
Optimizing SPARQL Query Processing On
Dynamic and Static Data Based on Query

Response Requirements Using Materialization

Soheila Dehghanzadeh

Insight Center for Data Analytics, Ireland, Galway
soheila.dehghanzadeh@insight-centre.org

Abstract. To integrate various Linked Datasets, the data warehousing
and the live query processing approaches provide two extremes for the
optimized response time and quality respectively. The first approach pro-
vides very fast responses but su↵ers from providing low-quality responses
because changes of original data are not immediately reflected on ma-
terialized data. The second approach provides accurate responses but it
is notorious for long response times. A hybrid SPARQL query processor
provides a middle ground between two specified extremes by splitting
triple patterns of the SPARQL query between live and local processors
based on a predetermined coherence threshold specified by the admin-
istrator. However, considering quality requirements while splitting the
SPARQL query, enables the processor to eliminate the unnecessary live
execution and releases resources for other queries and is the main focus of
my work. This requires estimating quality of the response provided with
the current materialized data, compare it with user requirements and
determine the most selective sub-queries which can boost the response
quality up to the specified level with least computational complexity.
In this work, we discuss the preliminary result for estimating the fresh-
ness of materialized data, as one dimension of the quality, by extending
cardinality estimation techniques and explain the future plan.
Keywords. RDF Data Warehouse, View Materialization, SPARQL live
querying, quality estimation.

1 Problem Description

Content of the Linked Data is constantly growing and distributed among het-
erogeneous sources that change their data with various update rates. To process
queries over the Linked Data, a data warehousing approach [13] creates a central
repository of all triples that is collected by crawlers. However, crawling, storing
and maintaining this huge amounts of data is a challenging task due to data vol-
ume, velocity and variety. The incremental view maintenance or more recently
the higher order incremental view maintenance [10] are designed to e�ciently
maintain views based on an update stream in a relational database environment.
But in a Linked Data environment individual RDF datasets or SPARQL end-
points are not designed to report every single update. Thus the data warehouse



2

has to extract updates by querying original sources. Hence, the view mainte-
nance translates to the live query execution which is a very time consuming job
and it is more e�cient to defer it as far as current materialized data could fulfil
response quality requirements.

Another approach to manage the Linked Data is live querying [6] which
processes queries by dereferencing URIs and following relevant links on-demand
and naturally incurs very slow response times but with high quality (fresh and
complete). Thus, the more time spent on fetching data from source the higher the
response quality and vice versa. This represents an inherent trade-o↵ between
the time spent on processing the query and the quality of the response which
can be considered as a spectrum from a response with high quality and long
retrieval time to a response with low quality but short retrieval time.

To mitigate time consuming live querying, the recently proposed hybrid query
processing technique [15] suggested to combine the data warehousing with the
live query processing techniques. [15] uses coherence values to split triple patterns
of a query to a dynamic predicate set for live execution, and a static predicate
set for local processing. The coherence of each predicate is defined as the ratio
between the cardinality of live results that exist in the materialized data and the
total cardinality of live results. [15] achieved individual points in the response
time/quality trade-o↵ spectrum by splitting predicates using di↵erent coherence
thresholds. The coherence threshold of the hybrid approach is strictly defined by
the system administrator and has no flexibility depending on response quality
requirements of individual queries. However, some query requirements can be
fulfilled using the existing local store with no or less live execution. Thus we
hypothesize that query response requirements can be exploited to adaptively
optimize the splitting process. This releases computational resources for other
queries and leads to better scalability and e�cient load balancing.

Motivation To motivate the described problem, consider a user who is will-
ing to broadcast a commercial advertisement to specific emails and is satisfied
with say 80% freshness in email addresses provided by the response. The in-
centive of being satisfied with less freshness or quality is to get faster response
and consume less computational resources and pay less accordingly. Response
requirements are expressed based on the response time and quality by the user
or service issuing the query.

Research Question The fundamental research question is how to optimally
split an SPARQL query among live and local query processors based on response
time and quality requirements? Currently, there exists no automatic way to guide
the splitting decision and to adaptively refine it. The fastest response is achieved
by fully executing the query on materialized data. In order to compare the quality
of response provided with materialized data with required quality, we need to
estimate it. Thus, estimating the quality of response provided with materialized
data is our first sub-problem. If materialized data couldn’t fulfil user quality
requirements, parts of the query must be executed lively to boost the quality
of the response. Various sub-queries can be redirected to the live engine which
leads to various splitting strategies. The second sub-problem is to estimate the



3

quality of the response achieved with an splitting strategy. The optimization is
to choose the least costly splitting strategy which is estimated to fulfil required
quality.

Contribution Of The Thesis The main contribution in this thesis is to op-
timize query splitting according to specific requirements of each query. Choosing
the splitting strategy that estimated to fulfil required quality with lowest execu-
tion time is the ultimate goal of our query processor. To do so, we break down
the problem into two sub-problems mentioned in the research question. Here
we propose solutions for the first sub-problem. Also quality metrics should be
explicitly defined in a Linked Data query processing environment.

Fig. 1. freshness and
completeness

In Fig 1 suppose the shaded circle represents the re-
sult of executing query on the materialized data and the
transparent circle represents the query results of the live
engine. ”A”, which represents query results in the materi-
alized data that doesn’t exist in the result provided with
the live engine, could contain inferred results from mate-
rialized data, data from not available sources and results
which has been removed from original sources. However
we relax the problem by only considering the latter reason
which means we assumed all sources to be available and
no inferred data is added to the materialized data. ”B”
represent the result set which exists both in live and local
store. ”C” represents the newly added query responses to
the live data which still have not been reflected in the ma-
terialized data. We simplify the problem by assuming that
live engine is able to cover all potential responses. With the above assumptions,
Freshness quantifies the e↵ect of the deletion on response quality and is defined
as B/(A+B). Completeness quantifies the e↵ect of addition on response quality
and is defined as B/(B + C). In our preliminary experiment we only consider
the freshness as the quality metric of the response because in our synthetic data
set we are assuming that data can only be removed from real world after mate-
rialization which makes triples to become stale. However, in this thesis, we are
aiming to consider real world snapshots with both addition and deletion. Thus,
both completeness and freshness need to be considered and estimated as quality
metrics of various splitting strategies.

Problem Relevancy By adaptively splitting the query between local and
live processors, we prevent unnecessary live execution and reduce network tra�c
and response time.

2 Related Work

The problem of e�ciently processing queries by exploiting the materialized data
requires a comprehensive view management procedure. This includes the view
selection, the view maintenance, the view exploitation and the cost modelling.
Interested readers are referred to [5] for detailed explanation on each phase.



4

Various strategies for view selection(i.e. full or partial materialization) and
view maintenance(i.e. immediate or deferred maintenance) can adjust the re-
sponse time/quality trade-o↵. DBToaster [10] fully materialize data and imme-
diately apply updates. Thus, there is no option to adjust the time/quality trade-
o↵. It minimizes the cost of processing updates by converting the maintenance
task to an e�cient code for execution in a relational data model.

[4] chooses the best query set which fully covers a fixed query set and they
didn’t discuss the e↵ect of postponing maintenance on time/quality trade-o↵.

The hybrid approach introduced by [15], considers the existing store of a data
warehouse as a predefined set of materialized data to be exploited for responding
queries. Thus, the hybrid approach actually relaxes the view selection. They use
a coherence value to split the query for local or live execution(i.e, maintenance).
As alluded before, to maintain the views according to response requirements, we
need to adaptively refine the coherance threshold which is not addressed by [15].
On the other hand, [2] recommended RDF indices to materialize based on a given
workload aiming to improve performance of the query evaluation. However, in
contrast to [4], queries still need to access the original data set because indices
are partially covering queries. This approach assumes the original data are not
changing and materialized data never gets out-of-date.

[9] is using response requirements to defer unnecessary maintenance tasks
based on user preferences when an update stream exists at the data warehouse.
We are aiming to target a similar problem but in a Linked Data querying envi-
ronment where an update stream doesn’t exist.

There has been research to estimate the quality of query response provided
by materialized data in relational database which requires accurate cardinality
estimation and accuracy of involved attributes [3]. The estimation of quality
metrics are based on the identity attribute and is achieved by tracking the cat-
egory change of each type of tuple during each operation. However, in an RDF
setting there is no notion of id for tuples. Thus applying that approach for the
Linked Data is not directly possible. We hypothesize that statistics of cardinal-
ity estimation techniques can be extended to estimate the quality of a query
response.

3 Approach

Following our hypothesis, we extend indexing and multi-dimensional histograms
for estimating the freshness of a join.

Indexing Based Approaches We designed two indexing structures to es-
timate join freshness:

– Simple Estimate join freshness by simply multiplying freshness of join’s
predicates. It requires indexing predicates along with their observed fresh-
ness. This approach works very well when join result is the Cartesian product
of each predicate’s result set.

– CS Estimate join freshness by using the characteristic set [11] technique. It
groups subjects with the same set of predicates together and index it as a



5

”subject group”. The whole dataset can be summarized into a set of ”subject
group”s with their associated predicates and freshness for each predicate.
Analogously, the join’s characteristic set(s) consist of individual subject(s)
with their requested property(es). To estimate the freshness of a join, we
simply sum up the fresh cardinality and the total cardinality of characteristic
sets that are super set of the join’s characteristic set and divide the fresh
cardinality by the total cardinality.

Histogram Based Approaches Histograms and Qtrees are among suc-
cessful approaches for the data summarization and the join cardinality estima-
tion. Summerization in histogram-based approaches (histogram and Qtree) is
achieved by grouping attribute values into buckets and estimating all bucket
entries with one summarized value. Join between triple patterns translates to
intersection of buckets, assuming that entries are uniformly distributed all over
each bucket. Interested readers are referred to [14] for more explanation. To
adapt the histogram-based approaches for the freshness estimation problem, we
proposed keeping two entries per bucket; the number of fresh and stale entries.

Histogram based approaches require a hashing function to transfer the string
representation to numeric representation for processing data. It will determine
the uniformity of data distribution which is the main trick leveraged by the
histogram to summarize data. Histogram bucket boundaries for each dimension
are determined based on a partitioning rule which requires a sort and source
parameter to specify buckets [12]. We investigated di↵erent sort and sources and
results are presented in Section 4.

Qtree is an optimized histogram and its buckets are determined by identifying
populated areas in the multi dimensional cube using a distance metric. Interested
readers are referred to [14] for more detailed explanation.

Evaluation Plan In our preliminary work, we assumed that data can only
be deleted from the original dataset after materialization. Thus we could only
measure freshness metric. We summarized a synthetically labeled dataset to es-
timate the freshness of queries without executing query on the original labeled
dataset. However, in fact both addition and deletion occur in original data after
materialization and therefore we need to be able to estimate both freshness and
completeness of the response. For that we need to either extend the cardinal-
ity estimation with statistics of both addition and deletion or create individual
indexes for estimation of each quality metric. A real example of addition and
deletion occurring in materialized data can be observed within consecutive snap-
shots of the Linked Data Observatory [8]. To solve the first sub-problem in a
realistic scenario, i.e.,estimating the quality of response provided with materi-
alized data, we summarize these snapshots with extension of above approaches,
compare their estimation performance for individual quality metrics and choose
the one with lowest estimation error. We use the same summarization tech-
nique for estimating the quality of response provided with an splitting strategy
considering that the quality of the live sub-query has increased to 100%. Hav-
ing the quality estimations of each splitting strategy, we choose the splitting
strategy that is estimated to fulfil response requirements and has the lowest



6

execution time. To evaluate the e↵ectiveness of considering user requirements
for optimizing query processing, we will compute the di↵erence among required
quality and achieved quality of the response provided with various query process-
ing approaches(i.e., materialized, live, hybrid, adaptive-hybrid) considering their
execution time. Adaptive-hybrid approach is aiming to achieve lowest execution
time and lowest quality di↵erence.

4 Preliminary Results

Experiment set-up In this experiment, we are tackling the join freshness es-
timation problem. We used the BSBM benchmark [1] to generate a dataset
(374,920 triples with 40 distinct predicates) and a query set. Each triple is ei-
ther fresh i.e, triple exists after maintenance or stale i.e, triple doesn’t exist
after maintenance. To split triples between fresh and stale category, we divide
predicates among 10 levels of freshness(0-10%, 10-20%, ..., 90-100%) according
to r-beta distribution of predicate freshness observed in [15] and assign true or
false to triples in dataset based on the freshness value of their predicate. We
used the BSBM query templates to generate queries and extract individual joins
out of them. In this paper, due to space limitation, we only present actual and
estimated freshness for 557 subject-subject joins. To estimate freshness of joins,
an index(histogram) is built ,by inserting all individual triples with their asso-
ciated label to their corresponding index entry (histogram bucket), and used for
join processing as explained below:

– Indexing We estimated the freshness of subject-subject joins using two
indexing approaches: simple freshness multiplication and characteristic set
[11]. Figure 2 shows actual and predicted freshness started to disagree after
query 285 which is due to existence of bounded triple patterns in joins. Thus
index-based approaches lack on joins having a bounded triple pattern.

Fig. 2. freshness estimation in subject-subject joins using indexing approaches

– Histogram Histogram requires a proper hashing technique to transfer data
from the string representation to the numerical representation.
Choose a Proper Hashing Figure 3(a) shows actual versus predicated
freshness using the histogram with similarity-based hashing (mixed hashing



7

proposed in [14]). In figure 3(a), joins with di↵erent actual freshness have

(a) (b)

Fig. 3. predicted vs real freshness in histogram using (a)similarity based hashing (b)
freshness hashing for S-S joins

been predicted with similar values due to similarity among bounded objects.
This observation along with the fact that histogram estimates neighbouring
entries with the same value, strikes the idea of keeping entries with simi-
lar freshness close together. Hence, we proposed to sort dimension entries
based on their freshness values. Figure 3(b) depicts that sorting dimension
entries based on their observed freshness (freshness hashing) leads to better
freshness estimates for joins.
Estimation Error We quantified the estimation error of proposed tech-
niques using RMSD normalized error [7] to compare the estimation error
over the course of storage space. The normalized RSMD of histograms us-
ing the freshness hashing is plotted in Figure 4 and it shows the estimation
error of the histogram and the Qtree converged to 0.07 in summary size of
3000 buckets while the simple predicate multiplication (an indexing based
approach) consumes less space with a lower estimation error. The error of
histogram based approaches can be further decreased by increasing the sum-
mary size or implementing more advanced type of histograms.

Fig. 4. Freshness estimation error in s-s join in Qtree and histogram using sort hashing



8

Reflections Traditional approaches estimate join freshness by multiplying
freshness of join counterparts. We showed that, this approach mainly lacks on
joins with bounded triple patterns(Figure 2). We compared its estimation per-
formance with adapted histograms which leads to less estimation error only by
increasing the histogram’s summary size. We are planning to reduce the esti-
mation error by using histograms with advanced hashing and adapting other
cardinality estimation techniques such as sampling and wavelet.

Acknowledgements I would like to thank Manfred Hauswirth, Josiane
Xavier Parreira and Marcel Karnstedt for their valuable comments on the paper.

References

1. Christian Bizer and Andreas Schultz. The berlin sparql benchmark. International
Journal on Semantic Web and Information Systems (IJSWIS), 5:1–24, 2009.

2. Roger Castillo, Christian Rothe, and Ulf Leser. RDFMatView: Idexing RDF Data
for SPARQL Queries. Professoren des Inst. für Informatik, 2010.

3. Debabrata Dey and Subodha Kumar. Data quality of query results with generalized
selection conditions. Operations Research, 61(1):17–31, 2013.

4. François Goasdoué, Konstantinos Karanasos, Julien Leblay, and Ioana Manolescu.
View selection in semantic web databases. Proceedings of the VLDB Endowment,
5(2):97–108, 2011.

5. Jonathan Goldstein and Per-Åke Larson. Optimizing queries using materialized
views: a practical, scalable solution. In ACM SIGMOD Record, volume 30, pages
331–342. ACM, 2001.

6. Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing sparql
queries over the web of linked data. In The Semantic Web-ISWC 2009, pages
293–309. Springer, 2009.

7. Rob J Hyndman and Anne B Koehler. Another look at measures of forecast
accuracy. International journal of forecasting, 22(4):679–688, 2006.

8. Tobias Käfer, Jürgen Umbrich, Aidan Hogan, and Axel Polleres. Towards a dy-
namic linked data observatory. LDOW at WWW, 2012.

9. Alexandros Labrinidis and Nick Roussopoulos. Exploring the tradeo↵ between per-
formance and data freshness in database-driven web servers. The VLDB Journal,
13(3):240–255, 2004.

10. Daniel Lupei, Amir Shaikhha, Christoph Koch, Andres Nötzli, Oliver Andrzej
Kennedy, Milos Nikolic, and Yanif Ahmad. Dbtoaster: Higher-order delta pro-
cessing for dynamic, frequently fresh views. Technical report, 2013.

11. Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate cardinality
estimation for rdf queries with multiple joins. In Data Engineering (ICDE), 2011
IEEE 27th International Conference on, pages 984–994. IEEE, 2011.

12. Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita.
Improved histograms for selectivity estimation of range predicates. ACM SIGMOD
Record, 25(2):294–305, 1996.

13. Giovanni Tummarello, Renaud Delbru, and Eyal Oren. Sindice. com: Weaving the
open linked data. In The Semantic Web, pages 552–565. Springer, 2007.

14. Jürgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth, and Axel Polleres.
Comparing data summaries for processing live queries over linked data. World
Wide Web, 14(5-6):495–544, 2011.



9

15. Jürgen Umbrich, Marcel Karnstedt, Aidan Hogan, and Josiane Xavier Parreira.
Hybrid sparql queries: fresh vs. fast results. In The Semantic Web–ISWC 2012,
pages 608–624. Springer, 2012.


