
Designing Autonomous Robots using GOLEM

Fabrizio Messina, Giuseppe Pappalardo, Corrado Santoro
University of Catania – Dept. of Mathematics and Computer Science

Viale Andrea Doria, 6 — 95125 - Catania, ITALY
EMail: {messina,pappalardo,santoro}@dmi.unict.it

Abstract—In this paper we present a goal model for the design
of autonomous robots. A framework is proposed which allows a
developer to design the behaviour of a robot in accordance with
a rational model, which is conceived to let the autonomous system
to mimic the human behaviour. The framework, called GOLEM,
is based on the abstractions ofgoals and sub-goals, which are
combined through specific relationships to specify the robot’s
activities; such activities, assembled together, form the rational
behaviour of the autonomous system. The central motivation for
the design of our framework is represented by the central issue of
integrating full awareness and autonomy. Indeed, in the proposed
solution the execution of goals does not obey a pre-fixed sequence;
rather, the next goal to achieve is selected, each time, on the basis
of an evaluation of its opportunity.

I. I NTRODUCTION

Programming the behaviour of autonomous robots requires
powerful abstractions, languages and suitable frameworksby
which the designer can implement behavioural elements featur-
ing autonomyandsituatedness. By means of suitable specific
constructs, expressing the actions to be undertaken by the robot
to reach the goal, for which the robot itself has been designed,
can be easier.

Autonomy is a special, fundamental aspect to be taken into
account, as it is theability of a machine to select the right ac-
tion(s) to be performed to reach a certain goalwithout relying
to any additional (human) control. Selecting the appropriate
actions is an activity to be performed taking into account
the reference environment which, being in many cases the
physical and real world, isdynamicand oftenunpredictable.
For the reasons above (dynamic and unpredictability of the
environment) an actionmay fail. Indeed, since the environment
is dynamic, its state, which has been perceived before starting
the action, is changed, thus making the action no more feasible.
In this case, as humans being, a real autonomous robot should
be able to identify such a situation and adopt countermeasures,
if any.

In order to deal with the issue discussed so far, the software
implementing the robot’s behaviour must be properly designed.
In general, the underlying model of a robot behaviour is
modelled as a continuous loop, involving the three phases
sense/evaluate/act: here, the action to be performed is selected
on the basis of the state of the environment (sensephase) and
the state of the robot itself1 (evaluatephase). At first sight
such a model could be easily implemented with a loop calling
functions for environment sensing and using a series of “if ”s
to let the program select the right action(s). Another program-
ming model which is often used in the field of autonomous
systems considers the use offinite-state machines[2], [1]

1In rational robots, this state can include also a form of “knowledge”.

or state-charts [6], [12], which help the modelling of a
robot’s behaviour by exploiting a graphical approach whichcan
then be implemented either directly or using proper software
libraries [10], [3]. Other proposals exploit the concept of
a reactive rule [4], [11], [5], thus providing languages or
platforms to express robot behaviour by means of a series of
rules in the formevent/condition/action.

Many of the solutions described above are derived from
computational models, which aim at trying to map com-
puter science abstractions to a framework which lets a robot
exhibit an autonomous behaviour. Nevertheless we followed
a different approach, consisting in starting from arational
model, i.e. to understand how a human would behave in order
to autonomously reach a goal, in order to derive a proper
computational model capable of—more or less precisely—
represent it. As a consequence, in this work we introduces
an abstract framework, called GOLEM, in which a robot’s
behaviour is decomposed into a set oftasks and sub-tasks
(which are indeed referred to asgoals), properly interconnected
to one another on the basis of certaindependencyrelationship.
The order of execution of tasks is not a-priori fixed, but the task
to be executed is dynamically chosen by means of adynamic
scheduling policy, which takes into account the concepts of
feasibility, priority andopportunity. The idea is to endow the
robot with a high degree ofdeliberation ability, by letting it
autonomously decide which (sub-)task or (sub-)goal adopt at
each time instant.

The paper is structured as follows. Section II provides
a real-life scenario which is used as a motivating example
to introduce the model. Section III formalises the GOLEM
framework, illustrating the entities, the relationships and the
execution semantics. Section IV describes the GOLEM version
of the scenario introduced in Section II. Section V deals
with related work. Section VI ends up the paper with our
conclusions.

II. A DAILY LIFE EXAMPLE

Supposing we should program a robot to perform a typical
daily task performed by humans: we wish the robot behave in
the same wayas a human would do, so as to make the robot
exhibit a human-like (and in some sense “rational”) behaviour.
Starting from such an example is very useful to derive some
interesting properties which eventually are the basis of the
framework described in the subsequent Sections of the paper.

A. The “Food Buyer” Robot

Let us suppose we want to program a humanoid robot to go
to the supermarket and buy some food for us, given a specific
food list. In detail, we need some bread, milk, beer and pasta;

moreover, for the beer, we would like to specify an order of
preference for the brand, i.e. firstBrand1, if available, then
Brand2as a second choice, etc.

We start by specifying theoverall goal, sayGR, asto buy
the food in the list. Moreover, it is natural to expressGR by
splitting it in a set ofsub-goalsto be achieved by the robot,
as in the following sequence:

G1 First, go to the supermarket.
G2 Pick each food type specified in the list, and put

it into the cart.
G3 When each item of the list has been picked, go to

the checkout and wait in the line.
G4 When there are no more people before you, pay

for the food which is the cart.
G5 Finally, go back home and bring me the food.

We can say that fulfilling sub-goals{G1 . . . G5} implies the
automatic achievement of the overall goalGR, which is a way
of reasoning very close to that of humans.

G2 can be decomposed into a set of sub-goals:G21 for
bread, G22 for milk , G23 for beer (with brand preference),
andG24 for pasta. As a consequence, the robot has to find
and reach the proper stand2 for each item specified in the list
above in order to pick the item. Just as a human might reason,
the order in which sub-goals{G21 . . . G24} are fulfilled does
not matter: it is up to the robot (as for a human) to make such
a choice: it only matters that all items, sooner or later, will be
picked. More in detail, a person would make arational choice
on the basis, for example, of the distance among the various
stands, thus trying to minimise the length of the path, i.e. it
could apply a sort of policy, or a strategy.

Moreover, irrespective of the specific policy used to per-
form the choice, it is important to remark the difference
between the set of sub-goals{G1 . . . G5} and{G21 . . . G24}:
in the former case, the order of executionmatters (strict
sequence, no autonomous choice is possible); in the latter
case, the robot can autonomously decide the order following
any—more or less rational—personal criteria. In making such
a choice, different aspects could be considered, some of them
subjective, and others, undoubtedly, objective; one of thelatter
is obviously the feasibility of the sub-goal: e.g., if, at a certain
time instant, the stand of the beers is not reachable due to too
much confusion, sub-goalG23 is not feasible and thus it is
useless to choose it. Such an infeasibility is indeed temporary,
for we could try to achieveG23 after some time, as soon as,
e.g., there is no more crowd.

Order of execution is not the sole difference between
sets{G1 . . . G5} and {G21 . . . G24}; while, as stated above,
achievement ofGR requires themandatoryachievement ofall
of its sub-goals{G1 . . . G5}, the same cannot be said forG2
and {G21 . . . G24}: indeed, if a certain food is unavailable
(e.g., milk), the robot should nevertheless proceed with the
shopping, that is, to considerG2 achieved the successful
completion of only some it sub-goals suffices.

Also goalG23 deserves a special remark; here the objective
is to pick some beer based on brand preferences. To this aim,

2We are supposing that the robot has a knowledge of the physical location
of goods in the supermarket.

we can modelG23 as further composed of a set of sub-goals,
one for each specific brand, e.g.GB1 for Brand 1, GB2 for
Brand 2, GB3 for Brand 3.

The sense of this (de)composition, in terms of selection
and achievement, is different from bothGR and G2: if
GB1 succeeds (Brand 1 is available), thenG23 is achieved;
otherwise tryGB2 and so on.

B. Discussion

The above example shows some interesting properties
related to the “rational behaviour” of an autonomous entity
(being either a human or a robot).

First of all, the behaviour can be represented as a set of
goals, some of which, in turn, can be further decomposed into
sub-goals. Making such a decomposition allows the identifi-
cation of the various tasks and actions to be accomplished by
the robot, together with theirrelationships.

The relationshipplays a fundamental role in establishing
the order of executionand theachievement policy. Indeed,
order of execution can be strictly in sequence in some cases,
but, in many other cases, which goal to try and achieve is
(or can be) the robot’s autonomous choice, which can be
performed on the basis of some parameters like (for example):

• the state of the environment or the robot itself (“let’s
go and get pasta first, because it is nearer to my
position”);

• past experience of the robot (“let’s get pasta because
I know where it is located”);

• rational opportunities (“let’s put the beer last in the
cart, to lower the probability of breaking the bottles”);

• other reasons.

A goal (or sub-goal) cansucceedor fail. Failure can be due
to various reasons, whethertemporary, e.g. crowd in a certain
area of the supermarket, orpermanent, e.g. there are no items
of a certain food type. A goal failed for a temporary reason
can be retried later, when the robot “thinks” there is again an
opportunity to execute it.

All of these aspects contribute to conferring the robot a
complete awareness of its objectives, as well as the abilityto
autonomously deliberateabout the actions to be performed at
each time instant. All of these aspects are the basis of the
GOLEM framework which is described in the next Section.

III. T HE GOLEM FRAMEWORK

GOLEM, which is the framework presented in this paper,
consists of a set of precise rules specifying the syntax to which
a robot programP must obey to be correctly executed, and an
abstract machine(GAM , GOLEM Abstract Machine) which,
in turn, has the responsibility of executingP , basing on some
semantics rules.

P ::= g
g ::= sg | cg
sg ::= (f, p, act)
f ::= functor → {true, false}
p ::= functor → N

act ::= functor → status
status ::= ACHIEVED

| T FAIL
| P FAIL

cg ::= (rel , g set)
rel ::= ALL

| ALL SEQ
| AT LEAST (k)
| SEQ UNTIL (k ≥ 1)

g set ::= {g1, . . . , gn} (n > 1)

Fig. 1. Basic GOLEM Syntax

A. GOLEM Program

As shown in Figure 1, which reports the basic GOLEM
syntax, a robot programP is represented by itsmain goal, g.
A goal g, in turn, represents thetasks that the robot must do
to achieve a certain state. Moreover, according to the nature
of such tasks, a goal can besimpleor composite.

A simple goal, sg , represents a goal which requires no
specific further decision on the actions to be undertaken. A
simple goal includes a computation which is executed “as is”
to achieve the goal itself; if the computation ends with success,
the goal is achieved, otherwise, it is failed. A simple goal is
represented with a tuple composed of the following parts:

• feasibility function, f ;

• opportunity evaluator, p;

• goal action, act ;

Feasibility functioncontains the necessary logic to evaluate
whether the goal is feasible or not. The internal structure of f
is not specified, it is supposed to be a program code which
senses the state of the environment and/or robot, performs
suitable evaluations and returns a boolean value indicating
the feasibility of the goal. The idea behind the concept of
feasibility is to verify that there are no conditions thatwould
impedethe achievement of a goal; indeed, stating that a goal
is feasible does not imply that the goal will surely succeed:
other situations might happen, during the execution of the tasks
of the goal, which cause the failure of a specific action. For
example, feasibility of goalG4 in the supermarket example
(checking out) depends on an empty checkout line.

Opportunity Evaluatoris a function by which the designer
is able to specify the level of priority or importance of the goal,
with respect to the others. Such importance can be represented
by a number, e.g. an integer. As a consequence this value
is used to select, among different feasible goals, the one to
execute. Such a measure is not intended to be a static value,
as it should be dynamically evaluated before deciding which
goal to execute. Evaluating the opportunity could thus imply
to sense the state of the environment (or the robot itself)
and, on this basis, decide if the goal is, in this time instant,
more important than another one (or the most important one).

As an example, in order to try to minimise the path in our
supermarket example, the opportunity function of goalsG21,
G22, G23 and G24 could be a factor proportional to the
distance to the (respective) stand to be reached. To perform
a correct evaluation, a propermetric has to be derived to map
the (notion of) importance of a goal to a positive integer: the
higher the value the higher the importance of the goal.

Goal action is an entity representing the actions to be
performed in order to try to achieve the goal itself. It is
a piece of code including the required statements to make
the robot carry out the intended actions. From a conceptual
point of view, this code should not present rational choices
or deliberative actions, which instead should be modelled as
sub-goals of a composite goal (see below). Again, goal action
is modelled as a function returning three possible constants:

• ACHIEVED . Execution of the action caused the suc-
cessful achievement of the goal.

• T FAIL . Execution failed, but such a failure is consid-
eredtemporary, i.e. retrying the execution later could
lead to success.

• P FAIL . Execution failed and such a failure is con-
sideredpermanent.

A composite goal,cg , is instead represented as a pair
(rel , g set) comprising aset of sub-goalsg set and arela-
tionship conditionrel , which can be one of the following:

• ALL . The goal succeeds whenall of its sub-goals
are achieved; the order in which the sub-goals are
achieved does not matter (i.e. the setg set is not
ordered).

• ALL SEQ. The goal succeeds whenall of its sub-
goals are achieved but the order in which the sub-
goals are achieved must be a strict sequence (i.e. the
setg set is ordered).

• AT LEAST(k) . The goal succeeds whenat leastk of
its sub-goals (withk specified) are achieved; the order
of achievement does not matter.

• SEQ UNTIL . The goal succeeds when (as soon as)
any sub-goalis achieved; the setg set is orderedand
sub-goal achievement is tried in strict sequence.

Each sub-goal may be, in turn, either simple or composite.
The result is thus a hierarchy of goals, with proper relation-
ships, which represents the model of the overall autonomous
behaviour of the robot. Such a hierarchy is handled by the
GOLEM Abstract Machine in order to execute the goals
respecting the semantics of relationships, as it is described
in the next Subsection.

B. GOLEM Abstract Machine

A GOLEM robot programP is executed by theGOLEM
Abstract Machine(GAM) whose behaviour is essentially based
on a continuous loop iterating on the following steps:

1) Evaluation of feasible goals.
2) Evaluation of their opportunity values.
3) Selection of the feasible goal with highest opportunity

value.

4) Execution of the selected goal.

The GAM stops executing the program whenP either has been
successfully achievedor haspermanently failed.

For each iteration, the programP is scanned by looking
into its composite goals, also descending into the hierarchy
if needed, with the objective of finding a simple (sub-)goal
which can be executed; this is performed using proper policies
which depend on the relationship type of composite goals. At
each iteration, when execution of the goal is completed, it is
checked whether goal execution caused the achievement ofP
or its permanent failure. In the former case, the program ends
with success, otherwise an error is reported.

C. GAM state information and main functions

The GAM has an internal state represented by the tuple
(P,AG ,FG ,TFG) whereP is the robot program,AG is the
set of achieved goals, FG is the set ofpermanently failed
goals, andTFG is the set oftemporarily failed goals.

Sets AG , FG and TFG are initially empty and then
properly modified during program execution; they may contain
only simple goals, while evaluation of achievement or failure
of a composite goal is performed by analysing its composing
sub-goals. To this aim, the GAM exploits two functions:
IS ACHIEVED(g) → {true, false} and IS P FAILED(g) →
{true, false}. The former evaluates whether a goalg has
been successfully achieved or not; Table I reports the specific
behaviour of this function which depends on the goal type
(simple or composite) and the relationship type (for composite
goals). The latter evaluates whether a goalg has to be consid-
ered permanently failed; Table II reports the behaviour of such
a function. In all tables, for convenience, we assume that, when
g is composite,g.g set represents its goal set. Likewise, ifg
is simple,g.p, g.f andg.act representg’s feasibility function,
opportunity evaluator and goal action, respectively.

IS ACHIEVED(g) → {true, false}
Goal Type/Rel. Function Behaviour

simple g ∈ AG

ALL
∧

h∈g.g set
{IS ACHIEVED(h)}

ALL SEQ
∧

h∈g.g set
{IS ACHIEVED(h)}

AT LEAST(k) |{h ∈ g.g set : IS ACHIEVED(h)}| ≥ k

SEQ UNTIL
∨

h∈g.g set
{IS ACHIEVED(h)}

TABLE I. IS ACHIEVEDFUNCTION

IS P FAILED(g) → {true, false}
Goal Type/Rel. Function Behaviour

simple g ∈ FG

ALL
∨

h∈g.g set
{IS P FAILED(h)}

ALL SEQ
∨

h∈g.g set
{IS P FAILED(h)}

AT LEAST(k) |{h ∈ g.g set : IS P FAILED(h)}| > |g.g set| − k

SEQ UNTIL
∧

h∈g.g set
{IS P FAILED(h)}

TABLE II. IS P FAILED FUNCTION

Steps 1 and 2 of the GAM execution loop perform eval-
uation of goals in order to select a feasible one. We assume
a function EVAL(g) that evaluates both the feasibility and
opportunity of a goalg as follows. If g is not feasible, or
belongs to eitherAG or FG , the EVAL(g) returns−∞;
otherwise it returns the value of the opportunity functiong.p()

if g is simple, or a proper evaluation of its sub-goals ifg is
composite. Its specific behaviour is reported in Table III.

EVAL(g)
Goal Type/Rel. Function Behaviour

any −∞ if g ∈ AG ∪ FG

simple if g.f() then −∞ elseg.p()
ALL max{EVAL(h)|h ∈ g.g set}

ALL SEQ EVAL(first of ({h| ∈ g.g set − (AG ∪ FG)}))
AT LEAST(n) max{EVAL(h)|h ∈ g.g set}
SEQ UNTIL(n) EVAL(first of ({h| ∈ g.g set − (AG ∪ FG)}))

TABLE III. EVALFUNCTION

D. GAM algorithm

The functions introduced above are exploited by the GAM
to execute a programP . Algorithm 1 reports the pseudo code
of the main GAM behaviour: here a loop is executed until the
programP is considered achieved or permanently failed; the
body of the loop evaluates the feasibility ofP and, if this is
the case, it executesP by calling EXEC FEASIBLE.

Algorithm 1 GAM Main Algorithm
1: procedure GAM(P:goal)
2: AG ← ∅; FG ← ∅; TFG ← ∅
3: while ¬IS ACHIEVED(P)∧¬IS P FAILED(P) do
4: if EVAL(P) 6= −∞ then
5: EXEC FEASIBLE(P)
6: end if
7: end while
8: end procedure

ProcedureEXEC FEASIBLE, whose pseudo-code is illus-
trated in Algorithm 2, checks the goal type, i.e. whether it is
simple or composite: in the former case, theact() function is
called and its outcome is tested in order to update setsAG ,
FG andTFG ; in the latter case, a proper procedure is called
to perform execution according to the relationship type, as
detailed in the following:

1) ALL relationship: The ALL relationship requires that
all subgoals must be executed but the order of execution does
not matter. TheEXEC ALL procedure, reported in Algorithm 3,
determines the set of feasible sub-goals and, from it, selects the
one with the highest opportunity value; if this condition holds
for more than a goal, a non-deterministic (random) choice
is performed (this is done by theONE OF function in line
11). Once the sub-goal has been selected, theEXEC FEASIBLE
procedure is called again to concretely execute the goal.

2) ALL SEQ relationship: This kind of relationship is
more strict than the previous one: not only all sub-goals
must be executed, but also the order of execution must be
respected. As it is illustrated in Algorithm 4, the procedure
EXEC ALL SEQscans the set of sub-goals in sequence in order
to find the first non-achieved sub-goal: if it is feasible, thesub-
goal is directly executed.

3) AT LEAST(k) relationship:This relationship is equiva-
lent to ALL, with the sole exception that the composite goal
is considered achieved when at leastk sub-goals succeed.
This condition is stated in theIS ACHIEVED function, while,
with respect to sub-goal selection, the policy here is to find

Algorithm 2 Execute a feasible goal
1: procedure EXEC FEASIBLE(g:goal)
2: ⊲ This procedure supposes that P is feasible
3: if IS SIMPLE(g) then
4: r ← g.act()
5: if r = ACHIEVED then
6: AG ← AG ∪ {g}; TFG ← TFG \ {g}
7: else if r = P FAILED then
8: FG ← FG ∪ {g}; TFG ← TFG \ {g}
9: else ⊲ T FAILED

10: TFG ← TFG ∪ {g}
11: end if
12: else
13: (rel , g set)← g
14: if rel = ALL then
15: EXEC ALL (g set)
16: else if rel = ALL SEQ then
17: EXEC ALL SEQ(g set)
18: else if rel = AT LEAST (k) then
19: EXEC ALL (g set)
20: else if rel = SEQ UNTIL then
21: EXEC SEQ UNTIL (g set)
22: end if
23: end if
24: end procedure

Algorithm 3
1: procedure EXEC ALL (g set:set of goal)
2: failed ← {g ∈ g set : IS P FAILED(g)}
3: if failed 6= ∅ then
4: return
5: end if
6: selectables ← {g ∈ g set : EVAL(g) 6= −∞}
7: if selectables = ∅ then
8: return
9: end if

10: candidates ← {g ∈ selectables : max EVAL(g)}
11: selected ←ONE OF(candidates)
12: EXEC FEASIBLE(selected)
13: end procedure

Algorithm 4
1: procedure EXEC ALL SEQ(g set : set of goal)
2: for g ∈ g set do
3: if g ∈ FG then
4: return
5: end if
6: if g /∈ AG then
7: if EVAL(g) 6=∞ then
8: EXEC FEASIBLE(g)
9: end if

10: return
11: end if
12: end for
13: end procedure

the feasible sub-goal with the highest opportunity value and
execute it. Such a behaviour is thus the same of theEXEC ALL
procedure, which is the one called also in this case as it is
shown in Algorithm 2.

4) SEQ UNTIL relationship: Also in this case, the set of
sub-goals is ordered thus the policy adopted for execution is
to scan such a set in order to find the first feasible goal, also
ensuring that all the previous ones have already failed. Such
a behaviour is reported in theEXEC SEQ UNTIL procedure
illustrated in Algorithm 5.

Algorithm 5
1: procedure EXEC SEQ UNTIL (g set:set of goal)
2: for g ∈ g set do
3: if g ∈ AG then
4: return
5: end if
6: if g /∈ FG then
7: if EVAL(g) 6=∞ then
8: EXEC FEASIBLE(g)
9: end if

10: return
11: end if
12: end for
13: end procedure

IV. CASE-STUDY

In order to show a practical use of the GOLEM framework,
as well as the related benefits, let us provide a case-study based
on the example provided in Section II. We report the complete
set of goals in the tree shown into Figure 2, in which some
nodes represent the (sub)goals, while some others represent
the relationship by which the (sub)goal must be executed. In
order to discuss the details of the case study, in the following
we will represent each goal by means of a symbolic frame
reporting the name of the goal, and an informal description of
the behaviour of feasibility, opportunity and action functions.

The main goal of the robot is to go to the supermarket
and buy some food. This can be expressed as a mandatory
sequence of sub-goals:

Name: Main
Relationship:ALL SEQ
Goal set:Go to supermarket, Pick items, Pay,
Go back home

The first sub-goal,Go to supermarket, has a feasibility
condition implying to check current time in order to ensure
that the supermarket is open. Opportunity value is useless,in
this case, since, according to the ALLSEQ semantics, this is
the sole sub-goal which can be selected. Its representationis
therefore:

Name: Go to supermarket
Feasibility: Is the supermarket open? (check time)
Opportunity: any
Description:Reach the supermarket

Pick itemsis instead another composite goal and contains
a sub-goal for each food type to be brought. We consider that

Let’s buy food(Main)

[ALL SEQ]

Go to Supermarket Pick items

[AT LEAST(1)]

Bread Milk Beer

[SEQ UNTIL]

Brand 1 Brand 2 Brand 3

Pasta

Pay Go Back Home

Fig. 2. The behavioural tree of the “food buyer” robot

at least one type of food has to be put in the cart to consider
the goal achieved, thus:

Name: Pick items
Relationship:AT LEAST(1)
Goal set:Break, Milk, Beer, Pasta

GoalPay is a simple one. Its feasibility implies the absence
of people in the line and the action requires to pay for the food
put in the cart:

Name: Pay
Feasibility: No people in the line?
Opportunity: any
Description:Pay for the food

Last goal of the set,Go back home, is quite simple and
can be easily described as:

Name: Go back home
Feasibility: True
Opportunity: any
Description:Get the food and go back home

As for the goals related to food picking,Bread, Milk and
Pastaare simple and their model is, in practice, the same:

Name: Bread/Milk/Pasta
Feasibility: True
Opportunity:Evaluate distance from the stand
Description:Reach the stand and pick some
bread/milk/pasta

Things are different forBeersince we expressed a priority
preference on brands. For this reason, we model this goal as
a composite one using the SEQUNTIL relationship:

Name: Beer
Relationship:SEQ UNTIL
Goal set:Beer brand 1, Beer brand 2, Beer brand 3

EachBeer brandn sub-goal can be viewed as simple goal
and represented like the ones related to the other food type
(i.e. Bread, Milk and Pasta); for this reason, we omit here
their description.

V. RELATED WORK

As stated in [8], in which the field of RDEs (Robotic
Development Environment) is analyzed by selecting and com-
paring several different open source RDEs, architectures and
programming models for mobile robots have become very
important in the last years.

Some previous works, like [15], [16], address the problem
of expressing coordination of various concurrent activities in
autonomous mobile robots. In [15], an extension of C++, called
TDL, is designed for the purpose of syntactically supporting
task decomposition, synchronization, execution monitoring,
and exception handling. In [16], the authors address the
problem of limited physical and computational resources of
autonomous robots, which causes various constraints. They
present a solution called Task Control Architecture (TCA) that
supports the programmer in splitting various type of behaviors
onto layered components. Deliberative components handle
normal situations, while reactive behaviors handle exceptional
one.

In [9], the authors discuss the difficulties related to the
practical application of evolutionary approaches to make a
mobile robot “learn” a complex behaviour. They propose a
modularization of the control architecture to make the robot
learn different behaviours by using a task decomposition
technique, such that the definition of fitness functions becomes
straightforward.

In [7], the problem of automated task planning for service
robots is addressed by combining semantic knowledge repre-
sentation and previous approaches related to AI. A flexible
framework is presented, which assists service robots in task
planning by means of a semantic ontology constructed for
representing environmental description and robot primitive ac-
tions. Authors also describe a simple scenario and demonstrate
the effectiveness of their work in a simulated environment.

In the field of knowledge processing system for au-
tonomous personal robots, we mention [18] and [19]. Authors
of [18] present a knowledge processing system exploiting a
first-order knowledge representation based on descriptionlogic
in order to provide action-centered representation, a way to ac-
quire the grounded concepts and experience by observation and
fast inference, which helps autonomous robots to take the right
decision in time. In [19] information available in the World
Wide Web is used as a knowledge base to help autonomous
robots to perform tasks. Web pages are categorized to be used
for knowledge processing by autonomous robots and, for this
aim, several processing methods are presented.

By the well known DBI (Belief-Desire-Intention)
model [13] agent behaviour can be defined in terms of
beliefs (the informative component of the system state) ,
desires (the motivational state of the system), and intentions

(encapsulating the deliberative component of the system).
On the other hand, our framework focuses on supporting
the programmer in developing the deliberative component of
robot behaviour through the noted opportunity and feasibility
functions.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented an abstract framework, called
GOLEM, for the design and modelling of behaviour of au-
tonomous robotic systems. In order to give the robotdelibera-
tion abilities, GOLEM uses a rational approach by organising
robot’s actions into goals and sub-goals, which must be indi-
vidually achieved.

The GOLEM framework has been implemented by the
authors in two different programming languages. A first im-
plementation is in the C language, specifically optimised for
the execution onto platforms based on microcontrollers3. This
implementation has been used to program the autonomous
behaviour of the robots built by the UNICT-TEAM4 for
the Eurobot student robotic competition5; it is currently not
published on the web but is available on request. The second
implementation (called ENIGMA6) has been done in the
Erlang language and belongs to the authors’ research in the
field of the application of parallel functional languages torobot
programming [14], [17].

Both implementations have been tested on realistic case
scenarios, in order to evaluate the effectiveness of the GOLEM
approach in real-life situations. Experience showed that the
organisation of activities in goals and sub-goals helps a lot the
development process, by allowing the programmer to clearly
identify the “pieces of the robot’s behaviour”, treating them
as single entities, thus using, also for behaviour programming,
the well-known and successful “divide-et-impera” principle.

Detailed description of such implementations, as well as
experiences on the use of GOLEM, will be the object of future
work.

VII. A CKNOWLEDGEMENTS

This work has been supported by project PRISMA
PON04a2 A/F funded by the Italian Ministry of University.

REFERENCES

[1] R. A. Brooks, “A robust layered control system for a mobilerobot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[2] T. S. Chow, “Testing software design modeled by finite-state machines,”
IEEE Trans. Software Eng., vol. 4, no. 3, pp. 178–187, 1978.

[3] C. Côté, D. Létourneau, F. Michaud, J.-M. Valin, Y. Brosseau,
C. Raievsky, M. Lemay, and V. Tran, “Code reusability tools for
programming mobile robots,” inIntelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Confer-
ence on, vol. 2. IEEE, 2004, pp. 1820–1825.

[4] L. Fichera, D. Marletta, V. Nicosia, and C. Santoro, “Flexible robot
strategy design using belief-desire-intention model.” inEurobot Con-
ference, 2010, pp. 57–71.

3This implementation works in bare metal, without an operating system
4http://eurobot.dmi.unict.it
5http://www.eurobot.org
6https://github.com/ivaniacono/enigma

[5] G. Fortino, W. Russo, and C. Santoro, “Translating statecharts-based
into bdi agents: The dsc/profeta case,” inMultiagent System Technolo-
gies. Springer, 2013, pp. 264–277.

[6] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of computer programming, vol. 8, no. 3, pp. 231–274, 1987.

[7] Z. Ji et al., “Towards automated task planning for service robots using
semantic knowledge representation,” inINDIN. IEEE, 2012, pp. 1194–
1201.

[8] J. Kramer and M. Scheutz, “Development environments for autonomous
mobile robots: A survey,”Autonomous Robots, vol. 22, no. 2, pp. 101–
132, 2007.

[9] W.-P. Lee, J. Hallam, and H. H. Lund, “Learning complex robot
behaviours by evolutionary computing with task decomposition,” in
Learning Robots. Springer, 1998, pp. 155–172.

[10] D. S. Lees and L. J. Leifer, “A graphical programming language for
robots operating in lightly structured environments,” inRobotics and
Automation, 1993. Proceedings., 1993 IEEE International Conference
on. IEEE, 1993, pp. 648–653.

[11] F. Messina, G. Pappalardo, and C. Santoro, “Integrating cloud services
in behaviour programming for autonomous robots,” inAlgorithms and
Architectures for Parallel Processing. Springer, 2013, pp. 295–302.

[12] O. Obst, “Specifying rational agents with statechartsand utility func-
tions,” in RoboCup 2001: Robot Soccer World Cup V, ser. Lecture Notes
in Computer Science, A. Birk, S. Coradeschi, and S. Tadokoro,Eds.
Springer Berlin Heidelberg, 2002, vol. 2377, pp. 173–182.

[13] A. Rao and M. Georgeff, “BDI agents: From theory to practice,” in
Proceedings of ICMAS. San Francisco, CA, 1995, pp. 312–319.

[14] C. Santoro, “An erlang framework for autonomous mobile robots,” in
ERLANG ’07: Proceedings of the 2007 ACM SIGPLAN workshop on
Erlang. ACM Press, 2007.

[15] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in IEEE/RSJ, vol. 3. IEEE, 1998, pp. 1931–1937.

[16] R. G. Simmons, “Structured control for autonomous robots,” Robotics
and Automation, IEEE Transactions on, vol. 10, no. 1, pp. 34–43, 1994.

[17] A. D. Stefano, F. Gangemi, and C. Santoro, “ERESYE: Artificial
Intelligence in Erlang Programs,” inERLANG ’05: Proceedings of the
2005 ACM SIGPLAN workshop on Erlang. New York, NY, USA:
ACM Press, 2005, pp. 62–71.

[18] M. Tenorth and M. Beetz, “Knowrobknowledge processingfor au-
tonomous personal robots,” inIntelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009, pp.
4261–4266.

[19] M. Tenorth, U. Klank, D. Pangercic, and M. Beetz, “Web-enabled
robots,” Robotics & Automation Magazine, IEEE, vol. 18, no. 2, pp.
58–68, 2011.

