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Abstract—In this paper we present a model of the dynamics
of an interesting class of stochastic cellular automata. Such
automata are variants of automata used for density classification
and they are chosen because they can be effectively used to
address consensus problems. After introducing the topic and the
basic notation, we study the dynamics of such automata by means
of simulations with varying periods and neighborhood structures.
We use the results of simulations to extrapolate a stochastic model
of the dynamics of such automata that can be used to estimate
stabilization time.

I. INTRODUCTION

In this seminal work dated 1966 [1], John von Neumann
first introduced Cellular Automata (CA) as computing systems
capable of self-reproduction and self-organization. Informally,
we can think of a CA as a system made of a grid of
cells each of which performs a (simple) computation. Each
cell is connected to a set of neighbors in order to facilitate
information exchange across the grid. All cells are equipped
with a single rule that drives all their computations: they all
compute the same function synchronously and the complex
behavior of the system emerges from (i) the synchronous
application of the same rule to different data, and (ii) the flow
of information across the grid.

The homogeneous behavior that characterizes CA makes
them ideal for the simulation of the dynamics of complex
physical systems and they find in such an application domain
their most common use. CA have also been used in many other
applications where fast and parallel computation is required,
e.g., low-level, real-time vision. From a theoretical point of
view, CA are an interesting model for massively parallel and
synchronous computation.

Today we recognize in CA the possibility of modeling
complex and decentralized systems that can exhibit interesting
adaptation properties, as discussed later in this paper, and
we witness a recent renewal of interest in the subject. In
particular, we are mainly interested in CA as a conceptual
agent-based model that captures essential features of consensus
dynamics. We are not interested in CA as an implementation
technology, and the results presented in this paper are meant
to be used in implementations that adopt industrial-strength
agent technology—JADE [2], WADE [3], and AMUSE [4]—
to target mobile scenarios (see, e.g., [5]–[8]).

Moreover, we are interested in modeling the emergent
behaviors of wireless sensor networks used to support accurate

localization of static (see, e.g., [9]–[11]) and moving (see,
e.g., [12], [13]) targets to enhance their adaptability to dynamic
environments, and to improve their robustness.

Finally, we recognize that the conceptual framework pre-
sented in this paper can be effectively used to model agent-
based cooperation (see, e.g., [14], [15]), and it can be employed
to enhance the dynamism and the flexibility of workforce man-
agement systems that deal with large workforces in complex
situations (see, e.g., [16]).

This paper is organized as follows. Section II sets the
basic notation about CA and self-stabilizing CA. It extends
the ordinary notation with the introduction of a stochastic
extension of CA that allows adopting stochastic functions
to drive CA. Section III presents the simulations that were
performed to study the dynamics of a particular class of CA,
and that were used to extrapolate a stochastic model that
formalizes the dynamics of the studied CA. Finally, Section IV
concludes the paper with a short summary of presented results.

II. CELLULAR AUTOMATA

In this section we select one of the available formal
definitions of CA and we cite some classic results. The selected
definition is reasonably the most general available and we opt
for such a definition because it does not restrict neither the size
nor the neighborhood structure of automata, which is crucial
for the simulations described in Section III.

Definition II.1 A Cellular Automaton A is a structure:

A =< S, d, V, f >

where S 6= ∅ is a finite set of state symbols, d ∈ N+ is the
dimension of the automata, V ⊆ L is a finite neighborhood
structure over the lattice L = Zd, and f : SV → S is a
transition function known as rule. A cell is a point x in the
lattice L.

A CA associates a state s ∈ S to each cell x ∈ L. A global
configuration of states c is defined in:

SL = {c | c : L→ S}.

The neighborhood structure V ⊆ L, if not empty, is a set
of m ∈ N+ vectors used to build the local neighborhood of
each cell:

V = {vi ∈ L | i = 1, 2, . . . , m}.



Given V , the neighborhood Vx ⊆ L of each cell x is
created by means of the Abelian group of translations T of
L into itself, which is defined in the usual way as < L, + >
where + : L→ L is the vector sum in L:

∀x ∈ L Vx = {x+ v | v ∈ V }.

The local configuration of states cVx
of a cell x ∈ L can

be defined using the global configuration as:

cVx
: Vx → S

v 7→ c(x+ v).

The local configuration of states allows completing the
definition of the rule of a CA as:

f : SV → S

cV 7→ s.

In other words, for each cell x ∈ L, the rule f associates
to the given local configuration of states cVx

the future state
s ∈ S of x. This is better captured if we rewrite f as:

∀x ∈ L f(cVx
) = f(s1, s2, . . . , sm)

where si ∈ S are the states of the cells in the neighborhood
of x: si = cVx

(vi), vi ∈ V .

Given a global state c0, a CA computes the following
global states in terms of repeated and synchronous applications
of f to all local configurations of states. Each repeated
application of f is known as step.

We can finally define the function that a CA globally
computes at each step as:

Gf : SL → SL

∀x ∈ L [Gf (c)] (x) = f(cVx
).

Given an initial global configuration of states c0, we can
now compute the final global configuration of states after n
steps as a repeated composition:

cn = Gnf (c0).

CA as briefly formalized in this section are characterized
by the following major features:

• Synchrony: computation is performed synchronously
at each cell.

• Locality: computation is performed locally at each
cell and global computation emerges from independent
local computations.

• Homogeneity: all cells compute according to the same
local function.

• Lack of memory: cells compute only on the basis of
the current states of the cells in their respective neigh-
borhood and no memory of past states is preserved.

An outstanding result of this formalization of CA is that
CA are equivalent to Universal Turing Machines [17].

In practical applications of CA we are not interested in
automata that span the entire lattice L; rather, we are often

interested in automata defined over finite subsets of L. We
introduce the restriction of CA over finite sets of L by means
of so called periodic CA, as follows.

Definition II.2 A cellular automaton A is periodic with
period l ∈ L if and only if for any initial configuration
c0 ∈ SL:

∀n ≥ 0, ∀x ∈ L cn(x+ l) = cn(x).

Such a definition is significant because of a classic result
that states that a CA is periodic with period l ∈ L if and only
if its initial configuration c0 is periodic with period l, i.e.:

∀x ∈ L c0(x+ l) = c0(x).

In our work we are mainly interested in using CA to model
complex systems intended to adapt to varying situations and
capable of performing well under diverse conditions, especially
for tasks that require decentralized coordination. This is the
reason why we propose the following new class of CA:

Definition II.3 A CA A =< S, d, V, f > is called self-
stabilizing if and only if:

∀c0 ∈ SL,∃n ≥ 0,∃k ∈ S s.t.
∀m ≥ n, ∀x ∈ L cm(x) = [Gmf (c0)](x) = k.

Such a definition is very restrictive because it requires
self-stabilizing CA to converge to stable global configurations
characterized by all cells having the same state, which is a
behavior that is known to be difficult to obtain. For example,
it is well known that no periodic CA can solve the majority
problem for all initial configurations [18]: no periodic CA
can converge to stable global configurations that correctly
discriminate if the majority of cells in the initial configuration
were in state 0 or in state 1.

We need to extend CA is some way to ensure that the defi-
nition of self-stabilizing CA have some practical interest. One
possibility is to have different rules across the lattice, which is
a possibility that we have already explored and that we adopted
to use CA for complex classification tasks [19], [20]. In this
work we are interested in exploring another possibility: the
use of stochastic rules. Such rules have already been used to
solve the majority problem with arbitrary precision [21] and
we intend to use them to support the development of a theory
of self-stabilizing CA.

The introduction of stochastic rules in CA leads to the
following definition¿

Definition II.4 A stochastic CA A is a structure:

A =< S, d, V, f >

where S 6= ∅ is a finite set of state symbols, d ∈ N+ is the
dimension of the automaton, V ⊆ L is a finite neighborhood
structure over the lattice L = Zd, and f : SV → S is a
stochastic transition function known as stochastic rule.

The only difference with a traditional CA is that the
local computation of a stochastic CA is now based on a
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Fig. 1. Average number of iterations needed to reach a stable configuration
(blue circles) and its quadratic LS approximation (red line) as a function of
the number of cells for m = 3.

stochastic function and the global configuration of the CA
evolves as a discrete stochastic process. Such a process is
Markovian because the local computation that f performs
depends only on current local configurations and no memory
of past configurations is used. In the practice of stochastic CA,
the stochastic rules are normally expressed as non-stochastic
functions that depend on a random variable v.

The definition of stochastic CA allows extending self-
stabilizing CA as follows.

Definition II.5 A stochastic CA A =< S, d, V, f > is
called self stabilizing if and only if:

∀c0 ∈ SL,∃n ≥ 0,∃k ∈ S s.t. ∀m ≥ n
P{∀x ∈ L, cm(x) = [Gmf (c0)](x) = k} = 1.

III. PROPOSED STOCHASTIC MODEL

The stochastic model of the dynamics of a particular
class of self-stabilizing CA that we develop in this section is
based on extrapolations from simulations. Such simulations are
performed under common assumptions: (i) only 1-dimensional
CA are considered (d = 1); (ii) only binary CA are considered
(S = {0, 1}); and only periodic CA with period l ∈ Z+ are
considered.

Under these assumptions, CA are defined over the lattice
L = Zl, the set of integers modulo l, and the period l is the
actual number of cells in considered CA. We do not assume
a specific neighborhood structure and therefore the proposed
model is not limited to so called (stochastic) elementary
CA [21].

In our simulations, we consider different values of the
period l: from 100 to 1000 with step 10. We also consider
neighborhood structures of different sizes: m = 3, m = 5,
m = 7, and m = 9.
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Fig. 2. Average number of iterations needed to reach a stable configuration
(blue circles) and its quadratic LS approximation (red line) as a function of
the number of cells for m = 5.

In each case, we assume that the neighborhood structure is
V = {−(m− 1)/2, . . . , (m− 1)/2}, so that the neighbors
of a cell x ∈ Zl are the previous (m−1)/2 cells, the following
(m− 1)/2 cells, and the cell x itself.

Let us denote as n0,x the number of cells in state 0 in the
neighborhood Vx of a generic cell x, and as n1,x = m− n0,x
the number of cells in state 1 in the same neighborhood. We
define the stochastic rule of the class of CA that we study as:

f(sx+v1 , . . . , sx+vm) =


1 w.p.

n1,x
m

0 w.p.
n0,x
m

(1)

where {sx+vi}mi=1 is the states of cells {x + vi}mi=1 in the
neighborhood Vx of cell x.

The studied rule says that the probability for a cell to be
in state 0 (resp. 1) in the next step is directly proportional to
the number of cells in state 1 (resp. 0) in its neighborhood in
the current step. The rule ensures that when all cells in the
neighborhood of a cell x are in state 0 (resp. 1), next state for
x will be 0 (resp. 1) with probability 1.

Due to the randomness in the rule defined in (1), the
number of steps needed to reach a stable global configuration,
denoted as N, is a random variable and we denote its average
value as N̄ . We are interested in analyzing the behavior of N̄
as a function of the number of cells l and of the neighborhood
size m. We show that N̄ can be accurately approximated as a
quadratic function of l, regardless of m.

We consider values of the period l from 100 to 1000, with
step 10. For each of these values and for each of the considered
values of m, we perform 1000 (independent) simulation runs,
each of which is randomly initialized. We derive a quadratic
approximation N̄ (LS)

m of N̄ by applying the Least Squares (LS)
technique to the results of simulations.

Let us start by considering the results for m = 3. The
local stochastic rule defined in (1) corresponds to the rule of a
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Fig. 3. Average number of iterations needed to reach a stable configuration
(blue circles) and its quadratic LS approximation (red line) as a function of
the number of cells for m = 7.

well known CA called Fukś density classifier for the specific
case of p = 1

3 (see [22]).

In Figure 1, the values of N̄ (averaged over the 1000
runs) are shown (blue circles) as a function of the period l
which varies from 100 to 1000. As intuitively expected, N̄
is an increasing function of the period l, i.e., more iterations
are needed (on average) to reach a stable configuration if a
greater number of cells is considered. More precisely, Figure
1 shows that the values of N̄ can be accurately approximated as
a quadratic function of l, in agreement with [21]. In particular,
the LS technique applied to the considered samples leads to
the following quadratic approximation

N̄ ' N̄ (LS)
3 (l) = 0.16l2 − 1.10l + 99.

In Figure 1, the values of N̄ (LS)
3 (l) (red line) are shown

and it can be noticed that they fit well the measured values of
N̄ for all the values of l. If we define the relative error on a
sample as:

ε(l) =
|N̄(l)− N̄ (LS)

3 (l)|
N̄(l)

we obtain that the average relative error (averaged over the
considered values of l) is 2.14%.

We now consider a larger neighborhood structure with m =
5. As in the case with m = 3, we perform 1000 simulation
runs for values of the period l from 100 to 1000 in order to
investigate the average number of steps N̄ needed to reach
a stable configuration. Figure 2 shows the values of N̄ (blue
circles) as a function of the period l and the quadratic LS
approximation N̄ (LS)

5 (l) (red line), which is:

N̄
(LS)
5 (l) = 0.04l2 + 4.93l − 459.66.

The quadratic approximation is good also in this case, and
the average relative error (averaged over the considered values
of l) is 4.6%.
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Fig. 4. Average number of iterations needed to reach a stable configuration
(blue circles) and its quadratic LS approximation (red line) as a function of
the number of cells for m = 9.

Similarly, in Figure 3 the values of N̄ (blue circles)
obtained considering the neighborhood with m = 7 are shown.
The quadratic approximation N̄ (LS)

7 (l) given by

N̄
(LS)
7 (l) = 0.02l2 + 1.94l − 96.03

is also shown (red line). Once again, the LS approximation
obtained on the values of l is accurate as the average relative
error is 2.4%.

Finally, Figure 4 shows the values of N̄ (blue circles)
obtained considering the neighborhood of size m = 9 and
their quadratic approximation N̄ (LS)

9 (l) (red line), given by

N̄
(LS)
9 (l) = 0.01l2 + 1.70l − 53.94.

Also in this last case the quadratic approximation is good
and it leads to an average relative error of 2.84%.

From the presented result, we can conclude that the larger
is the neighborhood, the faster is the convergence to a stable
global configuration, which is by far not surprising. Moreover,
even if in all cases N̄ is an increasing function of l which
can be accurately approximated as a quadratic function, a
comparison between the obtained results shows that larger
neighborhoods have functions that increase slower.

We now focus on the results obtained with l = 100, for
all the values of m ∈ {3, 5, 7, 9} and we are interested in
analyzing the Probability Mass Function (PMF) of the random
variable N.

Keeping m fixed, we consider the number of steps N
needed to reach a stable global configuration in a simulation
run, and we call Nmax the maximum value of N for all runs.
We then divide the interval [0, Nmax] into 50 subintervals
Ij , j ∈ {1, . . . , 50}. We then count, for each interval Ij ,
the number of times that N falls into Ij . Finally, counts are
normalized to obtain a PMF. The results are shown in Figure
5 for m = 3, Figure 6 for m = 5, Figure 7 for m = 7, and
Figure 8 for m = 9.
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Fig. 5. PMF of the random variable N̄ for l = 100 and m = 3.
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Fig. 6. PMF of the random variable N̄ for l = 100 and m = 5.

In each case, we can argue that the PMF can be approxi-
mated as a gamma distribution p(t) = at1/2e−bt, defined for
t ≥ 0, where a and b are constants that need to be properly set
in order to make sure that the integral of p(t) on its domain is
equal to 1 and that the average value is equal to N̄ . These two
conditions lead to the following expressions for the coefficients
a and b: ∫ +∞

0

p(t)dt = 1

∫ +∞

0

tp(t)dt = N̄ . (2)

Introducing the change of variable τ = bt, the first integral
in (2) can be evaluated as follows:

a

b3/2

∫ +∞

0

τ1/2e(−τ)dτ =
a

b3/2
Γ

(
3

2

)
=
a
√
π

2b3/2
.

The same change of variable leads to the following formula
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Fig. 7. PMF of the random variable N̄ for l = 100 and m = 7.
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Fig. 8. PMF of the random variable N̄ for l = 100 and m = 9.

for the second integral in (2):

a

b5/2

∫ +∞

0

τ3/2e(−τ)dτ =
a

b5/2
Γ

(
5

2

)
=

3a
√
π

4b5/2
.

Still the same change of variable can be applied to the
second integral in (2) and, given that the conditions in (2) link
a and b with the average value N̄ , we can obtain the following
formulas for the coefficients a and b as a function of N̄

a
√
π

2b3/2
= 1

3a
√
π

4b5/2
= N̄ (3)

which is equivalent to

a =
2√
π

(
3

2N̄

)3/2

b =
3

2N̄
. (4)

In Figure 9 the Cumulative Distribution Function (CDF)
of the random variable N is shown, for l = 100 and for the
considered values of m. As expected, greater values of the
neighborhood size fasten the convergence of the CDF to 1.
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Fig. 9. CDF of the random variable N for l = 100 and: m = 3 (dashed red
line), m = 5 (dash-dotted green line), m = 7 (dotted magenta line), m = 9
(solid blue line).

IV. CONCLUSIONS

The stochastic model of the dynamics of some self-
stabilizing CA introduced in this paper is an important tool
both for the theoretical study of the properties of such au-
tomata, and for their practical applications to solve consensus
problems. The model provides a good approximation of the
dynamics of such automata and it also provides a means to
estimate the number of steps needed to converge to a stable
configuration. This possibility is particularly important for
the practical application of studied CA to solve consensus
problems in real-world situations where an estimation of the
expected stabilization time is always demanded.
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