Designing Autonomous Robots using GOLEM

Fabrizio Messina, Giuseppe Pappalardo, Corrado Santoro
University of Catania — Dept. of Mathematics and ComputgeiSe
Viale Andrea Doria, 6 — 95125 - Catania, ITALY
EMail: {messina,pappalardo,santp@dmi.unict.it

Abstract—In this paper we present a goal model for the design or state-charts[6], [12], which help the modelling of a
of autonomous robots. A framework is proposed which allows a robot’'s behaviour by exploiting a graphical approach witdah
developer to design the behaviour of a robot in accordance with then be implemented either directly or using proper softwar
arati_onal model, which is C(_)nceived to let the autonomous system |ibraries [10], [3]. Other proposals exploit the concept of
to mimic the human behaviour. The framework, called GOLEM, a reactive rule [4], [11], [5], thus providing languages or

is based on the abstractions ofgoals and sub-goals, which are . .
combined through specific relationships to specify the robot's p'atfofms to express robot.k_)ehaw_our by means of a series of
rules in the formeventconditiorfaction

activities; such activities, assembled together, form the ratioal
behaviour of the autonomous system. The central motivation fo Many of the solutions described above are derived from
the design of our framework is represented by the central issuefo computational modejswhich aim at trying to map com-
integrating full awareness and autonomy. Indeed, in the proposed o scjence abstractions to a framework which lets a robot
solution the execution of goals does not obey a pre-fixed sequence o -
rather, the next goal to achieve is selected, each time, on the lims eXh'.b't an autonomous behaymur_. Neve(theless we followed
of an evaluation of its opportunity. a different approach, consisting in starting fromragional
mode] i.e. to understand how a human would behave in order
to autonomously reach a goal, in order to derive a proper
computational model capable of—more or less precisely—
Programming the behaviour of autonomous robots requiregepresent it. As a consequence, in this work we introduces
powerful abstractions, languages and suitable framewoyks an abstract framework, called GOLEM, in which a robot’s
which the designer can implement behavioural elementarfeat behaviour is decomposed into a set taks and sub-tasks
ing autonomyand situatednessBy means of suitable specific (which are indeed referred to geals, properly interconnected
constructs, expressing the actions to be undertaken bypbiwe r to one another on the basis of certdigpendencyelationship.
to reach the goal, for which the robot itself has been designe The order of execution of tasks is not a-priori fixed, but ekt
can be easier. to be executed is dynamically chosen by means dframic
cheduling policy which takes into account the concepts of
easibility, priority and opportunity The idea is to endow the
robot with a high degree ddeliberation ability by letting it

I. INTRODUCTION

Autonomy is a special, fundamental aspect to be taken int
account, as it is thability of a machine to select the right ac-
tion(s) to be performed to reach a certain gagthout relying ; :
to any additional (human) control. Selecting the apprderia autohno_mou_sly decide which (sub-jtask or (sub-)goal adopt a
actions is an activity to be performed taking into account®2¢ time instant.
the reference environment which, being in many cases the The paper is structured as follows. Section Il provides
physical and real world, islynamicand oftenunpredictable a real-life scenario which is used as a motivating example
For the reasons above (dynamic and unpredictability of theo introduce the model. Section Ill formalises the GOLEM
environment) an actiomay fail Indeed, since the environment framework, illustrating the entities, the relationshipsdahe
is dynamic, its state, which has been perceived befordrgart execution semantics. Section IV describes the GOLEM varsio
the action, is changed, thus making the action no more fieasib of the scenario introduced in Section Il. Section V deals
In this case, as humans being, a real autonomous robot shoulith related work. Section VI ends up the paper with our
be able to identify such a situation and adopt countermeasur conclusions.
if any.

In order to deal with the issue discussed so far, the software ll. A DAILY LIFE EXAMPLE

implementing the robot’s behaviour must be properly design Supposing we should program a robot to perform a typical
In general, the underlying model of a robot behaviour isdaily task performed by humans: we wish the robot behave in
modelled as a continuous loop, involving the three phaseghe same wayas a human would do, so as to make the robot
sensgevaluatéact here, the action to be performed is selectedexhibit a human-like (and in some sense “rational”) behawio

on the basis of the state of the environmessr(sephase) and Starting from such an example is very useful to derive some
the state of the robot itsélf(evaluatephase). At first sight interesting properties which eventually are the basis ef th
such a model could be easily implemented with a loop callingramework described in the subsequent Sections of the paper
functions for environment sensing and using a seriesifgs “

to let the program select the right action(s). Another progr A, The “Food Buyer” Robot

ming model which is often used in the field of autonomous

systems considers the use fifite-state machine$2], [1] Let us suppose we want to program a humanoid robot to go
to the supermarket and buy some food for us, given a specific

Lin rational robots, this state can include also a form of tklelge”. food list. In detail, we need some bread, milk, beer and pasta

moreover, for the beer, we would like to specify an order ofwe can model>23 as further composed of a set of sub-goals,
preference for the brand, i.e. firBrandl, if available, then one for each specific brand, e.§B1 for Brand 1, GB2 for
Brand2as a second choice, etc. Brand 2, GB3 for Brand 3.

We start by specifying theverall goal say GR, asto buy The sense of this (de)composition, in terms of selection
the food in the list. Moreover, it is natural to expresSR by and achievement, is different from botfR and G2: if
splitting it in a set ofsub-goalsto be achieved by the robot, Gp1 succeeds (Brand 1 is available), théR3 is achieved:;
as in the following sequence: otherwise tryGB2 and so on.

G1 First, go to the supermarket.
G2 Pick each food type specified in the list, and put])
it into the cart. B. Discussion

G3 When each item of the list has been picked, go to The ab le sh int " .
the checkout and wait in the line. e above example shows some interesting properties

el When there are no more people before you, pa)Igla.ted '[_E[)hthe rr]atlonal behavE)OL:r of an autonomous entity
for the food which is the cart. (being either a human or a robot).

G5 Finally, go back home and bring me the food. First of all, the behaviour can be represented as a set of
goals some of which, in turn, can be further decomposed into
sub-goals Making such a decomposition allows the identifi-
cation of the various tasks and actions to be accomplished by
the robot, together with thehelationships

We can say that fulfilling sub-goalsG1...G5} implies the
automatic achievement of the overall g@ak, which is a way
of reasoning very close to that of humans.

G2 can be decomposed into a set of sub-go&l81 for
bread, G22 for milk, G23 for beer (with brand preference), The relationshipplays a fundamental role in establishing
and G24 for pasta As a consequence, the robot has to findthe order of executionand theachievement policyindeed,
and reach the proper stgntbr each item specified in the list order of execution can be strictly in sequence in some cases,
above in order to pick the item. Just as a human might reasoRut, in many other cases, which goal to try and achieve is
the order in which sub-goal§321 ... G24} are fulfilled does (or can be) the robot's autonomous choice, which can be
not matter: it is up to the robot (as for a human) to make suctperformed on the basis of some parameters like (for example)
a choice: it only matters that all items, sooner or later| taél

picked. More in detail, a person would makeagional choice e the state of the environment or the robot itself (“let's
on the basis, for example, of the distance among the various go and get pasta first, because it is nearer to my
stands, thus trying to minimise the length of the path, te. i position”);

could apply a sort of policy, or a strategy.]
)) B) e past experience of the robot (“let's get pasta because
Moreover, irrespective of the specific policy used to per- | know where it is located”);

form the choice, it is important to remark the difference
between the set of sub-godl&'1 ... G5} and{G21 ... G24}: rational opportunities (“let's put the beer last in the
in the former case, the order of executiomatters (strict cart, to lower the probability of breaking the bottles”);
sequence, no autonomous choice is possible); in the latter

case, the robot can autonomously decide the order following ® other reasons.

any—more or less rational—personal criteria. In making such

a choice, different aspects could be considered, some of the A goal (or sub-goal) casucceedbr fail. Failure can be due
subjective, and others, undoubtedly, objective; one ofdtter ~ to various reasons, whethtamporary e.g. crowd in a certain

is obviously the feasibility of the sub-goal: e.g., if, atertain area of the supermarket, permanente.g. there are no items
time instant, the stand of the beers is not reachable dueto t@®f a certain food type. A goal failed for a temporary reason
much confusion, sub-goal23 is not feasible and thus it is can be retried later, when the robot “thinks” there is again a
useless to choose it. Such an infeasibility is indeed teamgpr Opportunity to execute it.

for we could try to achievé&>23 after some time, as soon as,
e.g., there is no more crowd.

All of these aspects contribute to conferring the robot a
complete awareness of its objectives, as well as the albdity
Order of execution is not the sole difference betweerautonomously deliberatabout the actions to be performed at
sets{G1...G5} and {G21...G24}; while, as stated above, each time instant. All of these aspects are the basis of the
achievement of7R requires thenandatoryachievement oéll ~ GOLEM framework which is described in the next Section.
of its sub-goals{G1... G5}, the same cannot be said f62
and {G21...G24}: indeed, if a certain food is unavailable
(e.g., milk), the robot should nevertheless proceed with th m
shopping, that is, to conside2 achieved the successful '

completion of only some it sub-goals suffices. GOLEM, which is the framework presented in this paper,

Also goal(G23 deserves a special remark; here the objectivé©NSISts of a set of precise rules specifying the syntax totwh

is to pick some beer based on brand preferences. To this airfi, 000t program” must obey to be correctly executed, and an
! b P 'S al abstract machind GAM, GOLEM Abstract Machine) which,

2\We are supposing that the robot has a knowledge of the plysiation ~ iN turn, 'has the responsibility of executifg basing on some
of goods in the supermarket. semantics rules.

THE GOLEM FRAMEWORK

P o=y As an example, in order to try to minimise the path in our
g = sg9|c supermarket example, the opportunity function of gaaid,
sg = (f,p, act) G22, G23 and G24 could be a factor proportional to the
fu= functor — {true, false} distance to the (respective) stand to be reached. To perform
p u=functor = N a correct evaluation, a properetric has to be derived to map
act = functor — status the (notion of) importance of a goal to a positive integee th
status = ACTH}?;LED higher the value the higher the importance of the goal.

P FAIL Goal actionis an entity representing the actions to be
cg = (rel,g_set) performed in order to try to achieve the goal itself. It is
rel = ALL a piece of code including the required statements to make

ALL_SEQ the robot carry out the intended actions. From a conceptual

AT_LEAST (k) point of view, this code should not present rational choices

SEQ_UNTIL (k>1) or deliberative actions, which instead should be modelied a

gset == {g1,...,qn} (n>1) sub-goals of a composite goal (see below). Again, goal mctio

is modelled as a function returning three possible constant

Fig. 1. Basic GOLEM Syntax e ACHIEVED . Execution of the action caused the suc-

cessful achievement of the goal.

A. GOLEM Program e T_FAIL . Execution failed, but such a failure is consid-
eredtemporary i.e. retrying the execution later could

As shown in Figure 1, which reports the basic GOLEM
lead to success.

syntax, a robot progran® is represented by itsiain goal g.
A goal g, in turn, represents thiasks that the robot must do e P_FAIL . Execution failed and such a failure is con-
to achieve a certain statéMoreover, according to the nature sideredpermanent

of such tasks, a goal can lsampleor composite) L _
A composite goal,cg, is instead represented as a pair

A simple goal sg, represents a goal which requires no (rel, g_set) comprising aset of sub-goalg;_set and arela-
specific further decision on the actions to be undertaken. Aionship conditionrel, which can be one of the following:
simple goal includes a computation which is executed “as is”

to achieve the goal itself; if the computation ends with sssc e ALL. The goal succeeds wheall of its sub-goals
the goal is achieved, otherwise, it is failed. A simple gaal i are achieved; the order in which the sub-goals are
represented with a tuple composed of the following parts: aCOVI"eng does not matter (i.e. the getset is not
ordereg.
* feasibility function f; e ALL _SEQ. The goal succeeds whall of its sub-
e opportunity evaluatarp; goals are achieved but the order in which the sub-

goals are achieved must be a strict sequence (i.e. the
setg_set is ordered.

Feasibility functioncontains the necessary logic to evaluate e AT_LEAST(K) . The goal succeeds wheu leastk of
whether the goal is feasible or not. The internal structdré¢ o its sub-goals (withk specified) are achieved; the order
is not specified, it is supposed to be a program code which of achievement does not matter.
senses the state of the environment and/or robot, performs
suitable evaluations and returns a boolean value indigatin ® SEQUNTIL . The goal succeeds when (as soon as)
the feasibility of the goal. The idea behind the concept of any sub-goals achieved; the set_set is orderedand
feasibility is to verify that there are no conditions thvaould sub-goal achievement is tried in strict sequence.
impedethe achievement of a goal; indeed, stating that a goal gach sub-goal may be, in turn, either simple or composite.
is feasible does not imply that the goal will surely succeedhg regylt is thus a hierarchy of goals, with proper relation
other situations might happen, during the execution ofdB&s ghins which represents the model of the overall autonomous
of the goal, which cause the failure of a specific action. FOlyehayiour of the robot. Such a hierarchy is handled by the
example, feasibility of goalx4 in the supermarket example GoLEM Abstract Machine in order to execute the goals
(checking out) depends on an empty checkout line. respecting the semantics of relationships, as it is desdrib

Opportunity Evaluatoiis a function by which the designer In the next Subsection.
is able to specify the level of priority or importance of thea))
with respect to the others. Such importance can be repezsentB. GOLEM Abstract Machine

by a number, e.g. an integer. As a consequence this value A GOLEM robot programP is executed by th&OLEM

is used to select, among different feasible goals, the one t@pgiract MachindGAM) whose behaviour is essentially based
execute. Such a measure is not intended to be a static valug, 5 continuous loop iterating on the following steps:

as it should be dynamically evaluated before deciding which

goal to execute. Evaluating the opportunity could thus impl 1) Evaluation of feasible goals.

to sense the state of the environment (or the robot itself) 2) Evaluation of their opportunity values.

and, on this basis, decide if the goal is, in this time instant 3) Selection of the feasible goal with highest opportunity
more important than another one (or the most important one). value.

e goal action act;

4) Execution of the selected goal. if ¢ is simple, or a proper evaluation of its sub-goalg ifs

composite. Its specific behaviour is reported in Table IlI.
The GAM stops executing the program whereither has been P P P

successfully achievear haspermanently failed EVAL(g)

. . . . [Goal Type/Rel.] Function Behaviour I
~ For each iteration, the prografi is scanned by looking o —<T5cAGUFC
into its composite goals, also descending into the hiegyarch simple T g.7() then —oo elseg.p()
if needed, with the objective of finding a simple (sub-)goal ALL maz{ EVAL(h)|h € g.g_set}
which can be executed; this is performed using proper lici ATA_ﬁLEfff(n) £ VAL(ﬁ:ff(;;’{g@\E(Z')ﬁ’fétgfg(_fg}u FG)})
which depend on the relationship type of composite goals. Al SEQ_UNTIL(n) | EVAL(first_of ({h] € g.g_set — (AG U FC)1))

each iteration, when execution of the goal is completeds it i
checked whether goal execution caused the achievement of
or its permanent failure. In the former case, the progransend
with success, otherwise an error is reported.

TABLE IIl. EVALFUNCTION

D. GAM algorithm

C. GAM state information and main functions The functions introduced above are exploited by the GAM

The GAM has an internal state represented by the tupl& €xecute a prograrf?. Algorithm 1 reports the pseudo code
(P, AG, FG, TFG) whereP is the robot programAG is the of the main GAM behawour: _here a loop is executed _untll the
set of achieved goals FG is the set ofpermanently failed program P is considered achieved or _permanently faﬂed_; the
goals and TFG is the set oftemporarily failed goals body of th_e loop evaluates t_he feasibility 6f and, if this is

the case, it executeB by calling EXEC_FEASIBLE.

Sets AG, FG and TFG are initially empty and then
prcl)perly rrrodifie:j durri1f1lg progllrartr) exe](c:uti(r)]n; they mtay cic;_wltai Algorithm 1 GAM Main Algorithm
only simple goals, while evaluation of achievement or falu : 5
of a composite goal is performed by analysing its composing ;: profg“f;ﬁ,%(zggagFG 0
sub-goals. To this aim, the GAM exploits two functions: 3j while ﬁI'S ACHIE'VED(P)/\—\IS P_FAILED(P) do
IS ACHIEVED(g) — {true, false} and|S_P_FAILED(g) — ' if EVAL(P) # —oc then
{true, false}. The former evaluates whether a goalhas EXEC FEASIBLE(P)
been successfully achieved or not; Table | reports the Speci end if
behaviour of this function which depends on the goal type .. end while
(simple or composite) and the relationship type (for contpos 8: end procedure
goals). The latter evaluates whether a gpélas to be consid- ' P
ered permanently failed; Table Il reports the behaviouruahs
a function. In all tables, for convenience, we assume thiagnw ProcedureEXEC_FEASIBLE, whose pseudo-code is illus-
g is compositeg.g_set represents its goal set. Likewise,gif trated in Algorithm 2, checks the goal type, i.e. whethesit i
is simple,g.p, ¢g.f andg.act represeny’s feasibility function, simple or composite: in the former case, the() function is

o g R

opportunity evaluator and goal action, respectively. called and its outcome is tested in order to update defs
FG and TFG; in the latter case, a proper procedure is called
[S_ACHIEVED(g) — {true, false} to perform execution according to the relationship type, as
[Goal Type/Rel.]| Function Behaviour I detailed in the fO||OWingZ
simple g e AG
ALL Nicg.g s IS-ACHIEVED (h)} 1) ALL relationship: The ALL relationship requires that
ALL_SEQ Nicyy ot ISSACHIEVED(h)} all subgoals must be executed but the order of execution does
AT_LEAST(k) | [{h € g.g_set : IS_ACHIEVED(h)}] > k not matter. Th&XEC_ALL procedure, reported in Algorithm 3,
SEQ_UNTIL heg.g st US-ACHIEVED(h)} determines the set of feasible sub-goals and, from it, &elee
TABLE I. IS_ACHIEVEDFUNCTION one with the highest opportunity value; if this conditiond

for more than a goal, a non-deterministic (random) choice
is performed (this is done by theNE_OF function in line
IS_P_FAILED(g) — {true, false} 11). Once the sub-goal has been selecteds HEC_FEASIBLE

Goal Type/Rel. Function Behaviour . .
[e [TG | procedure is called again to concretely execute the goal.
ALL Vieaq o IS-P-FAILED(h)} 2) ALL_SEQ relationship: This kind of relationship is
ALL_SEQ heg.q s IS-P-FAILED(h)} more strict than the previous one: not only all sub-goals
AT_LEAST(k) | [{h € g.g_set: IS P_FAILED(h)}| > [g.g_set[— k must be executed, but also the order of execution must be
SEQ_UNTIL Nncgooa{IS-P-FAILED(h)} respected. As it is illustrated in Algorithm 4, the proceslur

TABLE Il. IS_P_FAILED FUNCTION EXEC_ALL_SEQscans the set of sub-goals in sequence in order
to find the first non-achieved sub-goal: if it is feasible, siudb-

Steps 1 and 2 of the GAM execution loop perform eval—goal Is directly executed.

uation of goals in order to select a feasible one. We assume 3) AT_LEAST(K) relationship:This relationship is equiva-

a function EVAL(g) that evaluates both the feasibility and lent to ALL, with the sole exception that the composite goal
opportunity of a goalg as follows. If g is not feasible, or is considered achieved when at ledstsub-goals succeed.
belongs to eitherAG or FG, the EVAL(g) returns —oo; This condition is stated in this_ ACHIEVEDfunction, while,
otherwise it returns the value of the opportunity function() with respect to sub-goal selection, the policy here is to find

Algorithm 2 Execute a feasible goal

1: procedure EXEC_FEASIBLE(g:goal)

the feasible sub-goal with the highest opportunity valud an
execute it. Such a behaviour is thus the same ofthec_ALL
procedure, which is the one called also in this case as it is

2: > This procedure supposes that P is feasibleshown in Algorithm 2.

i it I?_ilysclzl(-:)(g) then 4) SEQ__UNTIL relationship: Alsp in this case, the set'of .
5 it -~ ACHIEVED then sub-goals is ordere_d thus the pollcy ad_opted fo_r execuson i
6 AG « AGU{g}; TFG + TFG \ {g} to scan such a set in ordc_ar to find the first feasible _goal, also
7. else ifr = P FAILED then ensuring that. all the previous ones have already failedh Suc
8 FG « FG U {g}: TFG « TFG \ {g} a behaviour is reported in thexeC_SEQ UNTIL procedure

9 else > T FAILED illustrated in Algorithm 5.

10: TFG + TFG U {g} :

11: end if Algorithm 5

12: else 1: procedure EXEC_SEQ UNTIL(g_set:set of goal)

13: (rel, g_set) < g 2: for g € g_set do

14 if rel = ALL then 3: if g € AG then

15: EXEC ALL (g_set) 4 return

16: else if rel = ALL_SEQ then 5: end if

17: EXEC ALL_SEQg_set) 6: if g¢ FG then

18: else ifrel = AT_LEAST (k) then 7: if EVAL(g) # oo then

19: EXEC ALL (g_set) 8: EXEC_FEASIBLE(g)

20: else ifrel = SEQ_UNTIL then 9: end if

21: EXEC SEQ UNTIL(g_set) 10: return

22: end if 11 end if

23: end if 12: end for

24: end procedure

13: end procedure

Algorithm 3

1: procedure EXEC_ALL (g_set:set of goal)
2. failed < {g € g_set : IS_P_FAILED(g)}
if failed # 0 then
return
end if
selectables <— {g € g_set : EVAL(g) # —oo}
if selectables = () then
return
end if
10: candidates < {g € selectables : maz EVAL(g)}
11: selected <—ONE_OF(candidates)
12: EXEC_FEASIBLE(selected)
13: end procedure

©oNoaR®

IV. CASE-STUDY

In order to show a practical use of the GOLEM framework,
as well as the related benefits, let us provide a case-stusydba
on the example provided in Section II. We report the complete
set of goals in the tree shown into Figure 2, in which some
nodes represent the (sub)goals, while some others represen
the relationship by which the (sub)goal must be executed. In
order to discuss the details of the case study, in the fofigwi
we will represent each goal by means of a symbolic frame
reporting the name of the goal, and an informal description o
the behaviour of feasibility, opportunity and action fupos.

The main goal of the robot is to go to the supermarket
and buy some food. This can be expressed as a mandatory
sequence of sub-goals:

[Name: Main |
Relationship:ALL _SEQ

Algorithm 4

1: procedure EXEC_ALL _SEQ(g_set : set of goal)
2: for g € g_set do
if g € FG then
return
end if
if g ¢ AG then
if EVAL(g) # oo then
EXEC_FEASIBLE(g)
end if
10: return
11 end if
12: end for
13: end procedure

Goal set:Go to supermarket, Pick items, Pay,
Go back home

The first sub-goalGo to supermarkethas a feasibility
condition implying to check current time in order to ensure
that the supermarket is open. Opportunity value is useless,
this case, since, according to the ALREQ semantics, this is
the sole sub-goal which can be selected. Its representation
therefore:

| Name: Go to supermarket |
Feasibility: Is the supermarket open? (check time)
Opportunity: any

Description: Reach the supermarket

Pick itemsis instead another composite goal and contains
a sub-goal for each food type to be brought. We consider that

Let's buy food(Main)

[ALL _SEQ]

N

Go to Supermarket Pick items Pay Go Back Home

[AT_LEAST(1)]

NN

Bread Milk Beer Pasta

[SEQ UNTIL]

Brand 1 Brand 2 Brand 3

Fig. 2. The behavioural tree of the “food buyer” robot

| Name: Beer |

Relationship:SEQ UNTIL
Goal set:Beer brand 1, Beer brand 2, Beer brand 3

EachBeer brandn sub-goal can be viewed as simple goal
and represented like the ones related to the other food type
(i.e. Bread Milk and Pastg; for this reason, we omit here
their description.

V. RELATED WORK

As stated in [8], in which the field of RDEs (Robotic
Development Environment) is analyzed by selecting and com-
paring several different open source RDESs, architectunels a
programming models for mobile robots have become very
important in the last years.

Some previous works, like [15], [16], address the problem
of expressing coordination of various concurrent actegitin
autonomous mobile robots. In [15], an extension of C++gchll
TDL, is designed for the purpose of syntactically suppagrtin
task decomposition, synchronization, execution momipri
and exception handling. In [16], the authors address the
problem of limited physical and computational resources of
autonomous robots, which causes various constraints. They
present a solution called Task Control Architecture (TC#gtt
supports the programmer in splitting various type of betravi
onto layered components. Deliberative components handle
normal situations, while reactive behaviors handle exoapt

at least one type of food has to be put in the cart to conside?"®:

the goal achieved, thus:

| Name: Pick items |

Relationship:AT_LEAST(1)
Goal set:Break, Milk, Beer, Pasta

In [9], the authors discuss the difficulties related to the
practical application of evolutionary approaches to make a
mobile robot “learn” a complex behaviour. They propose a
modularization of the control architecture to make the tobo
learn different behaviours by using a task decomposition

GoalPayis a simple one. Its feasibility implies the absencet€chnique, such that the definition of fitness functions bee

of people in the line and the action requires to pay for thelfoo
put in the cart:

| Name: Pay
Feasibility: No people in the line?
Opportunity: any

Description: Pay for the food

Last goal of the setGo back homeis quite simple and
can be easily described as:

[Name: Go back home |
Feasibility: True

Opportunity: any
Description: Get the food and go back home

As for the goals related to food pickin@read Milk and
Pastaare simple and their model is, in practice, the same:

| Name: Bread/Milk/Pasta |
Feasibility: True
Opportunity: Evaluate distance from the stand
Description: Reach the stand and pick some
bread/milk/pasta

Things are different foBeersince we expressed a priority

straightforward.

In [7], the problem of automated task planning for service
robots is addressed by combining semantic knowledge repre-
sentation and previous approaches related to Al. A flexible
framework is presented, which assists service robots ik tas
planning by means of a semantic ontology constructed for
representing environmental description and robot primitic-
tions. Authors also describe a simple scenario and denatastr
the effectiveness of their work in a simulated environment.

In the field of knowledge processing system for au-
tonomous personal robots, we mention [18] and [19]. Authors
of [18] present a knowledge processing system exploiting a
first-order knowledge representation based on descrifiigin
in order to provide action-centered representation, a wact
quire the grounded concepts and experience by observattbn a
fast inference, which helps autonomous robots to take i ri
decision in time. In [19] information available in the World
Wide Web is used as a knowledge base to help autonomous
robots to perform tasks. Web pages are categorized to be used
for knowledge processing by autonomous robots and, for this
aim, several processing methods are presented.

By the well known DBI (Belief-Desire-Intention)
model [13] agent behaviour can be defined in terms of

preference on brands. For this reason, we model this goal d&®liefs (the informative component of the system state) ,

a composite one using the SEQNTIL relationship:

desires (the motivational state of the system), and irgesti

(encapsulating the deliberative component of the system)]s]
On the other hand, our framework focuses on supporting
the programmer in developing the deliberative component of
robot behaviour through the noted opportunity and feasibil ~ [©]
functions. 0

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented an abstract framework, calle(SB]
GOLEM, for the design and modelling of behaviour of au-
tonomous robotic systems. In order to give the radeibera- [9]
tion abilities GOLEM uses a rational approach by organising
robot’s actions into goals and sub-goals, which must be- indi

vidually achieved. [10]

The GOLEM framework has been implemented by the
authors in two different programming languages. A first im-
plementation is in the C language, specifically optimised fo [11]
the execution onto platforms based on microcontrolleFhis
implementation has been used to program the autonomOL[lIcz]
behaviour of the robots built by the UNICT-TEAMfor
the Eurobot student robotic competitiorit is currently not
published on the web but is available on request. The second
implementation (called ENIGM# has been done in the [13]
Erlang language and belongs to the authors’ research in the
field of the application of parallel functional languagesdbot ~ [14]
programming [14], [17].

Both implementations have been tested on realistic casiés]
scenarios, in order to evaluate the effectiveness of the ENDL
approach in real-life situations. Experience showed that t [16]
organisation of activities in goals and sub-goals helpg ¢hi®
development process, by allowing the programmer to cIearI)W]
identify the “pieces of the robot’'s behaviour”, treatingeth
as single entities, thus using, also for behaviour programgm

the well-known and successful “divide-et-impera” prireip [18]

Detailed description of such implementations, as well as
experiences on the use of GOLEM, will be the object of future
work. [19]

VII.

This work has been supported by project PRISMA
PONO04a2 A/F funded by the Italian Ministry of University.

A CKNOWLEDGEMENTS

REFERENCES

[1] R. A. Brooks, “A robust layered control system for a mobitgbot,”
Robotics and Automation, IEEE Journal, al. 2, no. 1, pp. 14-23,
1986.

[2] T.S. Chow, “Testing software design modeled by finitaestaachines,”
IEEE Trans. Software Engvol. 4, no. 3, pp. 178-187, 1978.

[3] C. Cote, D. Letourneau, F. Michaud, J.-M. Valin, Y. Brosseau,
C. Raievsky, M. Lemay, and V. Tran, “Code reusability tools fo
programming mobile robots,” inintelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ InternakiGonfer-
ence onvol. 2. |EEE, 2004, pp. 1820-1825.

[4] L. Fichera, D. Marletta, V. Nicosia, and C. Santoro, “kilde robot
strategy design using belief-desire-intention model. Eiarobot Con-
ference 2010, pp. 57-71.

3This implementation works in bare metal, without an operatiygesn
4http://eurobot.dmi.unict.it

Shttp://www.eurobot.org

Shttps://github.com/ivaniacono/enigma

G. Fortino, W. Russo, and C. Santoro, “Translating sfasets-based
into bdi agents: The dsc/profeta case,'Nultiagent System Technolo-
gies Springer, 2013, pp. 264-277.

D. Harel, “Statecharts: A visual formalism for complex ®ms,”
Science of computer programmingpl. 8, no. 3, pp. 231-274, 1987.

Z. Ji et al, “Towards automated task planning for service robots using
semantic knowledge representation,1INDIN. |EEE, 2012, pp. 1194—
1201.

J. Kramer and M. Scheutz, “Development environments foomaitnous
mobile robots: A survey,Autonomous Robatsol. 22, no. 2, pp. 101—
132, 2007.

W.-P. Lee, J. Hallam, and H. H. Lund, “Learning complex rbbo
behaviours by evolutionary computing with task decompasjtion
Learning Robots Springer, 1998, pp. 155-172.

D. S. Lees and L. J. Leifer, “A graphical programming laage for
robots operating in lightly structured environments,” Robotics and
Automation, 1993. Proceedings., 1993 |IEEE Internationahférence
on. IEEE, 1993, pp. 648-653.

F. Messina, G. Pappalardo, and C. Santoro, “Integyatipud services
in behaviour programming for autonomous robots,’Algorithms and
Architectures for Parallel Processing Springer, 2013, pp. 295-302.

O. Obst, “Specifying rational agents with statechantsl utility func-
tions,” in RoboCup 2001: Robot Soccer World Cups¥r. Lecture Notes
in Computer Science, A. Birk, S. Coradeschi, and S. TadokBds,
Springer Berlin Heidelberg, 2002, vol. 2377, pp. 173-182.

A. Rao and M. Georgeff, “BDI agents: From theory to preef in
Proceedings of ICMAS San Francisco, CA, 1995, pp. 312-319.

C. Santoro, “An erlang framework for autonomous mobileatstj in
ERLANG '07: Proceedings of the 2007 ACM SIGPLAN workshop on
Erlang. ACM Press, 2007.

R. Simmons and D. Apfelbaum, “A task description languawerébot
control,” in IEEE/RSJvol. 3. IEEE, 1998, pp. 1931-1937.

R. G. Simmons, “Structured control for autonomous robd&qbotics
and Automation, IEEE Transactions,orol. 10, no. 1, pp. 34-43, 1994.

A. D. Stefano, F. Gangemi, and C. Santoro, “ERESYE: Auiti
Intelligence in Erlang Programs,” iBRLANG '05: Proceedings of the
2005 ACM SIGPLAN workshop on Erlang New York, NY, USA:
ACM Press, 2005, pp. 62-71.

M. Tenorth and M. Beetz, “Knowrobknowledge processifty au-
tonomous personal robots,” ilmtelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference otEEE, 2009, pp.
4261-4266.

M. Tenorth, U. Klank, D. Pangercic, and M. Beetz, “Wehabled
robots,” Robotics & Automation Magazine, |IEEKoIl. 18, no. 2, pp.
58-68, 2011.

