T10I5N1KP5KCO0.25D200K, datasets, Eclat-SOPH is faster than all its competitors, 2)
T20I110N1KP5KC0.25D200K, and T30I115N1KP5KCO0.25- for sparse datasets, Eclat-SOPH is not suitable. Recalling
D200K. All experiments are ran on a standard Linux box our discussion on the potential of using defects instead of
(P4/2MHz, 1.5GB RAM, SuSE 9.0). Jobs were killed if covers and on starting with frequent 2-itemsets instead of
they run more than 1000 seconds and the corresponding datwith frequent 1-itemsets, the latter conclusion is not very
apoint is missing in the charts. surprising.
A sample from the results of these experiments can
be seen in fig. _1 (the _rema_inin_g charts can be found 5. Outlook
at  http://www.informatik.uni-freiburg.de/cgnm/papers/-
fimi04). One can see some common behavior across

datasets and mining tasks: There are at least four more features we do not have in-

vestigated yet: using tries to store the transaction covers,
e For dense mining tasks like accidents, chess, etc.the method to compute the initial incidence matrix, prun-
SOPH is the best configuration. ing, and memory management. Our further research will
try to address questions about the impact of these features.
This update of optimization for dense datasets has to
be complemented with research in performance drivers for
sparse datasets. As can be seen from our results, Eclat
seems not suited well for that task. Though using covers
e Recoding is important and shows a huge variety w.r.t. instead of defects improves performance, it still is not com-
runtime: compare e.g., decreasing and no encoding forPetitive with other algorithms in the field.
connect: the natural encoding is not much worse than Furthermore, results for dense datasets will have to be
decreasing encoding, but the curve for increasing en-compared with that of the next generation of mining al-
coding shows what harm the wrong encoding can do: gorithms we expect as outcome of FIMI'04 and eventu-
note that the natural encoding is close to Optima| On|y aIIy new features of these algorithms have to be integrated

by mere chance and could be anywhere between in_in Eclat. We eXpeCt both, that Eclat is Clearly beaten at
Creasing and decreaging! FIMI'04 as well that it will be not too hard to |dent|fy the

relevant features and integrate them in Eclat.
e Omitting equisupport extensions also shows a clear

benefit for most mining tasks, with exception for
mushroom.

e For sparse mining tasks like retail,
T20I110N1KP5KCO0-25D200K etc. SOPH-diff is
the best configuration, i.e., using defects harms
performance here — both effects are rather distinct.
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Figure 1. Evaluation of the marginal effect of different features of Eclat on runtime.
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Figure 2. Evaluation of Eclat-SOPH (= eclat-Ist) vs. fastest algorithms of the FIMI-03 workshop.
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