
A Relational Learning Approach for Collective Entity 

Resolution in the Web of Data 

Gustavo de Assis Costa
1,2 

, José Maria Parente de Oliveira
2 

1 Instituto Federal de Educação, Ciência e Tecnologia de Goiás, Brazil  

2 Divisão de Ciência da Computação, Instituto Tecnológico de Aeronáutica, Brazil 

Praça Mal. Eduardo Gomes, 50, Vila das Acácias, São José dos Campos - SP, Brazil 

{gacosta, parente}@ita.br 

Abstract. The integration of different datasets in the Linked Data Cloud is a 

key aspect to the success of the Web of Data. To tackle this problem most of ex-

istent solutions have been supported by the task of entity resolution. However, 

many challenges still prevail specially when considering different types, struc-

tures and vocabularies used in the Web. Another common problem is that data 

usually are incomplete, inconsistent and contain outliers. To overcome these 

limitations, some works have applied machine learning algorithms since they 

are typically robust to both noise and data inconsistencies and are able to effi-

ciently utilize nondeterministic dependencies in the data. In this paper we pro-

pose an approach based in a relational learning algorithm that addresses the 

problem by statistical approximation method. Modeling the problem as a rela-

tional machine learning task allows exploit contextual information that might be 

too distant in the relational graph. The joint application of relationship patterns 

between entities and evidences of similarity between their descriptions can im-

prove the effectiveness of results. Furthermore, it is based on a sparse structure 

that scales well to large datasets. We present initial experiments based on 

BTC2012 datasets. 

Keywords: Entity resolution, Semantic web, Linked data, Machine Learning, 

Relational Learning. 

1 Introduction 

Following the trend of the World Wide Web, a considerable amount of data has been 

published in the Web of Data. As a result, the challenges in handling all this data has 

grown at the same rate. 

RDF datasets are usually created from some data conversion process, importing the 

same existing issues of databases as, e.g., outliers, duplication, inconsistency, and 

other, like schema heterogeneity. These kind of restrictions poses an hindrance to the 

effective integration and sharing of linked data. 



The key point of LOD
1
 (Linked Open Data) is in dataset integration. One way to 

materialize what is expected from this scenario would be to provide interlinkage of 

entities, since these are key elements for data representation. Unconnected descrip-

tions of the same thing can be obtained from different sources. This way the semantic 

value that could be obtained with the link between different datasets would be lost. 

In the last years, many works have addressed the task of Entity Resolution (ER) 

which deals with extracting, matching and resolving entity mentions in structured and 

unstructured data. In linked data research community it is recognized as a prominent 

issue. Also known as record linkage, de-duplication, co-reference resolution, instance 

matching, among others, it has been used to look for interrelationships, previously 

unknown, between different representations of the same real world entity. 

In Big "Linked" Data era, the need for high quality entity resolution is only grow-

ing. We are inundated with more and more data that needs to be integrated, aligned 

and matched before further utility can be extracted [1]. 

From this scenario, some posed challenges deserve attention. The first is deal with 

semi-structured data. Different semantic description structures can be employed to 

refer to the same element, e.g., the description of entities of the same type. A second 

challenge is related to noise in the data. As already stated, there are various problems 

related to literal descriptions of data and existent solutions adopt metrics that still 

cannot resolve problems like attributes without value. 

Our approach is based in a statistical approximation method that captures joint evi-

dence of similarity related to values of descriptions of entities and any relationship 

correlation through existing entity-entity predicates. The overall process is composed 

of four steps: 1) Preprocessing, 2) Pair-wise string similarities 3) Similarity evidences 

modeled as a matrix entity-attribute 4) Relationships between entities modeled as a 

tensor. Finally, the problem is formulated as a coupled matrix and tensor factorization. 

This work will be supported by applying an extended version of RESCAL [2] model, 

a tensor factorization model for relational learning. 

The main contributions of this approach are as follows: 

1. We use an extension of RESCAL model by exploring different types of descrip-

tions of an entity. Aiming to increase the number of evidences to be used in the 

model, thereby increasing the effectiveness of the approach, we propose to perform 

similarity computation with three types of literals: attributes, URI infixes and pred-

icates. 

2. We propose an approach of collective entity resolution [3] that leverages the global 

interactions model of a RDF graph. It computes a global latent-component repre-

sentation of the entities and local interaction-models of the latent variables for each 

predicate. When considering the co-occurrence of different entities, we can perform 

joint analysis based not only on the representations of an entity, but also on the rep-

resentations of other entities that are related to this first. Thus, it is possible to in-

crease the accuracy of the results even considering noisy and inconsistent data. 

                                                           
1  http://linkeddata.org/ 



3. Besides comparative analysis with other solutions, we show initial experiments that 

demonstrate the improved effectiveness results of our approach in large datasets. 

The remainder of this paper is structured as follows: Section 2 presents an architec-

tural overview of the approach, while in Section 3 we present the process of compu-

ting and modeling similarity evidences into the entity-attribute matrix that will be 

coupled in the factorization, Section 4 describes the statistical relational learning 

model and its extension, while experimental results are reported in Section 5. Section 

6 summarizes related works and in Section 7 we conclude and outline our future work. 

2 Overall approach 

Figure 1 depicts an overview of our approach. The literal information for each enti-

ty in all datasets are extracted. There are some discriminative literal descriptions that, 

considering the triple structure, extracts the most significant information of each ele-

ment: 

─ Attribute values. Correspond to features of an entity (e.g. name/label, birth date, 

profession). Most approaches explore these values due to the precision when identi-

fying an entity;  

─ URI infix. In Papadakis et. al. [4] experiments results showed that approximately 

66% of the 182 million URIs of a dataset follow a common pattern: the Prefix-

Infix(-Suffix) scheme. Each component of this form plays a special role: the Prefix 

part contains information about the source (i.e., domain) of the URI, the Infix part 

is a sort of local identifier, and the optional Suffix part contains either details about 

the format (e.g., .rdf and .n3), or a named anchor. 

─ Predicate: We will use the last token (normalized) of the URI, e.g., “has spouse” 

for "fb:has_spouse". 

Considering two datasets A and B with n and m entities respectively, and a brute 

force algorithm, there will be at least n x m comparisons between instance pairs. It is 

impractical, especially when dealing with real world datasets, with millions of triples 

or even larger. To overcome this problem, we perform a preprocessing step to obtain 

the possible matching pairs. An inverted index is built for instances of some key words 

in the descriptions to efficiently determine potential candidates. The entities sharing 

the same keys in the index are considered to be candidate matching instances. 

After literal information extraction, we apply the similarity metrics for the candi-

dates and generate the entity-attribute matrix, with its entries corresponding to an enti-

ty having or not certain attribute or an infix in its URI description. In the same way, 

entity-entity relations from datasets are mapped to tensor, with which we perform the 

coupled factorization. The factor-matrix A computed in the above process can be 

interpreted as an embedding of the entities into a latent-component space that reflects 

their similarity over all relations in the domain of discourse. 

In order to retrieve entities that are similar to a particular entity e with respect to all 

relations in the data, we compute a clustering in the latent-component space. Initially, 



however, we normalize the rows of A, such that each row represents the normalized 

participation of the corresponding entity in the latent components. From feature vec-

tors corresponding to each entity (matrix rows) it is possible to create clusters of simi-

lar entities, since matrix A represents entities by their participation in the latent com-

ponents. The clustering will be determined by the entities' similarity evidences in the 

relational domain. 

 

Fig. 1. An overview of the proposed framework 

3 Computing and modeling similarity evidences 

We aim to extract the most evidences about entities since the performance of our ap-

proach is greatly influenced by the quality of feature extraction. This section describes 

the essential step for increasing efficiency results obtained from the RESCAL factori-

zation model. 

3.1 Information Extraction  

We try to extract the greatest number of literal information from the RDF triples. 

The literals can be grouped in three types: a) Attribute values; b) URI Infixes and c) 

Predicates. Attribute values can be a feature, a description or even an associated event, 

that when considered jointly, can uniquely identify an entity. It's important to point out 

that not always we have all the values informed or even they can be inconsistent.  



A second type of literal that can be of relevance to the process are the URI infixes 

of subjects or objects within triples. As stated in [4], it could be expected that Infixes 

of URIs, which are more source-independent than the Prefixes and the Suffixes, can 

contain the most discriminative information for the similarity task within a URI. De-

spite the high heterogeneity in the Prefixes of the URIs, the Infix remains the same. 

The Suffix is optional and can be ignored when matching URIs. Table 1 illustrates an 

example with two URIs that refer to the same person but are syntactically different. 

Specifically in this case, even the infixes are different, necessarily requiring the appli-

cation of a string similarity metric. 

 

Prefix Infix Suffix 

http://liris.cnrs.fr  /olivier.aubert  /foaf.rdf#me 

http://bat710.univ-lyon1.fr  /˜oaubert  /foaf.rdf#me 

Fig. 2. Example of two URIs that refer to the same person 

By definition, a predicate is the second part of an RDF statement and defines the 

property for the subject of the statement. Unlike a subject or object, a predicate must 

always be a URI. From an empirical analysis it appears that property matching is not 

trivial since the datasets were usually designed with their own ontologies. Neverthe-

less, if we make analyzes of synonymy it is possible to overcome results obtained only 

with similarity metrics. Some other linguistic facts, like polysemy and homonymy, are 

not treated because the isolated weight of these phenomena have little significance 

when considering all the contextual facts involved in the likelihood estimation of simi-

larity in the model. 

3.2 Strategies for evaluating and modeling the similarity 

Some different similarity metric functions can be used for different types of literal 

information. Each of the literals have its own characteristics and thus we consider the 

application of different metrics and strategies to analyze string similarity. 

For attribute values we use TF-IDF. An attribute can contain a great diversity of 

values, with different sizes and types. When performing the algorithm we will treat 

each string/label relative to entities as a set of values (documents). The TF-IDF weight 

is a weight often used in information retrieval and text mining. This weight is a statis-

tical measure used to evaluate how important a word is to a document in a collection 

or corpus. 

As URI infixes are normally composed of little strings to represent a single identifi-

er, we decided to use Edit-Distance metric. It is a metric that measures the distance 

between two words as the minimum number of single-character edits (i.e. insertions, 

deletions or substitutions) required to change one word into the other. 

Finally, it's important to highlight that predicates frequently involve verbs, which 

can appear in a wider variety of forms than nouns. They also contain often more func-

tional words, such as articles and prepositions. In this case we try to overcome the 

difficulty by using a combination of the metric of Edit-distance with the Wordnet to 



perform a jointly analysis that considers besides the string similarity, an analysis of 

synonyms between the two descriptions. In this strategy, when the similarity metric 

result is below to some predefined threshold, we apply the analysis of synonymy. 

After processing all the similarities we have to model the evidences in the entity-

attribute matrix. The matrix D of size n x l is composed of n entities at rows and l 

literal evidences at columns. A matrix entry Dij = 1 denotes that an entity have certain 

attribute value. Otherwise, if the entity does not have this attribute it will be set to 0. If 

two entities share the same attribute, but with different attribute values, they will not 

share the same entry in the table, i.e, each of them will have its distinct entry set to 1. 

In the sense of normalizing a set of similar values according to the metric, each col-

umn will be represented by one canonical value randomly chosen from the set, i.e., 

whether the values are slightly different, there will be just one entry . Although URI 

infixes and predicates are not strictly attribute values, we will handle them the same 

way as attributes. As a result, the matrix will contain all the literal evidences obtained 

from the performance of different metric and strategies of similarity. 

4 Statistical relational learning model 

We now present the model that we applied in our approach. Firstly, we need to identi-

fy the key elements of the model which in turn are the entities and its relations. The 

entities are given by the set of all resources, classes and blank nodes in the data, while 

the set of relations consists of all predicates that include relationships between entities. 

Once these elements were extracted from datasets we set out to the transformation of 

them into a tensor representation. 

A tensor is a multidimensional array. More formally, an N-way or Nth-order tensor 

is an element of the tensor product of N vector spaces, each of which has its own co-

ordinate system. A third-order tensor has three indices as shown in Figure 3. A first-

order tensor is a vector, a second-order tensor is a matrix, and tensors of order three or 

higher are called higher-order tensors[5]. 

Assuming that our relational domain consists of n entities and m relation types, data 

is modeled as a three-way tensor X of size mnn  , where the entries on two modes 

(dimensions) of the tensor correspond to the combined entities of the domain of dis-

course and the third mode holds the m different types of relations. 

A tensor entry Xijk= 1 denotes the fact that the k-th relation (i-th entity, j-th entity) 

exists. Otherwise, for non-existing or unknown relations, Xijk is set to zero. 

 

Fig. 3. Tensor model for relational data. i and j represent entities and k the relationships. 



Besides the modeling aspect, the motivation to use tensor factorization is due to its 

power of prediction when used as machine learning task, as is done in SVD method 

for example. The process of factorization decomposes an observed matrix/tensor into 

latent (or hidden) factors. Latent factors can be interpreted as new features that have 

been invented to describe the data. 

In RESCAL, learning is performed using the latent components of the model (Fig. 

4). The approach employs the rank-r factorization as follows, where each segment is 

factored as Xk 

 
T

kk AARX  where k = 1, ..., m (1) 

A is a n x r matrix containing the components of the latent representation of the en-

tities in the domain and Rk is an asymmetric matrix r x r modeling the interactions of 

the components of the kth latent predicate. The rows of the factor matrices A and R can 

be considered latent-variable representations of entities that explain the observed vari-

ables Xij, the columns can be considered the invented latent features and the entries of 

the factor matrices specify how much an entity participates in a latent feature. 

The factor-matrices A and Rk are computed by solving a regularized minimization 

problem [2] applying an alternating least squares algorithm (RESCAL-ALS), which 

updates A and Rk iteratively until a convergence criterion is met (linear regression). In 

order to retrieve entities that are similar to a particular entity e with respect to all rela-

tions in the data, it is sufficient to compute a ranking of entities by their similarity to e 

in A. 

 

Fig. 4. Illustration of data representation and factorization in the model 

Once this model assumes that two of the three modes are defined by entities, the 

process becomes limited to RDF resources. So we used an extension of the model, 

coupling the entity-attribute matrix with the tensor (Fig. 5) aiming to perform the fac-

torization [6, 7]. 

 

Fig. 5. A Tensor coupled with a matrix of attributes. 



If we include all the literal evidences in the tensor, a huge amount of entries would 

be wasted, which would lead to an increased runtime since a significantly larger tensor 

would have to be factorized. So, the idea is to add the predicate-value pairs to a sepa-

rate entity-attributes matrix D and not to the tensor X. The entity-attributes matrix D is 

then factorized into 

 AVD   (2) 

where A is the entities’ latent-component representation of the model and V is an r 

x l matrix, which provides a latent-component representation of the literals. To include 

this matrix factorization as an additional constraint on A in the tensor factorization of 

X, it is necessary to adjust the minimization problem. 

In figure 6 we show an illustration that depict an example. The latent-component 

representations of entities A and B will be similar to each other in this example, as 

both representations reflect that their corresponding entities are related to the same 

object (wikipedia page) and attribute value. Because of this and their own similarity 

evidences, C and D will also have similar latent-component between their representa-

tions. Consequently, the latent feature vector of A will yield similar values to the la-

tent feature vector of B and as such the likelihood of matching can be predicted cor-

rectly. The attribute values are only considered here due to the extension of the model. 

Considering that ai and aj denote the i-th and j-th row of A and thus are the latent-

component representations of the i-th and j-th entity, the products 

1) afb:m.05mwy8

T

 R{spouse_s, isMarriedTo} afb:m.0pc9q, 

2) afb:m.05mwy8

T

 R{spouse_s, isMarriedTo} a yago:Luiz_Inácio_Lula_da_Silva, 

3) ayago:Marisa_Leticia_Lula_da_Silva

T

 R{spouse_s, isMarriedTo} afb:m.0pc9q 

4) ayago:Marisa_Leticia_Lula_da_Silva

T

 R{spouse_s, isMarriedTo} ayago:Luiz_Inácio_Lula_da_Silva 

along with the similarities evidences obtained, will contribute to get likelihood of A 

and B representing the same real world entity. 

 

Fig. 6. Illustration with representations of the same real world entities in Freebase and YAGO. 

The red line indicates the wanted matching. 



5 Experiments 

We report the experimental results on benchmark datasets in OAEI 2010 and 2011. 

We used these two editions of the campaign aiming to get more comparative results. 

All algorithms have been implemented in Python, NumPy, RDFLib, NLTK and Scikit-

learn, respectively, and were evaluated on 3,8 GHz Intel (R) Core i7 CPU machine 

with 4 cores and 64 GB RAM, except where otherwise noted. 

The first dataset is a small real dataset, which includes two collections of RDF data 

files concerning persons (denoted by Person1 and Person2, respectively) and one col-

lection about restaurants. OAEI 2010 organizers provided reference mappings for 

each collection, where each mapping contains two URIs from different data files that 

denote the same person or restaurant. The goal of our evaluation on the dataset is two-

fold. First, we want to test various values for the parameters in our approach and apply 

the best ones to the experiments. Second, we can compare the results obtained with 

other systems on the same dataset. 

We compared the results of our approach (Relational) with other four enti-

ty/coreference resolution systems, namely ASMOV, CODI, LN2R and RiMOM, 

which also submitted their results on the same dataset to OAEI. ASMOV and CODI 

employed similarity-based matchers to obtain coreferent URIs and performed logical 

inference to remove inconsistent results. LN2R integrated a knowledge-based matcher 

to find semantically coreferent URIs and adopted a similarity propagation algorithm to 

generate similarities. RiMOM is a purely similarity-based system, which integrated 

many matchers to exploit a range of characteristics for both concepts and instances. 

All of them can only deal with pairwise instances, which are precisely called instance 

matching systems. 

The comparison results on F-Measure is depicted in Table 1. From the table, we 

can observe that our approach achieved the best F-Measure in average on the dataset. 

In particular, our Precision result is quite good , because we extracted a sensible num-

ber of evidences for the resolution process. 

 

Table 1. F-Measure comparison among approaches on the benchmark test 

In the second dataset, we compared our Relational approach with 

AgreementMaker, SERIMI, and Zhishi.Links, and that results were obtained from 



OAEI 2011 Instance Matching Campaign. AgreementMaker and Zhishi.Links are 

approaches that can be used only in one domain. Table 2 shows the comparative re-

sults with our approach. According to results, we got very much higher precision and 

recall if compared with other systems. Relational obtained good performance specifi-

cally on D4 and D5 datasets. 

 

Dataset 
Relational Agree.Maker Zishi.Links SERIMI 

PR RC F1 PR RC F1 PR RC F1 PR RC F1 

D1 0.98 0.97 0.97 0.79 0.61 0.69 0.92 0.91 0.92 0.69 0.67 0.68 

D2 0.97 0.95 0.96 0.84 0.67 0.74 0.90 0.93 0.91 0.89 0.87 0.88 

D3 1.0 0.96 0.98 0.98 0.80 0.88 0.97 0.97 0.97 0.94 0.94 0.94 

D4 0.98 0.95 0.96 0.88 0.81 0.85 0.90 0.86 0.88 0.92 0.90 0.91 

D5 0.97 0.96 0.96 0.87 0.74 0.80 0.89 0.85 0.87 0.92 0.89 0.91 

D6 1.0 1.0 1.0 0.97 0.95 0.96 0.93 0.92 0.93 0.93 0.91 0.92 

D7 1.0 1.0 1.0 0.90 0.80 0.85 0.94 0.88 0.91 0.79 0.81 0.80 

H-mean 0.97 0.97 0.97 0.92 0.80 0.85 0.93 0.92 0.92 0.89 0.88 0.89 

Table 2. Our relational approach compared with other systems results on OAEI2011 dataset 

In the next step we proceed to perform preliminary tests with our approach with 

large datasets, more specifically with some datasets from BTC 2012 (Billion Triples 

Challenge) [8], respectively RESTL and Freebase. These datasets contains approxi-

mately 122 million RDF n-quads triples. Firstly, we remove provenance information, 

duplicate triples, RDF blank nodes as well as reification statements. In the first round, 

it was generated a total of 675,244 sameAs links. The precision achieved was of 82% 

and the recall was of 75%. In the second round approximating 1 million links was 

generated, but the precision has dropped to 74% and the recall was of 68%. After all, 

the memory capacity was one of the big barriers we had to face, which showed a ma-

jor drawback of the approach. Although the sparse nature of the matrix and tensor, we 

still had the problem of scale, dealing with millions of entities at the same time. Even 

so, we believe that the relational learning approach could result in the selection of the 

most likely mappings. Although, it is important to note that conducting more experi-

ments is needed to deepen the discussion. 

6 Related work 

The problem of entity resolution has emerged as an important task to the Web of Data. 

This same task has been exploited in many different research arenas. 

Some approaches are based on domain specific solutions. One first tool is SILK - 

Link Discovery Framework [9]. It is a well-known tool for publishing and managing 

RDF relationship between two RDF datasets. The framework provides a declarative 

language in which different string similarity metrics, defined by the user, can be man-



ually combined. Raimond et al. [10] addresses the problem in the domain of music, 

modeling datasets as graphs, performing mapping between the graphs. Sleeman and 

Finin [11] and Shi et al. [12] present solutions for solving FOAF entities using logical 

constraints. Another group of solutions are domain independent. 

Among them, there are some papers that addresses logical constraints like function-

al/inverse functional properties and cardinality as key aspects in their solutions [13, 

14, 15]. Using this properties is not sufficient to find traces of similarity in LOD. Ho-

gan et. al. [16] tries to find more inverse functional properties with a statistical meth-

od. However, datasets must share the same vocabulary. 

Some papers focus on improving the efficiency on the matching. Ngomo and Auer 

[17] present LIMES framework in order to circumvent the scalability problem by 

applying the method of triangulation in metric spaces. Song and Heflin [18] generate 

candidates by indexing some key words of instances. To our knowledge, as our work, 

few papers  [4, 19, 20] focus on improving the effectiveness of matching with RDF 

data. 

7 Conclusions 

In this paper we presented a new approach for collective entity resolution supported 

by a linear regression statistical model. We use an algorithm that models the problem 

in a tensor, a prominent mathematical structure that fit nicely to the dyadic structure of 

RDF triples. The tensor model is one of the key strength of the approach, as it allows 

to include the influence of all the relationship patterns from a dataset. The experi-

mental results on the datasets showed that, as expected, the relationship patterns can 

improve the results, considering that as much more evidences the better the effective-

ness. However this has the cost that most of the solutions have to confront, the noise 

nature of data. We believe that our approach has achieved reasonably good results due 

to the similarity strategies we used. 

In the near future, we intend to investigate ways of parallelizing both the prepro-

cessing/extraction step and the factorization step, all based on the MapReduce para-

digm. We assume that for the preprocessing step we can improve our approach by not 

discarding some false positives and for the factorization step we can slice data to be 

processed in each node of a cluster. 
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