
Retrieval of the most relevant combinations of data
published in heterogeneous distributed datasets on

the Web∗

Shima Zahmatkesh

DEIB - Politecnico di Milano, Milan, Italy
shima.zahmatkesh@polimi.it

Abstract. Finding the most relevant data items among heterogeneous
data published on the Web is getting a growing attention in recent years.
Retrieving the most relevant data items from a collection of data is a
challenge addressed by top-k databases. Accessing heterogeneous and
distributed data sources is a challenge addressed by the Semantic Web.
How to combine methods and techniques from those two fields is still an
open research issue. This doctoral thesis will investigate how the presence
of an ontology describing an integrated conceptual model of the data
sources and the possibility to encode the users’ information needs in top-
k queries can make the query answering process faster, more efficient, and
able to get more relevant results.
Keywords: Top-k query, Federated databases, heterogeneous data, OBDA,
SPARQL, Query Optimization.

1 Relevancy

While a massive amount of data is getting published on the web, searching for
data is also attracting a growing attention. Notably, most of the time, users try to
satisfy their information needs integrating the results of multiple (vertical) search
engines. Those users expect relevant answers to appear in the few first pages of
the results, are sensible to correctness, but are rarely interested in completeness.
As an example, imagine a student who may want to find the best university for
studying; he would take in to account various criteria. He is certainly interested
in finding information about the university such as its ranking and the quality
of education program. However, he is also concerned with: the quality of life of
the city where the university is located in, the public transportation in that city,
and the possibility to find cheep accommodation. What he would be satisfied to
collect is a set of resources that, once integrated, answer his information need.

2 Problem Statement

The problem that I want to address in this work is how to quickly find on the
Web the most relevant answers to queries that span multiple domains and that
include user preferences.
∗This research is developed under the supervision of Professor Emanuele Della Valle.



The nature of the Web implies that the answers have to be found in a mul-
titude of structured and unstructured information, stored in heterogeneous for-
mats across multiple, distributed and possibly overlapping data sources.

Most important for my research work is the way that data is accessed. At
a first glance it seems that it is easy to access data in the Web, as all the
resources in the Web have a URL. However, in most of the cases, the URLs of
the desired resources are unknown. So, usually, users employ search engines or
search services to find those "unknown" URLs. It is worth to note that search
engines provide only sorted access to result items that are return as a ranked
list where more relevant results appear first. Note that random access to results
in those ranked lists is not possible. For example, let assume to search the same
term in two search engines (A and B), a user cannot know which is the position
of a specific result A in the results of B. To cross check the results of two search
engines one has to sequentially read the results of the two search engines.

Moreover, request for (random) access to a data resource over the web is more
expensive than on a hard disk due to delays introduced by network transmission
of the data and the overhead introduced by the usage of the HTTP protocol.
Even the request for large amount of data could be expensive because of long
transmission times and of protracted processing of the service.

Last but not least, accessing to data resources can be challenging and complex
in the case that data is distributed over heterogeneous sources. Structured data
can be in relational, XML or RDF formats that can be accessed using SQL,
xQuery, SPARQL and, more and more often, Web APIs. Unstructured data like
text and multimedia content are even more challenging due to lack of common
standards for accessing search services.

The problem I intend to address is how to improve the retrieval of the
most relevant combinations of data from a variety of distributed data sources
published on the Web caring about the query latency (of the first results), which
must be under-second, and relevancy of the first results, which really matters for
the users, without posing too much emphasis on completeness, which has little
importance in the considered application case. Resource consumption is another
important metric in the problem space, because the solution has to scale to
thousands of concurrent users as current search engines do.

3 State-of-the-Art1

Current search engines do not address this problem; they have just started to
offer structured query answering (e.g., Google Knowledge Graph or Wolfram
Alpha). Methods for top-k query answering in databases can quickly answer
queries, which requires relevant answer first, but they do not scale to the amount
of resources published on the Web and cannot deal with data heterogeneity. On
the contrary, semantic technologies are able to deal with data heterogeneity. In
particular, OBDA uses ontology as a conceptual integrated model for represent-
ing the schema of multiple databases and allow issuing federated queries against
1More detailed analysis of related work follows in Section 5



a set of heterogeneous data sources. But, semantic technologies are still not op-
timized to find the most relevant answer first. In the Semantic Web community,
approaches to retrieve most relevant data resources are still using the naïve ma-
terialize then sort query execution schema. The works in top-k query answering
using SPARQL are in their initial stage and no work has been done so far on
top-k and federated SPARQL.

4 Research Question

Given a user-information need formulated as a top-k query over conceptual in-
tegrated model (OBDA), which describes multiple heterogeneous distributed,
structured and unstructured data sources published on Web, is it possible to
return the top-k best combinations of resources, which answer the information
need, in less than a second and to incrementally obtain more results ordered by
decreasing relevance in hundreds of milliseconds?

5 Related Works

In this section, I extend the short review of the state-of-the-art presented in
Section 3. I start from two important step-stones for my work (Ontology Based
Data Access and federated databases) and then I cover top-k query answering
in Databases and Semantic Web.

Ontology Based Data Access (OBDA) is a method that I aim to use
to address the heterogeneity problem in my research. I chose OBDA because it
appears to be a mature approach. Its foundational theory was set in the begin-
ning of 2000s [1] and focused on the DL-Lite family [2] of ontological languages.
In 2012, W3C published a recommendation for an ontological language (OWL-
2QL) suitable for OBDA using results of those studies, and Gartner foresee its
industrial uptake in the next 2-3 years [3].

Federated database is a collection of multiple distributed, autonomous,
potentially heterogeneous databases. Federated database systems provides a uni-
form user interface, enabling users and clients to store and retrieve data with
a single query even if the constituent databases are heterogeneous. Principles
of federated database systems were set in [4]. In the Semantic Web domain,
federation of currently supported SPARQL 1.1 whose syntax and semantics are
described in [5].

The top-k query answering problem has been studied in the database
community to go beyond the naïve materialize then sort query execution schema.
This schema retrieves all the data resources that match the boolean part of the
query, then order them all according to the user defined ranking function and,
finally, report the k most relevant results to the user. The state of the art in rela-
tional databases contains many algorithms to compute the top-k answer without
materializing the answer to the boolean query. The key idea is to consider ranking
as a first-class construct and interleave the computation of intermediate results



with their ordering. Ilyas et al. in [6] presented a survey on top-k query process-
ing techniques in relational databases. They introduced various classifications
for top-k query processing techniques based on multiple design dimensions, e.g.,
type of allowed data access method (sorted vs. random) or the type of operation
(top-k selection query, top-k join query and top-k aggregate query).

For instance, the Threshold Algorithm (TA) [7] addresses the problem of
answering top-k aggregated queries and uses both sorted and random access.
The No Random Access algorithm [7] addresses the same problem but exploits
only sorted access. The NRA-RJ [8], and Rank-Join algorithm [9] address the
problem of top-k join using different mixes of sorted and random access.

RankSQL [10] is an example of DBMS that combines the algorithm presented
in the previous paragraph. It introduces an algebraic framework to support effi-
cient evaluation of the top-k queries in relational database systems by extending
the relational algebra and query optimization. The key idea is to introduce a
ranking operator and to make all other boolean operators rank-aware.

Some initial works on top-k query answering are also available in the
Semantic Web community. Notably, it is possible to express top-k query in
SPARQL by using projection functions together with ORDER BY and LIMIT
clauses, but only few works investigated the optimization of this class of queries.
Magliacane et al. [11] presented SPARQL-RANK, which is an extension of the
SPARQL algebra and execution model that support ranking as a first-class
SPARQL construct. The new algebra and the execution model provide the split-
ting of the ranking function and interleaving it with other operators. Wagner et
al. [12] studied the top-k join problem in a Linked Data context by adapting the
pull/bound rank join (PBRJ) [13] algorithm template for a push-based execu-
tion in the linked data setting. The authors of [14] extends SPARQL to querying
RDFS annotated by bounded lattice (and thus comes with a partial ordering).
Last, but not least, given that computation time is more important than ac-
curacy and completeness, Wagner et al. addressed the problem of approximate
top-k processing for the web of the data in [15].

The problem of the evaluation of top-k query in the context of ontology-based
access has also been partially addressed. Straccia in [16] frames this problem in
the context of relational databases generalizing the results of SoftFacts [17]– an
ontology-mediated top-k information retrieval system over relational databases.
[18] provides an interesting approach in the context of Web search.

6 Hypothesis

In order to operationalise my research question in hypotheses, I need to describe
few classes of queries.

The basic one is the class of top-k SPARQL queries T that was shown to be
optimizable in [11,12,15]. E.g., give me the top-5 authors who wrote the largest
number of paper that are highly cited. This class of queries can be declared in
SPARQL 1.1 and it can be evaluated faster and using less memory (compared
to state of the art engines using materialize-then-sort processing schema) by



introducing ranking as first class construct in SPARQL algebra (see SPARQL-
RANK algebra [11]) and by using split-and-interleave processing schema.

In my work I intend to investigate the class of top-k SPARQL queries that
also include textual matching. Let me name this class top-k textual SPARQL
queries Tt. E.g., give me the top-5 authors who wrote the largest number of paper
whose title contains “rank”, “top-k”, and “query”. This class cannot be expressed
in SPARQL 1.1; few extension exists in proprietary systems (e.g., jena-text and
virtuoso full text search).

This class can be split in two subclasses, those that include federated SPARQL
and those that do not. Let me name them, centralized top-k textual SPARQL
queries Ttc and federated top-k textual SPARQL queries Ttf .

Last, but not least, those classes of queries can be evaluated under different
entailment regimes. In this work, I intend to investigate the cases of simple RDF
entailment T ∅ and the case of an extended version of OWL2QL T QL+eq where it
is possible to express simple equations between numerical values. E.g., we would
like to express in OWL that the population density of a city is the ratio between
the number of inhabitants and the area of the city, so that one can ask for cities
ranked by population density even if some of the data sources to access only
contain the number of inhabitants and the area of the cities.

Now that I have those classes, I can state my hypotheses as follows:

– H.1 : Using an extended version of SPARQL, which treats ranking and tex-
tual matching as first class constructs, (namely SPARQL-ranktc) will make
the evaluation of T ∅

tc queries faster and less memory eager than existing
SPARQL engines using materialize-then-sort processing schema

– H.2 : Extending SPARQL-ranktc to include aspects of federated SPARQL
(namely SPARQL-ranktf ) will make the evaluation of T ∅

tf queries faster and
less memory eager than existing federated SPARQL engines using materialize-
then-sort processing schema

– H.3 : Users with information needs that cannot be homogeneously formulated
on heterogeneous data sources, can declare such a need as a query of the class
T QL+eq

tf and SPARQL-rankTtf will be able to evaluate it.

7 Approach

As the first step, I started an analysis of the state-of-the-art. Reviewing the works
done in the domain of top-k query processing in database community is giving
me ideas and is guiding me to use top-k query answering in Web domain. I am
also becoming familiar with the concept from Web Information Retrieval. My
next step is broadening my understating of federated SPARQL and OBDA. I am
also working in identifying real use cases that that will be used in the evaluation
phase. Finding the suitable datasets and a set of queries are the expected results
of this step.

In the next step, I design the evaluation framework that is used to compare
my work with the existing ones in order to investigate the hypotheses presented



above. The expected output is a benchmark for top-k SPARQL query answering
and a set of the evaluation metrics for fair comparison of alternative approaches.

In parallel to the previous step, I start the main activity of my research that
consists of three activities testing the three hypotheses. In the first one, I focus
on top-k query and the presence of text searching (H.1 ). Then, I could evaluate
H.2 by extending the work done in testing H.1 from local system to federated
ones and finally, I will focus on the heterogeneity of the data (H.3 ).

8 Evaluation Plan

An evaluation framework is needed to compare the results of my investigations
with the existing and appearing solutions. At this stage of the work, I foresee to
use the following evaluation metrics and targets:

– Query latency: the time required to execute a query and compute the results.
I aim to reduce it by two order of magnitude for accessing the first k results
and two-three order of magnitude for incrementally obtaining the next results
ordered by decreasing relevance.

– Resource consumption: I intend to focus on memory usage and I aim to
reduce it by one-two order of magnitude.

– Relevancy of the results: as metric I indent to use the normalized Discounted
Cumulative Gain (nDCG) which is widely used in information retrieval.

– Ability of user to formulate information need.

As dataset for H.1, I plan to use DBpedia and Wikipedia or the linked data
version of DBLP and Google Scholar. For H.2, and H.3, I am considering the
possibility to exploit Web Data Common2, a project that extracts structured
data from public web pages.

9 Preliminary Results

In my master thesis and in the first months of my PhD I worked on setting up
the evaluation framework and I started the investigation of H.1.

As for the evaluation framework, I extended the DBpedia SPARQL Bench-
mark (DBPSB) [19] with the capabilities required to compare SPARQL en-
gines on top-k queries and I proposed the Top-k DBpedia SPARQL Benchmark
(namely, Top-k DBPSB) that uses the same dataset, performance metrics, and
test driver of DBPSB. Top-K DBPSB was run against three SPARQL Engines
(Virtouso, Jena TDB, and Sesame). The results of the extensive experimen-
tal evaluation confirms that existing solution are poorly optimized for top-k
SPARQL queries.

As for the initial investigation of H.1, I am comparing the execution time
of top-k SPARQL query involving text search between Jena ARQ and the Jena

2http://webdatacommons.org/



Text in Apache Jena 2.11.1. As a use case I am considering the need to find
authors that have publication in a set of domains, which are defined using a set
of keywords. For example, I am try to find the authors who write publications
in the two domains: “RDF stream processing” (through the keywords such as
“rdf stream”, “continuous sparql”, and “stream reasoning”) and “top-k SPARQL
query answering” (through the keywords such as “rdf”, “sparql”, “top-k”, “top
k”, “order” and “reasoning”). As dataset I am using the dump of DBLP in a
RDF store3. As expected, the results show that the execution time in Jena Text
is one order of magnitude better than in Jena ARQ. I expect to be able to
improve by another order of magnitude introducing ARQ-Rank [11].

10 Reflections

Previous work defines a SPARQL rank-aware algebra and extending operators
to deal with sorted solution mappings. However, those works do not address the
problem of query planning, which is also only partially solved in the relational
world [10]. Combining text searching with structured query answering is an
active field of research both in database and Semantic Web area, but the usage
of top-k query answering methods (H.1 ) has not been explored, yet. Focusing
on federated data resources and heterogeneity of the data is one of the most
active fields of research in the Semantic Web and database domain, but also
in this case the proposed works have not considered the top-k query processing
approach (H.2 ). The combination of the top-k query with OBDA has been done
in [16], but they consider the OBDA as a layer over the top-k query processing.
There is not any exploration in interleaving ordering and reasoning, which require
the combination of techniques in database and knowledge representation. To the
best of my knowledge, there is not any proposed works that combine the OBDA
and the Federation in top-k query processing (H.3 ).

References

1. Lenzerini, M.: Data integration: A theoretical perspective. In Popa, L., Abiteboul,
S., Kolaitis, P.G., eds.: PODS, ACM (2002) 233–246

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The dl-lite family
and relations. J. Artif. Intell. Res. (JAIR) 36 (2009) 1–69

3. Lapkin, A.: Hype cycle for big data (2012)
4. Ceri, S., Pelagatti, G.: Distributed Databases Principles and Systems. McGraw-

Hill, Inc., New York, NY, USA (1984)
5. Aranda, C.B., Arenas, M., Corcho, Ó., Polleres, A.: Federating queries in sparql

1.1: Syntax, semantics and evaluation. J. Web Sem. 18(1) (2013) 1–17
6. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-

niques in relational database systems. ACM Comput. Surv. 40(4) (2008)
7. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.

In Buneman, P., ed.: PODS, ACM (2001)

3http://dblp.l3s.de/dblp++.php



8. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Joining ranked inputs in practice. In:
VLDB, Morgan Kaufmann (2002) 950–961

9. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-
tional databases. VLDB J. 13(3) (2004) 207–221

10. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: Ranksql: Query algebra and optimiza-
tion for relational top-k queries. In Özcan, F., ed.: SIGMOD Conference, ACM
(2005) 131–142

11. Magliacane, S., Bozzon, A., Valle, E.D.: Efficient execution of top-k sparql queries.
In Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth,
M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E., eds.:
International Semantic Web Conference (1). Volume 7649 of Lecture Notes in Com-
puter Science., Springer (2012) 344–360

12. Wagner, A., Tran, D.T., Ladwig, G., Harth, A., Studer, R.: Top-k linked data
query processing. In Simperl, E., Cimiano, P., Polleres, A., Corcho, Ó., Presutti,
V., eds.: ESWC. Volume 7295 of Lecture Notes in Computer Science., Springer
(2012) 56–71

13. Schnaitter, K., Polyzotis, N.: Optimal algorithms for evaluating rank joins in
database systems. ACM Trans. Database Syst. 35(1) (2010)

14. Lopes, N., Polleres, A., Straccia, U., Zimmermann, A.: Anql: Sparqling up anno-
tated rdfs. In Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B., eds.: International Semantic Web Conference (1).
Volume 6496 of Lecture Notes in Computer Science., Springer (2010) 518–533

15. Wagner, A., Bicer, V., Tran, T.: Pay-as-you-go approximate join top-k processing
for the web of data. In Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab,
S., Tordai, A., eds.: ESWC. Volume 8465 of Lecture Notes in Computer Science.,
Springer (2014) 130–145

16. Straccia, U.: On the top-k retrieval problem for ontology-based access to databases.
In Pivert, O., Zadrozny, S., eds.: Flexible Approaches in Data, Information and
Knowledge Management. Volume 497 of Studies in Computational Intelligence.
Springer (2013) 95–114

17. Straccia, U.: Softfacts: A top-k retrieval engine for ontology mediated access to
relational databases. In: SMC, IEEE (2010) 4115–4122

18. Fazzinga, B., Gianforme, G., Gottlob, G., Lukasiewicz, T.: Semantic web search
based on ontological conjunctive queries. J. Web Sem. 9(4) (2011) 453–473

19. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.C.N.: Dbpedia sparql benchmark
- performance assessment with real queries on real data. In Aroyo, L., Welty, C.,
Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.F., Blomqvist, E., eds.: Inter-
national Semantic Web Conference (1). Volume 7031 of Lecture Notes in Computer
Science., Springer (2011) 454–469


