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ABSTRACT
This paper briefly describes the systems presented by the
Software Technologies Working Group (http://gtts.ehu.es,
GTTS) of the University of the Basque Country (UPV/EHU)
to the Query-by-Example Search on Speech Task (QUESST)
at MediaEval 2014. The GTTS-EHU systems consist of four
modules: (1) feature extraction; (2) speech activity detec-
tion; (3) DTW-based query matching; and (4) score cali-
bration and fusion. The submitted systems follow the same
approach used in our SWS 2013 submissions, with two mi-
nor changes (needed to address the new task): the search
stops at the most likely query detection (no further detec-
tions are looked for) and a score is produced for each (query,
document) pair. The two approximate matching types intro-
duced in QUESST have not received special treatment. This
year, we have just explored the use of reduced feature sets,
obtaining worse results but at lower computational costs.

1. INTRODUCTION
The MediaEval 2014 Query-by-Example Search on Speech

Task (QUESST) consists of searching for a spoken query
within a set of spoken documents. For each pair (query, doc-
ument), a score in the range (−∞,+∞) must be produced,
the higher (the more positive) the score, the more likely that
the query appears in the document. System performance is
primarily measured in terms of a normalized cross-entropy
cost Cnxe. Term-Weighted Value metrics (ATWV/MTWV)
are used as secondary metrics, along with the processing re-
sources (real-time factor and peak memory usage) required
by the submitted systems. For more details on QUESST,
see [2].

2. SYSTEM OVERVIEW
2.1 Feature extraction

The Brno University of Technology (BUT) phone decoders
for Czech, Hungarian and Russian [6] are applied to de-
code both the spoken queries and the audio documents.
BUT decoders are trained on 8 kHz SpeechDat(E) databases
recorded over fixed telephone networks, featuring 45, 61 and
52 units for Czech, Hungarian and Russian, respectively
(three of them being non-phonetic units that stand for short
pauses and noises).

Given an input signal of length T , the decoder outputs
the posterior probability of each state s (1 ≤ s ≤ S) of each
unit i (1 ≤ i ≤ M) at each frame t (1 ≤ t ≤ T ), pi,s(t),
where M is the number of units and S the number of states
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per unit. The posterior probability of each unit i at each
frame t are computed by adding the posteriors of its states:

pi(t) =
∑
∀s

pi,s(t) (1)

Finally, the posteriors of the three non-phonetic units are
added and stored as a single non-speech posterior. Thus, the
size of the frame-level feature vectors is 43, 59 and 50 for the
Czech, Hungarian and Russian BUT decoders, respectively.

2.1.1 Reduced feature sets
In [4], several dimensionality reduction techniques were

successfully applied on phone posterior features to reduce
the computational cost while keeping performance on spoken
language recognition tasks. Following one of the approaches
proposed in [4], here we define a reduced set of features
by adding the posteriors of phones with the same manner
and place of articulation. This leads to feature sets of size
25, 23 and 21, for the Czech, Hungarian and Russian BUT
decoders, respectively.

2.2 Speech Activity Detection
Given an audio signal, Speech Activity Detection (SAD) is

performed by discarding those phone posterior feature vec-
tors for which the non-speech posterior is the highest. The
remaining vectors, along with their corresponding time off-
sets, are stored for further use, but the component corre-
sponding to the non-speech unit is deleted. If the number
of speech vectors is too low (in this evaluation, 10, meaning
0.1 seconds), the whole signal is discarded (thus saving time
and possibly avoiding many false alarms) and a floor score
is output (in this evaluation, 10−5).

2.3 DTW-based query matching
Given two SAD-filtered sequences of feature vectors corre-

sponding to a spoken query q and a spoken document x, the
cosine distance is computed between each pair of vectors,
q[i] and x[j] as follows:

d(q[i], x[j]) = − log
q[i] · x[j]

|q[i]| · |x[j]| (2)

Note that d(v, w) ≥ 0, with d(v, w) = 0 if and only if v
and w are perfectly aligned and d(v, w) = +∞ if and only
if v and w are orthogonal. The distance matrix computed
according to Eq. 2 is further normalized with regard to the
spoken document x, as follows:

dnorm(q[i], x[j]) =
d(q[i], x[j])− dmin(i)

dmax(i)− dmin(i)
(3)

with dmin(i) = min
j

d(q[i], x[j]) and dmax(i) = max
j

d(q[i], x[j]).



Table 1: Performance and processing costs of GTTS-EHU systems on QUESST 2014. Full sets: 2×Xeon E5-2450 (×8core×2HT)
@2.10GHz, 64GB, 22892 MFlops. Reduced sets: 2×Xeon E5-649 (×6core×2HT) @2.53GHz, 24GB, 14300 MFlops.

development queries evaluation queries
Cnxe (act/min) ATWV/MTWV SSF PMUs Cnxe (act/min) ATWV/MTWV SSF PMUs ISF PMUi

p 0.6540 / 0.6353 0.3567 / 0.3663 0.064 0.208 0.6207 / 0.5994 0.3621 / 0.3671 0.064 0.179 0.427 0.028
c1 0.7180 / 0.6849 0.3164 / 0.3293 0.008 0.208 0.6956 / 0.6631 0.3078 / 0.3230 0.008 0.179 0.427 0.028
c2 0.7498 / 0.7115 0.2765 / 0.2947 0.009 0.123 0.7316 / 0.6968 0.2658 / 0.2937 0.009 0.098 0.427 0.012
c3 0.6599 / 0.6408 0.3558 / 0.3588 0.027 0.208 0.6266 / 0.6053 0.3593 / 0.3624 0.027 0.179 0.427 0.028
c4 0.6987 / 0.6747 0.3235 / 0.3300 0.037 0.123 0.6707 / 0.6450 0.3146 / 0.3311 0.037 0.098 0.427 0.012

Table 2: Cnxe and TWV performance of the GTTS-EHU primary system, disaggregated per matching types and per language.
development queries evaluation queries

Cnxe (act/min) ATWV/MTWV Cnxe (act/min) ATWV/MTWV
T1 0.4832 / 0.4514 0.5567 / 0.5594 0.4773 / 0.4396 0.5353 / 0.5375
T2 0.7585 / 0.7323 0.2960 / 0.3153 0.6573 / 0.6407 0.3196 / 0.3276
T3 0.7627 / 0.7390 0.1361 / 0.1493 0.8118 / 0.7724 0.1548 / 0.1620

Albanian 0.6256 / 0.5824 0.3005 / 0.3244 0.6778 / 0.6313 0.3961 / 0.4102
Basque 0.8647 / 0.8279 0.2354 / 0.2476 0.7920 / 0.7616 0.2982 / 0.3052
Czech 0.6455 / 0.6263 0.4026 / 0.4048 0.5863 / 0.5699 0.3603 / 0.3720

NNEnglish 0.9384 / 0.8741 0.0600 / 0.0707 0.9305 / 0.8478 0.1008 / 0.1061
Romanian 0.4365 / 0.4058 0.4991 / 0.5398 0.5748 / 0.5520 0.4081 / 0.4452

Slovak 0.5495 / 0.5105 0.5533 / 0.5579 0.4917 / 0.4465 0.5841 / 0.6096

In this way, matrix values are all comprised between 0 and
1, so that a perfect match would produce a quasi-diagonal
sequence of zeroes.

The best match of a query q of length m in a spoken
document x of length n is defined as that minimizing the
average distance in a crossing path of the matrix dnorm. A
crossing path starts at any given frame of x, k1 ∈ [1, n],
then traverses a region of x which is optimally aligned to
q (involving L vector alignments), and ends at frame k2 ∈
[k1, n]. The average distance in this crossing path is:

davg(q, x) =
1

L

L∑
l=1

dnorm(q[il], x[jl]) (4)

where il and jl are the indices of the vectors of q and x
in the alignment l, for l = 1, 2, . . . , L. Note that i1 = 1,
iL = m, j1 = k1 and jL = k2. The minimization opera-
tion is accomplished by means of a dynamic programming
procedure, which is Θ(n ·m · d) in time (d: size of feature
vectors) and Θ(n ·m) in space. The detection score is com-
puted as 1 − davg(q, x). Once the best match is obtained,
the search procedure stops. As noted above, if either q or x
have not enough speech samples, no alignment is performed
and a floor score (10−5) is output. Note that a detection
score must be mandatorily produced for each pair (q, x).

2.4 Score calibration and fusion
First, the so-called q-norm (query normalization) is ap-

plied, so that zero-mean and unit-variance scores are ob-
tained per query [1]. Then, if n different systems are fused,
since all of them contain a complete set of scores, for each
trial the set of n scores is considered, which besides the
ground truth (target/non-target labels) can be used to dis-
criminatively estimate a linear transformation that produces
well-calibrated scores that can be linearly combined to get
fused scores. Under this approach, the Bayes optimal thresh-
old (given by the effective prior: 0.0741 for this evaluation)
is applied. The BOSARIS toolkit [3] is used to estimate and
apply the calibration/fusion models.

3. RESULTS
Table 1 shows the performance and processing costs of

GTTS-EHU systems on QUESST 2014. To speed up com-
putations, experiments with the full and reduced sets of
features were carried out on different machines (see Table
1), which makes it nonsense to compare the reported times.

Indexing involves just applying BUT decoders to extract
phone posterior features. The Indexing Speed Factor (ISF),
the Searching Speed Factor (SSF) and the Peak Memory
Usage (PMU) values have been computed as if all the com-
putation was performed sequentially in a single processor
(see [5]). Calibration and fusion costs have been neglected.

The contrastive systems 1 and 2 (c1 and c2) use the con-
catenation of phone posteriors from the three decoders as
features, for the full and reduced feature sets, respectively.
The system c3 is the fusion of four subsystems, using the
full set of phone posteriors for Czech, Hungarian, Russian
and the concatenation of them, respectively. The system c4
is equivalent to c3 but using the reduced sets of features. Fi-
nally, the primary system is the fusion of the eight available
subsystems. In all cases, calibration and fusion parameters
have been estimated on the development set. Note that the
primary system yields only slightly better performance than
system c3, meaning that reduced sets of features provide lit-
tle additional information to full sets of features. In fact,
the full sets outperform the reduced sets in all cases.

As shown in Table 2, performance strongly degrades from
T1 to T2 and (not so much) from T2 to T3; on the other
hand, the non-native English and (to a lesser extent) the
Basque subsets seem problematic. Future work may involve
some kind of language detection and adaptation, plus spe-
cific strategies for matching types T2 and T3.

4. REFERENCES
[1] A. Abad, L. J. Rodriguez Fuentes, M. Penagarikano, A. Varona,

M. Diez, and G. Bordel. On the calibration and fusion of
heterogeneous spoken term detection systems. In Interspeech
2013, Lyon, France, August 25-29 2013.

[2] X. Anguera, L.-J. Rodriguez-Fuentes, I. Szöke, A. Buzo, and
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