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ABSTRACT
This paper describes a spoken keyword search system de-
veloped at the Chinese University of Hong Kong (CUHK)
for the query by example search on speech (QUESST) task
of MediaEval 2014. This system utilizes posterior features
and dynamic time warping (DTW) for keyword matching.
Multiple types of posterior features are generated with dif-
ferent tokenizers, and then fused by a linear combination on
the DTW distance matrices. The main contribution of this
year’s system is a multiview segment clustering (MSC) ap-
proach for unsupervised ASM tokenizer construction. The
Cnxe and ATWV of our submitted results on the Evaluation
set are 0.682 and 0.412, respectively.

1. INTRODUCTION
The query by example search on speech (QUESST) task

aims at detecting the keyword occurrences in a unlabeled
speech collection using spoken queries in a language inde-
pendent fashion. In this year’s QUESST dataset, the speech
collection involves about 23 hours of speech data from 6 lan-
guages, and the query set includes 560 development queries
and 555 evaluation queries. The average duration of queries
is about 0.9 second after voice activity detection (VAD).
More details about the task description can be found in [2].

Our system was designed only for the type 1 query match-
ing. It followed the posteriorgram-based template matching
framework [3], in which speech tokenizers were used to gen-
erate posteriorgrams, and DTW was applied for keyword
detection. The tokenizers were either built from the search-
ing speech collection given in the task, or developed from
some resource-rich languages. In order to exploit the com-
plementary information of multiple tokenizers, the DTW
matrix combination method [7] was used. Raw DTW de-
tection scores were then normalized to zero mean and unit
variance. On the evaluation set, the Cnxe and ATWV of
our submission are 0.682 and 0.412. If only considering the
type 1 query matching, the Cnxe and ATWV are 0.611 and
0.526.

2. SYSTEM DESCRIPTION

2.1 System Overview
In this year’s evaluation, our system employs a similar

framework as our previous system for spoken web search
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task in 2012 [5]. The system involves seven tokenizers, in-
cluding a GMM tokenizer, five phoneme recognizers, and an
ASM tokenizer [8]. Using these tokenizers, the query ex-
amples and test utterances are converted into frame-level
posteriorgrams. Different tokenizers may use different algo-
rithms to generate posteriorgrams. Let Qi denote the query
posteriorgram generated by the ith tokenizer, and let Ti

denote the corresponding test posteriorgram. The distance
matrix Di was computed as the inner-product [3],

Di = − log(QT
i ×Ti) i = 1, 2, ..., 7. (1)

To exploit the complementary information from different
tokenizers, the distance matrices were combined linearly to
give a new distance matrix D,

D =

7∑
i=1

wiDi, (2)

where wi denotes the weighting coefficients for Di and was
simply set to 1

7
.

Subsequently, DTW detection was applied to the com-
bined distance matrix D to locate the top matching regions.
DTW detection was performed with a sliding window with
a window shift of 5 frames. The adjustment window con-
straint was imposed on the DTW alignment path. Let dq,t
denote the normalized DTW alignment distance between the
qth query on the tth hit region. The raw detection score was
computed by

sq,t = exp(−dq,t/β), (3)

where the scaling factor β was set to 0.6. To calibrate the
score distribution of different queries, a 0/1 normalization
was used,

ŝq,t = (sq,t − µq)/δq, (4)

where ŝq,t is the calibrated score, and µq and δ2q are the
mean and variance of the raw scores of the qth query.

2.2 GMM Tokenizer
The GMM tokenizer was trained from the given searching

speech collection. It contained 1024 Gaussian components.
The input of the GMM tokenizer was 39-dimensional MFCC
feature vector. The MFCC features were processed with
VAD and utterance-based mean and variance normalization
(MVN). Vocal tract length normalization (VTLN) was then
applied to the MFCC features o alleviate the influence of
speaker variation.

The warping factors of VTLN were estimated iteratively
as proposed in [9]. The iteration started with training a



GMM from the unwarped MFCC features. Then the warp-
ing factors were estimated with a maximum-likelihood grid
search using the GMM. A new GMM was trained using
the warped features, and new warping factors were then
re-estimated. This process was iterated four times in our
implementation. The usefulness of VTLN for this task was
experimentally demonstrated in our previous paper [8].

2.3 Phoneme Recognizers
Our system involved five phoneme recognizers, namely

Czech, Hungarian, Russian, English and Mandarin phoneme
recognizers. All these phoneme recognizers used the split
temporal context network structure [4]. The Czech, Hungar-
ian, Russian phoneme recognizers were developed at Brno
University of Technology (BUT) and released in [1]. The
English phoneme recognizer was trained on about 15-hour
speech data from the Fisher corpus and Swichboard Cellu-
lar corpus. The Mandarin phoneme recognizer was trained
on about 15-hour speech data from the CallHome corpus
and the CallFriend corpus. These phoneme recognizers were
used to generate mono-phone state-level posteriorgrams with-
out any language model constraint.

2.4 ASM Tokenizer
Acoustic segment modeling (ASM) is a way to build an

HMM-based speech tokenizer from unlabeled speech data. It
consists of three steps, namely initial segmentation, segment
labeling, and iterative training and decoding. Initial seg-
mentation searches for the acoustic discontinuities and par-
titions speech utterances into short-time speech segments.
In our implementation, we simply used the one-best recog-
nition results of the Hungarian phoneme recognizer to get
the hypothesised segment boundaries.

Segment labeling is to assign a label to each short-time
speech segment. We used a multiview segment clustering
(MSC) approach for segment labeling. The MSC approach
took in multiple segment-level posterior features, computed
the similarity matrix and Laplacian matrix of the speech seg-
ments for each type of posterior feature, and made a linear
combination on the Laplacian matrices. With the combined
Laplacian matrix, eigen-decomposition was performed to de-
rive the spectral embedding representations, and k-means
was applied to find 100 clusters. Details of the MSC ap-
proach are described in [6].

The cluster labels were used as initializations for iterative
training and decoding, in which HMM training and decoding
were performed iteratively until converge.

3. RESULTS
Table 1 shows the results obtained by our system on eval-

uation queries. Based on our previous experience on TWV
values, we only submitted a small portion of the scores which
were higher than a threshold. This gives us the results of
System 1. However, if all the scores of all the trials are
considered, we obtain the results of System 2, which gives
obvious reductions on the Cnxe values. Similar observations
can also be made when only considering the type 1 query
matching. Corresponding results are shown in Table 2. The
difference between Cnxe and TWV metrics needs to be care-
fully examined in the future.

To run the experiments, we used a computer with Intel i7-
3770K CPU (3.50GHz, 4 cores), 32GB RAM and 1T hard
drive. In the online searching process, all the posteriorgrams

were stored in the memory. This caused very high memory
cost (>10GB). The computation cost in the searching pro-
cess was mainly caused by DTW detection. The searching
speed factor of our system was about 0.021. The slow search-
ing speed is one main drawback of our system and needs to
be improved.

Table 1: System performances on all the queries.
System 1 corresponds to the submitted results.

System No. actCnxe minCnxe ATWV MTWV

1 0.682 0.659 0.412 0.413
2 0.638 0.585 0.412 0.413

Table 2: System performances on the type 1 queries.
System 1 corresponds to the submitted results.

System No. actCnxe minCnxe ATWV MTWV

1 0.526 0.486 0.611 0.613
2 0.508 0.420 0.611 0.613

4. CONCLUSION
We have described an overview of the CUHK system sub-

mitted to the MediaEval 2014 QUESST task along with the
evaluation results. Our system involves seven tokenizers
and uses DTW matrix combination for fusion. Only type
1 query matching is considered in the system development.
The main highlight of our system lies in the MSC approach
in the ASM tokenizer construction. In general we think the
performances for type 1 query matching are acceptable, but
the slow searching speed and high memory cost need to be
substantially improved.
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