
Algorithmic Features of Eclat

Lars Schmidt-Thieme
Computer-based New Media Group (CGNM),

Institute for Computer Science, University of Freiburg, Germany
lst@informatik.uni-freiburg.de

Abstract

Nowadays basic algorithms such as Apriori and Eclat of-
ten are conceived as mere textbook examples without much
practical applicability: in practice more sophisticated al-
gorithms with better performance have to be used. We
would like to challenge that point of view by showing that
a carefully assembled implementation of Eclat outperforms
the best algorithms known in the field, at least for dense
datasets. For that we view Eclat as a basic algorithm and a
bundle of optional algorithmic features that are taken partly
from other algorithms like lcm and Apriori, partly new ones.
We evaluate the performance impact of these different fea-
tures and report about results of experiments that support
our claim of the competitiveness of Eclat.

1. Introduction

Algorithms for mining frequent itemsets often are pre-
sented in a monolithic way and labeled with a fancy name
for marketing. Careful inspection often reveals similarities
with other mining algorithms that allow the transfer from
a smart solution of a specific (detail) problem in one algo-
rithm to another one. We would like to go one step further
and view such mining algorithms as a basic algorithm and a
bundle of algorithmic features.

Basically, there are only two large families of mining al-
gorithms, Apriori [1] and Eclat [10] (counting fpgrowth [5]
in the Eclat family what might be arguable). As the basic
computation schemes of both of these algorithms are quite
simple, one might get the impression, that nowadays they
are good only as examples how mining algorithms work in
principle for textbooks, but in practice more sophisticated
algorithms have to be applied to get good performance re-
sults: for example, the four best-performing algorithms of
the FIMI-03 workshop, patricia, kdci, lcm, and fpgrowth*
(see [7, 6, 9, 8], for the implementations and [3] for a perfor-
mance evaluation of these algorithms, respectively) do use
candidate generation procedures and data structures quite

different from those usually associated with the basic algo-
rithms.

In this paper, we would like to challenge that point
of view by presenting an Eclat algorithm that for dense
datasets outperforms all its more sophisticated competitors.

We will start with a formal outline of Eclat algorithm
in section 2. In section 3 we investigate several algorith-
mic features of Eclat, partly gathered from other algorithms
as lcm, fpgrowth, and Apriori, partly new ones, review their
usefulness in Eclat and shortly discuss their possible perfor-
mance impact along with possible reasons thereof. In sec-
tion 4 we present an empirical evaluation of that impact as
well as a comparison with the competitor algorithms from
FIMI 03 mentioned above. – We will stick to Eclat. See
[2] for an excellent discussion and evaluation of different
features of Apriori.

Let us fix notations for the frequent itemset mining prob-
lem in the rest of this section. LetA be a set, calledset
of items or alphabet. Any subsetX ∈ P(A) of A is
called anitemset. Let T ⊆ P(A) be a multiset of item-
sets, calledtransaction database, and its elementsT ∈ T
calledtransactions. For a given itemsetX ∈ P(A), the set
of transactions that containX

T (X) := {T ∈ T |X ⊆ T}

is called(transaction) cover ofX in T and its cardinality

sup
T

(X) := |T (X)|

(absolute) support ofX in T . An (all) frequent item-
set mining task is specified by a datasetT and a lower
boundminsup ∈ N on support, calledminimum support ,
and asks for enumerating all itemsets with support at least
minsup, calledfrequent or (frequent) patterns.

An itemsetX is calledclosed, if

X =
⋂
T (X)

i.e., if any super-itemset ofX has lower support.

2. Basic Eclat Algorithm

Most frequent itemset mining algorithms as Apriori [1]
and Eclat [10] use a total order on the itemsA of the alpha-
bet and the itemsetsP(A) to prevent that the same itemset,
calledcandidate, is checked twice for frequency. Items or-
derings≤ are in one-to-one-correspondence withitem cod-
ings, i.e., bijective mapso : A → {1, . . . , n} via natural
ordering onN. – For itemsetsX, Y ∈ P(A) one defines
theirprefix as

prefix(X, Y) :={{x ∈ X |x ≤ z} |maximalz ∈ X ∩ Y :
{x ∈ X |x ≤ z} = {y ∈ Y | y ≤ z}}

Any order onA uniquely determines a total order onP(A),
calledlexicographic order, by

X < Y :⇔ min(X\prefix(X, Y)) < min(Y \prefix(X, Y))

For an itemsetX ∈ P(A) an itemsetY ∈ P(A) with
X ⊂ Y andX < Y is called anextension ofX. An ex-
tensionY of X with Y = X ∪ {y} (and thusy > max X)
is called an1-item-extension ofX. The extension rela-
tion organizes all itemsets in a tree, calledextension treeor
search tree.

Eclat starts with the empty prefix and the item-
transaction incidence matrixC∅, shortly calledincidence
matrix in the following, and stored sparsely as list of item
covers:C∅ := {(x, T ({x})) |x ∈ A}. The incidence ma-
trix is filtered to only contain frequent items by

freq(C) := {(x, Tx) | (x, Tx) ∈ C, |Tx| ≥ minsup}.

that represent frequent 1-item-extensions of the prefix. For
any prefixp ∈ P(A) and incidence matrixC of frequent 1-
item-extensions ofp one can compute the incidence matrix
Cx of 1-item-extensions ofp ∪ {x} by intersection rows:

Cx := {(y, Tx ∩ Ty) | (y, Ty) ∈ C, y > x}

where(x, Tx) ∈ C is the row representingp ∪ {x}. Cx

has to be filtered to get all frequent 1-item-extensions of
p ∪ {x} and then this procedure is recursively iterated until
the resulting incidence matrixCx is empty, signaling that
there are no further frequent 1-item-extensions of the prefix.
See alg. 1 for an exact description of the Eclat algorithm.

3. Features of Eclat

The formal description of the Eclat algorithm in the last
section allows us to point to several algorithmic features that
this algorithm may have. These sometimes are described as
implementation details, sometimes as extensions of Eclat,
and sometimes as new algorithms.

Algorithm 1 Basic Eclat algorithm.
input: alphabetA with ordering≤,

multisetT ⊆ P(A) of sets of items,
minimum support valueminsup ∈ N.

output: setF of frequent itemsets and their support counts.
F := {(∅, |T |)}.
C∅ := {(x, T ({x})) |x ∈ A}.
C ′
∅ := freq(C∅) := {(x, Tx) | (x, Tx) ∈ C∅,

|Tx| ≥ minsup}.
F := {∅}.
addFrequentSupersets(∅, C ′

∅).

function addFrequentSupersets():
input: frequent itemsetp ∈ P(A) called prefix,

incidence matrixC of frequent 1-item-extensions ofp.
output: add all frequent extensions ofp to global variable

F .
for (x, Tx) ∈ C do

q := p ∪ {x}.
Cq := {(y, Tx ∩ Ty) | (y, Ty) ∈ C, y > x}.
C ′

q := freq(Cq) := {(y, Ty) | (y, Ty) ∈ Cq,
|Ty| ≥ minsup}.

if C ′
q 6= ∅ then

addFrequentSupersets(q, C ′
q).

end if
F := F ∪ {(q, |Tx|)}.

end for

3.1. Transaction Recoding

Before the first incidence matrixC∅ is built, it is usu-
ally beneficial 1) to remove infrequent items from the trans-
actions, 2) to recode the items in the transaction database
s.t. they are sorted in a specific order, and 3) to sort the
transaction in that order. As implementations usually use
the natural order on item codes, item recoding affects the
order in which candidates are checked. There are several
recodings used in the literature and in existing implemen-
tations of Eclat and other algorithms as Apriori (see e.g.,
[2]). The most common codings are coding by increasing
frequency and coding by decreasing frequency. For Eclat
in most cases recoding items by increasing frequency turns
out to give better performance. Increasing frequency means
that the length of the rows of the (initial) incidence matrix
C∅ grows with increasing index. Let there bef1 frequent
items. As a row at indexi is usedf1 − i times at left side
(x in the formulas above) andi − 1 times at right side (y
in the formulas above) of the intersection operator, the or-
der of rows is not important from the point of view of total
usage in intersections. But assume the data is gray, i.e., the
mining task does not contain any surprising associative pat-
terns, where surprisingness of an itemsetX is defined in

terms of lift:

lift(X) :=
sup(X)
|T |

/
∏
x∈X

sup({x})
|T |

/

lift(X) = 1 means thatX is found in the data exactly
as often as expected from the frequencies of its items,
lift(X) > 1 or lift(X) < 1 means that there is an asso-
ciative or dissociative effect, i.e., it is observed more often
or less often than expected. Now, iflift ≈ 1 for all or most
patterns, as it is typically for benchmark datasets, then the
best chances we have to identify a patternX as infrequent
before we actually have counted its support, is to check its
subpattern made up from its least frequent items. And that
is exactly what recoding by increasing frequency does.

3.2. Types of Incidence Structures: Covers vs. Diff-
sets

One of the major early improvements of Eclat algorithms
has been the replacement of item covers in incidence ma-
trices by their relative complement in its superpattern, so
calleddiffsets, see [11]. Instead of keeping track ofT (q)
for a patternq, we keep track ofT (p) \ T (q) for its su-
perpatternp, i.e., q := p ∪ {x} for an itemx > max(p).
T (p)\T (q) are those transactions we loose if we extendp to
q, i.e., its additionaldefectrelative top. From an incidence
matrix C of item covers and one of the 1-item-extensions
(x, Tx) ∈ C of its prefix we can derive the incidence matrix
D of item defects of this extension by

Dx := {(y, Tx \ Ty) | (y, Ty) ∈ C, y > x}

From an incidence matrixD of item defects and one of its
1-item-extensions(x, Tx) ∈ D of its prefix we can derive
the incidence matrixDx of item defects of this extension by

Dx := {(y, Ty \ Tx) | (y, Ty) ∈ D, y > x}

If we expand first byx and then byy in the second step,
we loose transactions that not containy unless we have lost
them before as they did not containx.

Defects computed from covers may have at most size

maxdefp := |T (p)| −minsup,

those computed recursively from other defects at most size

maxdefp∪{x} := maxdefp−|Tx|

1-item-extensions exceeding that maximal defect are re-
moved by a filter step:

freq(D) := {(x, Tx) | (x, Tx) ∈ C, |Tx| ≤ maxdef}.

Computing intersections of covers or set differences
for defects are computationally equivalent complex tasks.

Thus, the usage of defects can improve performance only
by leading to smaller incidence matrices. For dense datasets
where covers overlap considerably, intersection reduces the
size of the incidence matrix only slowly, while defects cut
down considerably. On the other side, for sparse data using
defects may deteriorate the performance. – Common items
in covers also can be removed by omitting equisupport ex-
tensions (see section 3.5).

While there is an efficient transition from covers to de-
fects as given by the formula above, the reverse transition
from defects to covers seems hard to perform efficiently as
all defects on the path to the root of the search tree would
have to be accumulated.

Regardless which type of incidence matrix is used, it can
be stored as sparse matrix (i.e., as list of lists as discussed
so far) or as dense (bit)matrix (used e.g, by [2]).

A third alternative for keeping track of item-transaction
incidences is not to store item covers as a set of incident
transaction IDs per 1-item-extension, but to store all trans-
actionsT (p) that contain a given prefixp in a trie (plus
some index structure, known as frequent pattern tree and
first used in fp-growth; see [5]). Due to time restrictions,
we will not pursue this alternative further here.

3.3. Incidence Matrix Derivation

For both incidence matrices, covers and defects, two dif-
ferent ways of computing the operator that derives an inci-
dence matrix from a given incidence matrix recursively, i.e.,
intersection and set difference, respectively, can be chosen.
The straightforward way is to implement both operators as
set operators operating on the sets of transaction IDs.

Alternatively, intersection and difference of several sets
Ty, y > x of transactions by another setTx of transactions
also can be computed in parallel using the original trans-
action database by counting in IDs of matching transactions
(called occurrence deliver in [9]). To computeT ′

y := Ty∩Tx

for severaly > x one computes

∀T ∈ Tx∀y ∈ T : T ′
y := T ′

y ∪ {T}.

Similar, to computeT ′
y := Tx \ Ty for severaly > x one

computes

∀T ∈ Tx∀y 6∈ T : T ′
y := T ′

y ∪ {T}.

3.4. Initial Incidence Matrix

Basic Eclat first builds the incidence matrixC∅ of single
item covers as initial incidence matrix and then recursively
derives incidence matricesCp of covers of increasing pre-
fixesp or Dp of defects.

Obviously, one also can start withD∅, the matrix of item
cover complements. This seems only useful for very dense

datasets as it basically inverts the encoding of item occur-
rence and non-occurrence (dualization).

It seems more interesting to start already with incidence
matrices for 1-item-prefixes, i.e., not to use Eclat compu-
tation schemes for the computation of frequent pairs, but
count them directly from the transaction data. For Apri-
ori this is a standard procedure. The cover incidence ma-
trix Cx = {(y, Ty)} for an frequent itemx, i.e., Ty =
T ({x}) ∩ T ({y}), is computed as follows:

∀T ∈ T : if x ∈ T : ∀y ∈ T, y > x : Ty := Ty ∪ {T}.

The test forx ∈ T looks worse than it is in practice: if
transactions are sorted, itemsx are processed in increasing
order, and deleted from the transaction database after com-
putation ofCx, then if x is contained in a transactionT it
has to be its first item.

Similarly, a defect incidence matrixDx = {(y, Ty)} for
a frequent itemx, i.e.,Ty = T ({x})\T ({y}), can be com-
puted directly from the transaction database by

∀T ∈ T : if x ∈ T : ∀y 6∈ T, y > x : Ty := Ty ∪ {T}.

If Cx or Dx is computed directly from the transaction
database, then it has to be filtered afterwards to remove in-
frequent extensions. An additional pass overT in advance
can count pair frequencies for allx, y in parallel, so that
unnecessary creation of covers or defects of infrequent ex-
tensions can be avoided.

3.5. Omission of Equisupport Extensions

Whenever an extensionx has the same support as its pre-
fix p, it is contained in the closure

⋂
T (p) of the prefix.

That means that one can add any such equisupport extension
to any extension ofp without changing its support; thus, one
can omit to explicitly check its extensions. Equisupport ex-
tensions can be filtered out and kept in a separate listE for
the active branch: whenever an itemsetX is output, all its
2|E| supersetsX ′ ⊆ X ∪ E are also output.

Omission of equisupport extensions is extremely cheap
to implement as it can be included in the filtering step that
has to check support values anyway. For dense datasets with
many equisupport extensions, the number of candidates that
have to be checked and accordingly the runtime can be re-
duced drastically.

3.6. Interleaving Incidence Matrix Computation
and Filtering

When the intersectionTx ∩ Ty of two sets of transaction
IDs is computed, we are interested in the result of this com-
putation only if it is at least of sizeminsup, as otherwise it
is filtered out in the next step. As the sets of transactions are

sorted, intersections are computed by iterating over the lists
of transaction IDs and comparing items. Once one of the
tails of the lists to intersect is shorter thanminsup minus
the length of the intersection so far, we can stop and drop
that candidate, as it never can become frequent. – For set
difference of maximal lengthmaxdef a completely analo-
gous procedure can be used.

3.7. Omission of Final Incidence Matrix Derivation

Finally, once the incidence matrix has only two rows,
the result of the next incidence matrix derivation will be an
incidence matrix with a single row. As this is only checked
for frequency, but its items are not used any further, we can
omit to generate the list of transaction IDs and just count its
length.

3.8. IO

So far we have investigated features that are specific to
Eclat and the frequent itemset mining problem. Though
these specific algorithmic features are what should be of
primary interest, we noticed in our experiments, that of-
ten different IO mechanism dominate runtime behavior. At
least three output schemes are implemented in several of
the algorithms available: IO using C++ streams, IO using
printf , and IO using handcrafted rendering of integer
itemsets to a char buffer and writing that buffer to files using
low-level fwrite (for the latter see e.g., the implementa-
tion of lcm, [9]). Handcrafted rendering of itemsets to char
buffers is by far the fastest method; especially for low sup-
port values, when huge numbers of patterns are output, the
runtime penalty from slower output mechanisms cannot be
compensated by better mining mechanisms whatsoever.

4. Evaluation

By evaluating different features of Eclat we wanted to
answer two questions:

1. What features will make Eclat run fastest? Especially,
what is its marginal runtime improvement of each fea-
ture in a sophisticated Eclat implementation?

2. Is Eclat competitive compared with more complex al-
gorithms?

To answer the question about the runtime improvement
of the different features, we implemented a modular ver-
sion of Eclat in C++ (basically mostly plain C) that allows
the flexible inclusion or exclusion of different algorithmic
features. At the time of writing the following features are
implemented: the incidence structure types covers and diff-
sets (COV, DIFF), transaction recoding (none, decreasing,

increasing; NREC, RECDEC, RECINC), omission of eq-
uisupport extensions (NEE), interleaving incidence matrix
computation and filtering (IFILT), and omission of final in-
cidence matrix (NFIN). As initial incidence matrix alway
covers of frequent 1-itemsets (C∅) was used.

To measure the marginal runtime improvement of a fea-
ture we configured a sophisticated Eclat algorithm with
all features turned on (SOPH:= DIFF, RECINC, NEE+,
IFILT+, NFIN+) and additionally for each feature an
Eclat algorithm derived from SOPH by omitting this fea-
ture (SOPH-DIFF, SOPH-RECINC (decreasing encoding),
SOPH-REC (no recoding at all), SOPH-NEE+, SOPH-
IFILT+, SOPH-NFIN+).

We used several of the data sets and mining
tasks that have been used in the FIMI-03 workshop
([4]): accidents, chess, connect, kosarak, mushroom,
pumsb, pumsbstar, retail, T10I5N1KP5KC0.25D200K,
T20I10N1KP5KC0.25D200K, and T30I15N1KP5KC0.25-
D200K. All experiments are ran on a standard Linux box
(P4/2MHz, 1.5GB RAM, SuSE 9.0). Jobs were killed if
they run more than 1000 seconds and the corresponding dat-
apoint is missing in the charts.

A sample from the results of these experiments can
be seen in fig. 1 (the remaining charts can be found
at http://www.informatik.uni-freiburg.de/cgnm/papers/-
fimi04). One can see some common behavior across
datasets and mining tasks:

• For dense mining tasks like accidents, chess, etc.
SOPH is the best configuration.

• For sparse mining tasks like retail,
T20I10N1KP5KC0-25D200K etc. SOPH-diff is
the best configuration, i.e., using defects harms
performance here – both effects are rather distinct.

• Recoding is important and shows a huge variety w.r.t.
runtime: compare e.g., decreasing and no encoding for
connect: the natural encoding is not much worse than
decreasing encoding, but the curve for increasing en-
coding shows what harm the wrong encoding can do:
note that the natural encoding is close to optimal only
by mere chance and could be anywhere between in-
creasing and decreasing!

• Omitting equisupport extensions also shows a clear
benefit for most mining tasks, with exception for
mushroom.

• Compared with other features, the impact of the fea-
tures IFILT and NFIN is neglectible.

To answer the second question about competitiveness of
Eclat compared with more advanced frequent pattern min-
ing algorithms we have chosen the four best-performing al-
gorithms from the FIMI-03 workshop: patricia, kdci, lcm,

and fpgrowth* (see [7, 6, 9, 8], for the implementations
and [3] for a performance evaluation of these algorithms,
respectively).

Again, a sample from the results of these experiments
can be seen in fig. 2 (the remaining charts also can
be found at http://www.informatik.uni-freiburg.de/cgnm/-
papers/fimi04). For several datasets (chess, connect,
mushroom, pumsb, and – not shown – pumsbstar),
Eclat-SOPH is faster than all other algorithms. For
some datasets it is faster for high minimum support
values, but beaten by fpgrowth* when support values
get smaller (accidents, T30I15N1KP5KC0-25D200K) and
for some datasets its performance is really poor (retail,
T20I10N1KP5KC0-25D200K, and – not shown – kosarak
and T10I5N1KP5KC0.25D200K). We can draw two con-
clusions from this observations: 1) at least for dense
datasets, Eclat-SOPH is faster than all its competitors, 2)
for sparse datasets, Eclat-SOPH is not suitable. Recalling
our discussion on the potential of using defects instead of
covers and on starting with frequent 2-itemsets instead of
with frequent 1-itemsets, the latter conclusion is not very
surprising.

5. Outlook

There are at least four more features we do not have in-
vestigated yet: using tries to store the transaction covers,
the method to compute the initial incidence matrix, prun-
ing, and memory management. Our further research will
try to address questions about the impact of these features.

This update of optimization for dense datasets has to
be complemented with research in performance drivers for
sparse datasets. As can be seen from our results, Eclat
seems not suited well for that task. Though using covers
instead of defects improves performance, it still is not com-
petitive with other algorithms in the field.

Furthermore, results for dense datasets will have to be
compared with that of the next generation of mining al-
gorithms we expect as outcome of FIMI’04 and eventu-
ally new features of these algorithms have to be integrated
in Eclat. We expect both, that Eclat is clearly beaten at
FIMI’04 as well that it will be not too hard to identify the
relevant features and integrate them in Eclat.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In J. Bocca, M. Jarke, and C. Zaniolo, editors,
Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB’94), Santiago de Chile, Septem-
ber 12-15, pages 487–499. Morgan Kaufmann, 1994.

[2] C. Borgelt. Efficient implementations of apriori and eclat.
In Goethals and Zaki [4].

accidents

minimum support

ru
nt

im
e

[s
]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

10^2.5

10^3.0

0.2 0.4 0.6 0.8

 eclat−SOPH
 eclat−SOPH−diff
 eclat−SOPH−nee
 eclat−SOPH−rec
 eclat−SOPH−recinc
 eclat−SOPH−ifilt
 eclat−SOPH−nfin

●

●

chess

minimum support

ru
nt

im
e

[s
]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10^−2

10^−1

10^0

10^1

10^2

10^3

0.3 0.4 0.5 0.6 0.7 0.8 0.9

 eclat−SOPH
 eclat−SOPH−diff
 eclat−SOPH−nee
 eclat−SOPH−rec
 eclat−SOPH−recinc
 eclat−SOPH−ifilt
 eclat−SOPH−nfin

●

●

connect

minimum support

ru
nt

im
e

[s
]

●

●

●

●

●

●
●

●

●

●

10^0

10^1

10^2

10^3

0.6 0.7 0.8 0.9

 eclat−SOPH
 eclat−SOPH−diff
 eclat−SOPH−nee
 eclat−SOPH−rec
 eclat−SOPH−recinc
 eclat−SOPH−ifilt
 eclat−SOPH−nfin

●

●

mushroom

minimum support

ru
nt

im
e

[s
]

●

●
●

●

●

●
●

●

10^−1.0

10^−0.5

10^0.0

10^0.5

10^1.0

10^1.5

0.05 0.10 0.15 0.20

 eclat−SOPH
 eclat−SOPH−diff
 eclat−SOPH−nee
 eclat−SOPH−rec
 eclat−SOPH−recinc
 eclat−SOPH−ifilt
 eclat−SOPH−nfin

●

●

pumsb

minimum support

ru
nt

im
e

[s
]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10^0

10^1

10^2

10^3

0.6 0.7 0.8 0.9

 eclat−SOPH
 eclat−SOPH−diff
 eclat−SOPH−nee
 eclat−SOPH−rec
 eclat−SOPH−recinc
 eclat−SOPH−ifilt
 eclat−SOPH−nfin

●

●

retail

minimum support

ru
nt

im
e

[s
]

●

●

●

●

●●

●

●

●

●

●●

10^0.5

10^1.0

10^1.5

10^2.0

10^2.5

10^3.0

0.0002 0.0004 0.0006 0.0008 0.0010

 eclat−SOPH
 eclat−SOPH−diff
 eclat−SOPH−nee
 eclat−SOPH−rec
 eclat−SOPH−recinc
 eclat−SOPH−ifilt
 eclat−SOPH−nfin

●

●

T20I10N1KP5KC0.25D200K

minimum support

ru
nt

im
e

[s
]

●

●

●

●
●

●

●

●

●
●

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

0.002 0.004 0.006 0.008 0.010

 eclat−SOPH
 eclat−SOPH−diff
 eclat−SOPH−nee
 eclat−SOPH−rec
 eclat−SOPH−recinc
 eclat−SOPH−ifilt
 eclat−SOPH−nfin

●

●

T30I15N1KP5KC0.25D200K

minimum support

ru
nt

im
e

[s
]

●

●

●

●

●

●

●

●

●

●

10^−0.5

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

0.01 0.02 0.03 0.04 0.05

 eclat−SOPH
 eclat−SOPH−diff
 eclat−SOPH−nee
 eclat−SOPH−rec
 eclat−SOPH−recinc
 eclat−SOPH−ifilt
 eclat−SOPH−nfin

●

●

Figure 1. Evaluation of the marginal effect of different features of Eclat on runtime.

accidents

minimum support

ru
nt

im
e

[s
]

10^0

10^1

10^2

10^3

0.2 0.4 0.6 0.8

 patricia
 kdci
 lcm
 fpgrowthpp
 eclat−lst

●

chess

minimum support

ru
nt

im
e

[s
]

10^−2

10^−1

10^0

10^1

10^2

0.3 0.4 0.5 0.6 0.7 0.8 0.9

 patricia
 kdci
 lcm
 fpgrowthpp
 eclat−lst

●

connect

minimum support

ru
nt

im
e

[s
]

10^−0.5

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

0.6 0.7 0.8 0.9

 patricia
 kdci
 lcm
 fpgrowthpp
 eclat−lst

●

mushroom

minimum support

ru
nt

im
e

[s
]

10^−1.0

10^−0.5

10^0.0

10^0.5

10^1.0

0.05 0.10 0.15 0.20

 patricia
 kdci
 lcm
 fpgrowthpp
 eclat−lst

●

pumsb

minimum support

ru
nt

im
e

[s
]

10^−0.5

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

0.6 0.7 0.8 0.9

 patricia
 kdci
 lcm
 fpgrowthpp
 eclat−lst

●

retail

minimum support

ru
nt

im
e

[s
]

10^0.0

10^0.5

10^1.0

10^1.5

0.0002 0.0004 0.0006 0.0008 0.0010

 patricia
 kdci
 lcm
 fpgrowthpp
 eclat−lst

●

T20I10N1KP5KC0.25D200K

minimum support

ru
nt

im
e

[s
]

10^0.5

10^1.0

10^1.5

10^2.0

0.002 0.004 0.006 0.008 0.010

 patricia
 kdci
 lcm
 fpgrowthpp
 eclat−lst

●

T30I15N1KP5KC0.25D200K

minimum support

ru
nt

im
e

[s
]

10^−0.5

10^0.0

10^0.5

10^1.0

10^1.5

10^2.0

0.01 0.02 0.03 0.04 0.05

 patricia
 kdci
 lcm
 fpgrowthpp
 eclat−lst

●

Figure 2. Evaluation of Eclat-SOPH (= eclat-lst) vs. fastest algorithms of the FIMI-03 workshop.

[3] B. Goethals and M. J. Zaki. Advances in frequent itemset
mining implementations: Introduction to fimi03. InPro-
ceedings of the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations, Melbourne, Florida, USA, Novem-
ber 19[4].

[4] B. Goethals and M. J. Zaki, editors.Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementa-
tions, Melbourne, Florida, USA, November 19, 2003. 2003.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In W. Chen, J. F. Naughton, and P. A.
Bernstein, editors,Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, pages 1–
12. ACM Press, 2000.

[6] S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and F. Sil-
vestri. kdci: a multi-strategy algorithm for mining frequent
sets. In Goethals and Zaki [4].

[7] A. Pietracaprina and D. Zandolin. Mining frequent itemsets
using patricia tries. In Goethals and Zaki [4].

[8] G. sta Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In Goethals and Zaki [4].

[9] T. Uno, T. Asai, Y. Uchida, and H. Arimura. Lcm: An ef-
ficient algorithm for enumerating frequent closed item sets.
In Goethals and Zaki [4].

[10] M. J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineering,
12(3):372–390, 2000.

[11] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets.
Technical report, RPI, 2001. Tech. Report. 01-1.

