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ABSTRACT
Two approaches to QbE (Query-by-Example) retrieving sys-
tem, proposed by the Technical University of Košice (TUKE)
for the query by example search on speech task (QUESST),
are presented in this paper. Our main interest was focused
on building such QbE system, which is able to retrieve all
given queries with and without using any external speech re-
sources. Therefore we developed posteriorgram-based key-
word matching system, which utilizes a novel weighted fast
sequential variant of DTW (WFS-DTW) algorithm in order
to detect occurrences of each query within the particular ut-
terance file, using two GMM-based acoustic units modeling
approaches. The first one, referred as low-resource approach,
employs language-dependent phonetic decoders to convert
queries and utterances into posteriorgrams. The second one,
defined as zero-resource approach, implements combination
of unsupervised segmentation and clustering techniques by
using only provided utterance files.

1. MOTIVATION
The motivation for developing our system was to assess

the ability of proposed WFS-DTW algorithm to detect var-
ious spoken query terms by implementing low and zero-
resource posteriorgram-based matching approach.

2. WFS-DTW SEARCHING ALGORITHM
Searching algorithm for QUESST task follows the one

used in our paper [8]. Proposed solution is a modification of
segmental DTW algorithm we applied in spoken web search
task last year [7]. There are three main contributions to this
algorithm: 1) one step forward moving strategy, when each
DTW search is carried out sequentially, block by block, with
size equal to the length of query; 2) linear time-aligned accu-
mulated distance for speeding up sequential DTW without
considerable loss in retrieving performance; 3) optimization
of global minimum for set of alignment paths by implement-
ing weighted cumulative distance (WCD) parameter.

3. LOW-RESOURCE APPROACH
The low-resource approach includes 4 language-dependent

subsystems, each represented by GMM-based acoustic model.
The acoustic models were trained previously using four da-
tabases: 2× Speechdat (Slovak, 66h and Czech, 89h) [6],
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Slovak ParDat1 (40h) [3] and English TIMIT (10h) [4].
The well-trained models were intended to generate time-

aligned and labelled segments for each utterance through
Viterbi decoding. The phonetic decoder employed a phone-
level vocabulary and a phone network. We found that the
phoneme insertion log probability p in Viterbi segmentation
has significant impact to time-alignment. Since the best
results were obtained with p = 0, we used this value in the
whole setup. The time-alignments were used to train a new
GMM-based acoustic model using the development data. It
means that each language-dependent model was replaced by
its refined version, which was finally used to generate the
posteriorgrams for utterances and queries.

Note that we used 39-dimensional MFCC (Mel-Frequency
Cepstral Coefficients) features for Viterbi segmentation and
GMM training. In low-resource approach we did not need
any voice activity detector (VAD) because the silent parts of
the audio stream were identified in the Viterbi segmentation.

4. ZERO-RESOURCE APPROACH
In keeping with the zero-resource approach, we did not

assume any prior knowledge of the acoustic units or pro-
nunciation lexicon. In order to train the acoustic models, it
was firstly necessary to identify the acoustic speech units in
the audio data automatically. In this work, we utilized four
different zero-resource approaches to address this problem.

Type 1: This one uses a PCA-based VAD to discriminate
the voice active segments from the silent ones [8]. The ini-
tial feature selection, based on simple PCA (principal com-
ponent analysis) [5], is carried out after extracting first 13
MFCCs. Only those speech active feature vectors are se-
lected, whose variance achieves values greater than 90% at
the first principal component. Then, K-means clustering
with K = 75 clusters and correlation distance metric is
computed on the reduced data. The clustering starts by
selecting K points uniformly. Finally, speech segmentation
is performed by computing the squared Euclidean distance
between feature vectors and K mean vectors, where the la-
bel of the mean vector with minimum distance is assigned
in collaboration with VAD.

Type 2: Type 2 approach comes directly out from the
Type 1 and is further extended by Viterbi segmentation and
new GMM training. These two steps are identical to those
already described in Section 3. The main difference is that
the acoustic model from the Type 1 is used to generate the
time-alignments through Viterbi segmentation.

Type 3: The third approach is based on the well-known
flat start training procedure [9]. It does not need any seg-



Table 1: Evaluation of primary low-resource (p-low)
and general zero-resource (g-zero) systems (* indi-
cates late submission)

eval dev
system Cnxe

(act/min)
TWV
(act/max)

Cnxe

(act/min)
TWV
(act/max)

p-low 0.959/0.891 0.154/0.154 0.960/0.892 0.161/0.162
g-zero 0.973/0.934 0.075/0.077 0.974/0.934 0.091/0.091
p-low* 0.947/0.853 0.168/0.169 0.948/0.854 0.191/0.191
g-zero* 0.970/0.921 0.102/0.103 0.971/0.922 0.106/0.107

mentation or clustering because the utterances are uniformly
segmented using the Baum-Welch embedded re-estimation.
Therefore, an alternative GMM initialization strategy is ap-
plied, where all phone models are initialized identically with
state means and variances equal to the global mean and vari-
ance. The phone models are then moved straight to embed-
ded training and simultaneously updated and expanded to
the higher GMs (Gaussian Mixtures) [9]. The key element in
flat start training is the phone-level transcription, obtained
from the phone-based recognition using the acoustic model
acquired from the first type zero-resource approach.

Type 4: Type 4 approach implements GMM-based seg-
mentation and ergodic HMM (EHMM) training. Firstly, an
unsupervised GMM training is performed on whole database,
where each acoustic unit is represented by one GM. Each
GM is then associated with one of the 64 states in EHMM
and new GMs for each acoustic unit are trained iteratively.

Note that we used conventional 39-dimensional MFCCs
for each zero-resource processing (except the Type 1). We
did not use any VAD here (except the Type 1) because the
<sil> labels were available from the Viterbi segmentation.

5. POST-PROCESSING: SCORE NORMAL-
IZATION AND FUSION

Score parameter was represented by WCD, normalized by
scaling factor 0/1, similarly as we used in [8]. This step
helped us to unified score ranges for the first 500 detection
candidates per each query. Then the score fusion for four
different subsystems was carried out, employing a simple
max-score merging strategy, similarly as Anguera et al. did
in [1]. Detection candidates from each individual subsystem
were merged together, keeping the one with the highest score
in case of overlap. Merged candidates for each query were
subsequently normalized by z-normalization and aligned ac-
cording to the score value. The final set was obtained by
keeping first 45-150 candidates, according to the length of
query (the shorter query the lower number of candidates).

6. RESULTS AND CONCLUSION
We submitted four runs obtained from low-resource (pri-

mary) and zero-resource (general) systems for QUESST 2014
task [2]. The primary systems employ language-dependent
acoustic modeling using Viterbi segmentation with 128 GMs
(ParDat1, TIMIT) and 256 GMs (Speechdat SK, CZ). The
general systems use 32 GMs for Type 1,2,3 and 64 GM for
Type 4. The best-one-win strategy was used at first runs
(on time). Thus, only the subsystem with best performance
was submitted, namely p-low using Speechdat SK and g-

Table 2: Processing resources measures
system ISF SSF PMUI PMUS PL

p-low (dev) 0.61 0.0034 0.05 2.46 0.0106
g-zero (dev) 1.5 0.0042 1.4 3.92 0.225

zero Type 2 subsystem. Late submissions include max-
score merging fusion of four subsystems for both primary
and general approaches. Results in Tab. 1 show that there
are still big differences in performance between p-low and
g-zero approaches, even if the score fusion technique was
applied. Even more, there is also considerable gap between
act and min Cnxe despite the fact that the act and max
TWV are perfectly calibrated. Therefore, an improved cal-
ibration/fusion models based on affine transformation and
linear-regression will be investigated in the future.

The indexing was done using 2xIBM x3650 (Intel E5530 @
2.4 GHz, 8 cores), 28 GB RAM, under Debian OS. Searching
algorithm was running on 52xIBM dx360 M3 cluster (Intel
E5645 @ 2.4GHz, 624 cores), 48 GB RAM per node, running
on Scientific Linux 6 and Torque (see Tab. 2).
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