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Abstract. The paper presents an approach for optimizing query answering algo-
rithms that are based on approximate instance retrieval. We consider SPARQL
instance queries over OWL ontologies and use the OWL 2 Direct Semantics en-
tailment regime of SPARQL for their evaluation. Approximate query answering
algorithms are based on the creation of two sets; the set of certain or known query
answers and the set of possible query answers, which require checks to determine
whether they are real answers. Typically, it is expensive to check the possible an-
swers hence our goal in this paper is to reduce the number of possible answers
returned by approximate reasoning algorithms. We present an approach for us-
ing schema knowledge from the terminology (TBox) to optimize the evaluation
of SPARQL instance queries. We proceed by transforming the query into a set
of assertions (ABox). We then show how the TBox and this (small) query ABox
can be used to build an equivalent query where the additional query atoms can be
used for reducing the set of possible mappings for query variables.

1 Introduction

Query answering—the computation of answers to users’ queries w.r.t. ontologies and
data—is an important task in the context of the Semantic Web that is provided by many
OWL reasoners. Although much effort has been spent on optimizing the ‘reasoning’
part of query answering, i.e., the extraction of the individuals that are instances of a
class or property, less attention has been given to optimizing the actual query answering
part when ontologies in expressive languages are used. The SPARQL query language
[10], which was standardized in 2008 by the World Wide Web Consortium (W3C), is
widely used for expressing queries in the context of the Semantic Web. We use the
OWL Direct Semantics entailment regime of SPARQL 1.1 [4] according to which RDF
triples from basic graph patterns are first mapped to extended OWL axioms which can
have variables in place of classes, properties and individuals and are then evaluated
according to the OWL entailment relation. We focus only on queries with variables in
place of individuals since such queries are very common. We call the extended OWL
axioms query atoms or atoms.

Evaluating queries over OWL 2 DL ontologies using approximate query answer-
ing algorithms usually involves performing expensive consistency checks for deciding
whether possible answers are real. For example, the description logic SROIQ, which
underpins the OWL 2 DL standard has a worst case complexity of 2-NExpTime. In
this paper we focus on optimizing such query answering algorithms that are based on
approximate instance retrieval. We first define what an approximate query answering



algorithm is and give a simple query answering algorithm that is directly based on ap-
proximate instance retrieval. We afterwards present an efficient algorithm that is based
on a technique called query extension. According to query extension, for a given query
q, we compute an equivalent query q̂ that can be evaluated more efficiently. We first
replace the variables in q with fresh individual names and we afterwards perform real-
ization, i.e., we materialize entailed class and property assertions, for the queried TBox
and (small) query ABox. Replacing the individual names again with the correspond-
ing variable names then yields q̂. The additional query atoms in q̂ can then be used for
reducing the set of possible mappings for query variables. We provide a prototypical
implementation and evaluation of the proposed optimization, which shows that it can
lead to an improvement of up to two orders of magnitude in the query execution times.

The results in this paper have partly been published at the International Description
Logic Workshop 2013 [3], but only in this paper an empirical evaluation of the proposed
query optimization is performed.

2 Preliminaries

In this section we give a brief introduction to the SPARQL instance queries, which we
use throughout the paper. Instead of OWL syntax, for brevity, we use the description
logic (DL) [1] syntax for examples. We assume that an ontology O is a pair 〈T ,A〉 with
T a TBox that also includes axioms involving properties andA an ABox.

The WHERE clause of a SPARQL query consists of graph patterns. Basic graph
patterns (BGPs) can be composed to more complex patterns using operators such as
UNION and OPTIONAL for alternative and optional selection criteria. The evaluation
of (complex) graph patterns is done by evaluating each BGP separately and combin-
ing the results of the evaluation. We only consider the evaluation of BGPs since this
is the only thing that is specific to a SPARQL entailment regime. We further focus on
SPARQL instance queries, i.e., BGPs that retrieve tuples of individuals, which are in-
stances of the queried class expressions and properties. Such BGPs are first mapped
to OWL class and (object) property assertions that allow for variables in place of in-
dividuals. For further details, we refer interested readers to the W3C specification that
defines the mapping between OWL structural objects and RDF graphs [9] and to the
specification of the OWL Direct Semantics entailment regime of SPARQL [4] that de-
fines the extension of this mapping between BGPs and OWL objects with variables. For
brevity, we directly write mapped BGPs in DL syntax extended to allow for individual
variables.

Definition 1 (Query). A query signature S is a four-tuple (NC,NR,NI ,V), where the tu-
ple (NC,NR,NI) is a signature and V is a countable, infinite set of (individual) variables
disjoint from NC, NR, and NI . A term is an element from NI ∪V. Let C be an OWL 2 DL
class expression, t, t′ terms. An atom is an expression of the form C(t) (class atom) or
r(t, t′) (property atom). A query q is a formula ~x ← at1, . . . , atn, where at1, . . . , atn are
atoms and ~x is the tuple of variables contained in at1, . . . , atn. We use Var(q) (Var(at)
for a query atom at) to denote the set of variables in q (at), respectively. We write |q| to
denote the number of axiom templates in q.



A query mapping for q, short just mapping, is a total function µ : Var(q) → NI .
We use dom(µ) to denote the domain of µ. We write µ(at) (µ(q)) to denote the result of
replacing each variable x in at (q) with µ(x). A query mapping µ is a certain answer for
q over an ontology O, written O, µ |= q, if O |= µ(at) for each atom at in q. We denote
the set of all certain answers for q over O with ans(O, q).

Let X = {x1, . . . , xn} be a set of variables and M a set of query mappings. The
projection of X over M is the set M|X = {{x1 7→ µ(x1), . . . , xn 7→ µ(xn)} | µ ∈ M}.

For a query q = ~x← at1, . . . , atn, we often write q just as a set of atoms {at1, . . . , atn},
when the order of atoms and the order of the variables in ~x is not important. In the fol-
lowing we use A for a class, C for a class expression, r for an object property, a, b for
individuals and x, y for variables.

3 Query Answering via Approximate Instance Retrieval

In this section, we present a technique that uses approximate query answering algo-
rithms in order to optimize the evaluation of queries. Approximate query answering
algorithms can either be sound and incomplete, i.e., they under-approximate the set
of certain or known answers or they can be complete but unsound, i.e., they over-
approximate the set of certain answers. Typical examples of such algorithms rewrite
a knowledge base into a simpler logic in such a way that computing the results over
the simplified knowledge base yields the desired under- or over-approximation [7, 12].
Another possibility is to use a pre-model or complete and clash-free tableau generated
by an OWL reasoner from which one can then read-off certain instances of classes and
properties by analyzing which class and property facts have been added deterministi-
cally to the pre-model, i.e., one can obtain an under-approximation for class and prop-
erty instances. Similarly, one can analyze the non-deterministically added and absent
class and property facts to compute an over-approximation. More formally, we define
an approximate query answering algorithm as follows:

Definition 2 (Approximate Query Answering Algorithm). Let O be an ontology and
q a query. An approximate query answering algorithm apprQA(O, q) returns a pair of
sets 〈K[q], P[q]〉 of query mappings for q such that:

1. for each µ ∈ K[q], µ ∈ ans(O, q), and
2. for each µ ∈ ans(O, q), µ ∈ K[q] ∪ P[q].

We call K[q] the known and P[q] the possible answers for q over O.
An approximate query answering algorithm is called an approximate instance re-

trieval algorithm if the input query can only consist of a single query atom. For brevity,
we write inst(O, at) for the call of such an algorithm.

Without loss of generality, in the rest of the paper we assume that K[·] ∩ P[·] = ∅

holds for every approximate query answering algorithm.
For ease of presentation, we often write K[C] = {a1, . . . , an} instead of K[C(x)] =

{{x 7→ a1}, . . . , {x 7→ an}} and similarly for property atoms, queries, and possible an-
swers.



While it is well-known [11, 8, 5] how an approximate instance retrieval algorithm
can be implemented, it is less clear how one can implement a general approximate query
answering algorithm. For SPARQL instance queries, an obvious approach is to use an
approximate instance retrieval algorithm for each query atom and then compute the join
of the resulting sets K[·] and P[·], where we straightforwardly interpret the mappings
as relations. The following example illustrates that some possible answers can easily be
rejected.

Example 1. Let O be an ontology and q the query 〈x, y〉 ← C(x), r(x, y),D(y). Suppose
that (possibly as a result of inst(O,C(x)), inst(O, r(x, y)) and inst(O,D(y))) we have

K[C] = {a} K[r] = {〈a, c〉} K[D] = {c}

P[C] = {b} P[r] = {〈b, d〉, 〈b, e〉} P[D] = {d}

Even if we do not know O, we can conclude that 〈a, c〉 is a certain answer to q, since
a ∈ K[C], 〈a, c〉 ∈ K[r] and c ∈ K[D]. However, only 〈b, d〉 is a possible answer for
q since b ∈ P[C], 〈b, d〉 ∈ P[r] and d ∈ P[D]; 〈b, e〉 cannot be an answer for q since
although 〈b, e〉 ∈ P[r] and b ∈ P[C], e < K[D] ∪ P[D].

Algorithm intersecQans (see Algorithm 1) formalizes this idea, which we also illus-
trate in the next example.

Example 2. Let q be as in Example 1. After possibly bringing the query atoms into
a beneficial execution order and initializing K[C] and P[C], the sets K[q] and P[q]
are initialized to contain partial mappings that only become query mappings once the
algorithm is finished. During the following iterations, the mappings in K[q] are ex-
tended by performing a natural join with the known answers for the current atom at.
The set P[q] is extended by performing a natural join of P[q] with both K[at] and
P[at] and of K[q] with P[at]. For the example query, we next process r(x, y) and
obtain K[q] = {〈a, c〉} and P[q] = {〈b, d〉, 〈b, e〉}. We finally process D(y) and keep
K[q] = {〈a, c〉} and P[q] = {〈b, d〉}.

Lemma 1. Algorithm intersecQans is an approximate query answering algorithm for
SPARQL instance queries.

Proof (sketch). The lemma can straightforwardly be shown by induction on the length
of the input query.

The method order in intersecQans is optional and can use query ordering tech-
niques from databases to order the query atoms based on the cardinalities of the sets
K[at] and P[at], e.g., one would prefer joins over connected atoms and join a small re-
lation (an atom at with smaller K[at] and P[at] sets) with a bigger one where possible.
Algorithm 2 shows how we can evaluate SPARQL instance queries using intersecQans.

4 Query Extension

The question now is: given an ontology O and a query q, how we can find a more
efficient way to further reduce the cardinality of P[q] with the aid of inst.



Algorithm 1 intersecQans(O, q)
Require: O = 〈T ,A〉: an OWL 2 DL ontology

q: a query over O
Ensure: 〈K[q], P[q]〉: K[q], P[q] sets of known and possible answers for q over O
1: at1, . . . , atn := order(q,O)
2: for i = 1, . . . , n do
3: 〈K[ati], P[ati]〉 := inst(O, ati)
4: if K[q] and P[q] not initialized then
5: 〈K[q], P[q]〉 := 〈K[ati], P[ati]〉
6: else
7: K[q] := K[q] ./ K[ati]
8: P[q] := (P[q] ./ P[ati]) ∪ (K[q] ./ P[ati]) ∪ (P[q] ./ K[ati])
9: end if

10: end for
11: return 〈K[q], P[q]〉

Algorithm 2 evaluateIntersecQans(O, q)
Require: O = 〈T ,A〉: an OWL 2 DL ontology

q: a query over O
Ensure: the certain answers for q over O
1: 〈K[q], P[q]〉 := intersecQans(O, q)
2: return {µ | µ ∈ K[q]} ∪ {µ | µ ∈ P[q], (O, µ) |= q}

Example 3. LetO = 〈T ,A〉 be an ontology withO |= ∃r.>uC v B, q = {C(x),∃r.D(x)}
a query, inst(O,C(x)) = 〈{b}, {a}〉 and inst(O, B(x)) = 〈{a}, ∅〉 and inst(O,∃r.D(x)) =

〈∅, {a, b}〉. From Algorithm 1 we have K[q] = ∅ and P[q] = {a, b}. In this case, b is no
longer a possible answer of q. If b would be a possible mapping for x, it would have an
r-successor (since ∃r.D(x) ∈ q) and it would be an instance of C (since C(x) ∈ q) and,
hence, b should be in K[B] ∪ P[B] to satisfy the entailed axiom, which is not the case.

The atom B(x) in the above example is called a restricting atom. We now give a
definition of restricting atoms that will help us define an efficient algorithm.

Definition 3 (Restricting Atoms). Let O be an ontology, q a query, at a query atom
with Var(at) ⊆ Var(q), and inst an approximate instance retrieval algorithm. Then we
say that at restricts q if

P[q]|Var(at) ∩ (K[at] ∪ P[at]) ⊂ P[q]|Var(at)

where 〈K[q], P[q]〉 = intersecQans(O, q) and 〈K[at], P[at]〉 = inst(O, at).

Example 4. Going back to Example 3, we find that B(x) is indeed a restricting atom for
q according to Definition 3 since we have P[q]|{x} = {a, b} and P[q]|{x}∩ (K[B]∪P[B]) =

{a}, which clearly is a subset of P[q]|{x}.

If we want to preserve the certain answers of q, we should use restricting atoms that
do not change the answers of q. Let q and q′ be queries such that q′ = q ∪ {at}. If q and



q′ are equivalent queries, i.e., q and q′ yield the same answers over a fixed TBox and
any ABox, and at restricts q, then we can safely prune the set of possible answers for q
with the help of at. Obviously, we could also use more than one restricting atom to even
further restrict q. Since such atoms are not given as input, we address the problem of
(efficiently) computing such restricting atoms within an approximate query answering
algorithm after showing that using restricting atoms for queries indeed preserves the
certain answers.

Lemma 2. Let O = 〈T ,A〉 be an ontology, q and q′ two queries such that q′ =

q ∪ {at}, ans(O, q) = ans(O, q′), 〈K[q], P[q]〉 = intersecQans(O, q), 〈K[at], P[at]〉 =

inst(O, at), and at restricts P[q].

1. An algorithm that returns 〈K[q], {µ ∈ P[q] | µ|Var(at) ∈ (K[at] ∪ P[at])}〉 given O
and q as input is an approximate query answering algorithm and

2. |{µ ∈ P[q] | µ|Var(at) ∈ (K[at] ∪ P[at])}| < |P[q]|.

Proof (Sketch). 1. According to Lemma 1, intersecQans(O, q) is an approximate query
answering algorithm. Hence, the first condition on approximate query answering algo-
rithms is satisfied. That also the second condition is satisfied can be shown by assum-
ing, to the contrary of what is to be shown, that there is a certain answer µ such that
µ < K[q] ∪ {µ ∈ P[q] | µ|Var(at) ∈ (K[at] ∪ P[at])}, i.e., µ|Var(at) < K[at] ∪ P[at]. Using
the definition of restricting atoms, we can then show a contradiction.

2. Since {µ ∈ P[q] | µ|Var(at) ∈ (K[at] ∪ P[at])} is a strict subset of {P[q]} by
Definition 3 and since at restricts q the claim follows.

In order to define an improved approximate query answering algorithm based on
Lemma 2, we need to find a way of computing such restricting atoms. In the following,
we will see how we can use the TBox for this aim. We first create a small ABox, called
query ABox, from the query atoms by mapping their variables to fresh individuals that
do not appear in the query or the TBox to avoid interactions. We then materialize this
ABox w.r.t. implicit class and property assertions for the individuals that appear in it
and the (possible) additional individuals (nominals) added by the TBox creating the
extended query ABox. Afterwards, we can go to the extended query by replacing indi-
viduals back with variables of the initial query.

The proposed query extension method is similar to the method for deciding contain-
ment between conjunctive queries [2], with the main difference that instead of checking
query containment, we construct a query contained in the given query ourselves.

Let Z be a set of axioms or query atoms. In the definition below with NC
Z , NR

Z and
NI

Z we denote the set of classes, properties and individuals respectively appearing in Z.

Definition 4 (Query Extension). Let T be a TBox over a signature S, q a query over
the corresponding query signature Sq, and f a total function from Var(q) to a set of
individual names from NI . The query ABoxA f

q for q w.r.t. f is defined as follows:

A
f
q = { f (at) | at ∈ q}



The extended query ABox Â f ,T
q for q w.r.t. f and T is defined as:

Â
f ,T
q = A

f
q ∪ {B(a) | B ∈ NC

T∪A
f
q , a ∈ NI

T∪A
f
q and T ∪A f

q |= B(a)}

∪ {r(a, b) | r ∈ NR
T∪A

f
q , a, b ∈ NI

T∪A
f
q and T ∪A f

q |= r(a, b)}

If T ∪ A f
q is consistent, f is additionally bijective and range( f ) = NI \ NI

T∪q, we can
define the extended query q̂ w.r.t. f and Â f ,T

q as follows:

q̂ = { f −(at) | at ∈ Â f ,T
q }

Example 5. Suppose we have an ontology O = 〈T ,A〉 such that T contains one axiom,
i.e., ∃r.>uC v B and q = {C(x),∃r.D(x)} from Example 3. In this case, the query ABox
for q isA f

q = {C(ax),∃r.D(ax)} where f maps the variable x to the individual name ax.
The extended query ABox for q w.r.t. f and T is Â f ,T

q = {C(ax),∃r.D(ax), B(ax)} and
the extended query w.r.t Â f ,T

q is q̂ = {C(x),∃r.D(x), B(x)}. Please note that q̂ has the
same answers as q (w.r.t. any ABox), because O |= ∃r.> uC v B.

Note that we want q and q̂ to have the same answers w.r.t. any ABox. For this reason
we restrict f to map variables to individuals not appearing in q or T (nominals). If T
has nominals and we map a query variable to a nominal in T then Â f

q may contain
consequences that come from the interaction of query mappings and TBox nominals.
For example, let T = {∃r.{b} v A} and q = {r(x, y),C(y)}. If we choose f = {x 7→
a, y 7→ b} then Â f

q = {r(a, b),C(b), A(a)} and q̂ = {r(x, y),C(y), A(x)}. The mapping
{x 7→ a, y 7→ c} is an answer of q, whereas it is not an answer of q̂ w.r.t. the ABox
A = {r(a, c),C(c)}.

Lemma 3. The extended query q̂ created as in Definition 4 is unique.

Proof (Sketch). The lemma follows since the extended query ABoxes produced w.r.t.
different functions f are isomorphic to each other, i.e., identical modulo renaming of
individuals.

Intuitively (see Example 5), the extended query q̂ adds atoms to q that do not change
the set of answers of q, which we formalize by Theorem 1.

Theorem 1. Let T be a TBox, q a query, and q̂ the extended query as in Definition 4.
Then, T |= q ≡ q̂, i.e., for any ABoxA, ans(〈T ,A〉, q) = ans(〈T ,A〉, q̂).

Proof. From Definition 4 it is easily seen that Var(q) = Var(q̂) and q ⊆ q̂. Hence,
ans(〈T ,A〉, q̂) ⊆ ans(〈T ,A〉, q). For the other direction, let µ ∈ ans(〈T ,A〉, q). Any
function f from Definition 4 is such that 〈T ,A f

q〉 |= Â
f
q . Hence, 〈T ,Aµ

q〉 |= Â
µ
q, i.e.,

〈T , µ(q)〉 |= µ(q̂), which means 〈T ,A ∪ µ(q)〉 |= µ(q̂) due to monotonicity. But then
〈T ,A〉 |= µ(q̂) since 〈T ,A〉 |= µ(q), i.e., µ ∈ ans(〈T ,A〉, q̂). ut



4.1 Optimized Query Answering using Query Extension

Since extending the query with all atoms from Definition 4 and evaluating the extended
query is not efficient and may result in the checking of many not entailed mappings, we
afterwards describe an optimized algorithm that uses only specific extension atoms to
reduce the query answering time. A naive algorithm that uses the extension atoms could
be as follows: Given a query q and an ontology O = 〈T ,A〉, we compute the extended
query ABox Â f ,T

q and the extended query q̂ for some suitable bijection f . Note that we
do not have to consider the (often large) ABox A from O for computing q̂. For each
atom at ∈ q̂ \ q we check whether at restricts q according to Definition 3 and create
a new query q′ that consists of q and the restricting atoms from q̂ \ q. We afterwards
evaluate q′.

Although K[·] and P[·] are often fast to compute (due to the use of simpler approxi-
mate reasoning algorithms or since the sets are simply extracted from a pre-model) and
often cached, it is not very efficient to always retrieve all required such sets from the
reasoner in order to perform the required joins for determining the restricting atoms.
Hence, in Algorithm 3 an alternative definition for restricting atoms that just uses the
cardinalities of the sets K[·] and P[·] is used. The idea is to use the cardinalities of re-
stricting atoms from q̂ to more precisely estimate the cardinalities of atoms in q. This
allows for a better ordering of query atoms in cost-based query planning. Moreover,
since it is expensive to evaluate restricting atoms if they do not contribute relevant map-
pings, in Algorithm 3 we show how we can use the query extension technique for query
optimization while checking only relevant mappings.

Algorithm 3 (evaluateExtensionQans) takes as input a query q and an ontology O
and produces a set of certain answers for q over O. The goal for efficiency is to reduce
the sets K[·] and P[·] of query atoms from q based on atoms on the extension of q (q̂)
created as in Definition 4. Note that we use the methods instK(O, at) and instP(O, at) to
retrieve the sets K[at] and P[at] of at and the methods inst|K|(O, at) and inst|P|(O, at) to
retrieve the cardinalities of the sets K[at] and P[at] of at, respectively. In particular, we
first take the extended query q̂ according to Definition 4 (line 4) and for each atom atq of
q that can be restricted, we check which of the extension atoms (i.e., atoms in q̂ \ q) are
restricting for atq and we keep in RA[atq] the restricting atom that leads to the smallest
P[atq] set for atq (lines 5-16). The method canbeRestricted takes as input an atom atq
of the initial query and returns true if atq is of the form C(x), r(x, a) or r(a, x), otherwise
it returns false. An atom atr is considered a restricting atom if it shares variables with
atq and additionally it reduces the P[·] set of atq, i.e., the cardinality of the K[·] and P[·]
sets of atr is smaller than the cardinality of the P[·] set of atq (line 11).

After defining restricting atoms for every atom atq ∈ q we move to the evaluation of
the query. We first order the atoms in q based on the sets of known and the reduced sets
of possible mappings for query atoms, which are created using information about the
restricting atoms from the structure RA (line 17). Note that in contrast to Algorithm 1,
the method order in Algorithm 3 additionally takes RA into account. We initialize the
set of certain answers Rans with the identity mapping µ0 which does not map any vari-
able to any value (line 18). For each atom atq of q and mapping µ ∈ Rans we proceed
as described below (lines 19-33 of Algorithm 3): If atq instantiated by µ has all its vari-
ables bound we check if the appropriate projection of the mapping belongs to the K[·]



Algorithm 3 evaluateExtesionQans(O, q)
Require: O = 〈T ,A〉: an OWL 2 DL ontology

q: a query over O
Ensure: the certain answers for q over O
1: for atq ∈ q do
2: RA[atq] := atq
3: end for
4: q̂ := extend(q,O)
5: for atq ∈ q do
6: if canbeRestricted(atq) then
7: Patq

N = inst|P|(O, atq)
8: for atr ∈ q̂ \ q do
9: 〈Katr

N , Patr
N 〉 = 〈inst|K|(O, atr), inst|P|(O, atr)〉

10: if Var(atq) ∩ Var(atr) , ∅ and Katr
N + Patr

N < Patq
N then

11: Patq
N = Katr

N + Patr
N

12: RA[atq] = atr
13: end if
14: end for
15: end if
16: end for
17: at1, . . . , atn := order(q,O,RA)
18: Rans := {µ0 | dom(µ0) = ∅}

19: for i = 1, . . . , n do
20: R := ∅
21: at′ := RA[ati]
22: for µ ∈ Rans do
23: if Var(ati) \ dom(µ) = ∅ then
24: if µ|Var(ati) ∈ instK(O, ati) or (µ|Var(at′) ∈ instP(O, at′) and O |= µ(ati)) then
25: R := R ∪ {µ}
26: end if
27: else
28: R := R ∪ {µ′ ∪ µ | µ′ ∈ instK(O, µ(ati))}
29: R := R ∪ {µ′ ∪ µ | µ′ ∈ instP(O, µ(at′)),O |= (µ′ ∪ µ)(ati)}
30: end if
31: end for
32: Rans := R
33: end for
34: return Rans

set of the atom or if it belongs to the P[·] set of the restricting atom and the mapping
leads to an entailed axiom (lines 23-26). If atq contains unbound variables we extend
µ with mappings for the unbound variables based on the K[·] set of the atom and the
P[·] set of the restricting atom that lead to entailed axioms (lines 27-30). Note that we
check if the mapping belongs to the possible set of the restricting atom but we check
entailment using atq of q since we are interested in the evaluation of the atoms of q.
Also note that the mappings µ′ do not assign values to any of the variables covered by



the already computed (partial) solution µ. This allows for defining the union of µ and µ′

by setting (µ ∪ µ′)(v) = µ(v) if v ∈ dom(µ), and (µ ∪ µ′)(v) = µ′(v) otherwise.

5 Evaluation

Although the proposed optimized algorithm can be used, in general, for improving the
performance of most approximate query answering algorithms, here the evaluation is
based on the system described in [5]. The evaluation of the proposed optimized al-
gorithm has been performed using the HermiT reasoner3 and extending the OWL-BGP
system.4 For extracting the K[·] and P[·] sets for each query atom (which we call known
and possible instance sets respectively) we use the pre-model of the queried ontology
generated by HermiT to read-off known (possible) instances of classes and properties
by analyzing which facts have been added deterministically (non-deterministically) to
the pre-model as it is described in our previous work [5]. We do not extract information
about the instances of (complex) class expressions from the pre-model, hence we as-
sume that complex class expressions have only possible instances and these are all the
individuals appearing in the signature of the queried ontology.

We tested the developed optimizations with the University Ontology Benchmark
(UOBM) [6] and a range of custom queries that show the effect of the presented tech-
niques. All experiments were performed on a Mac OS X Lion machine with a 2.53 GHz
Intel Core i7 processor and Java 1.6 allowing 1GB of Java heap space. Note that UOBM
contains disjunctions and the reasoner makes also nondeterministic derivations. In order
to reduce the reasoning time, we removed the nominals which are hard to deal with and
we used the first department of UOBM containing 3,043 individuals and 15,250 ABox
assertions. The resulting ontology took 16 s to load and 0.1 s to classify and initialize
the known and possible instances.

In order to show the effect that query extension (Algorithm 3) has, we have created
the following queries, which contain atoms with possible instances:

q1 = {isAdvisedBy(x, y),GraduateStudent(x),Woman(y)}
q2 = {isTaughtBy(x, y),GraduateCourse(x),Woman(y)}
q3 = {teachingAssistantOf(x, y),GraduateCourse(y),Woman(x)}
q4 = {∃takesCourse.>(x),∀takesCourse.GraduateCourse(x)}
q5 = {Woman(x),∃worksFor.Organization(x)}

In the above queries, the sets P[GraduateStudent], P[Woman] and P[GraduateCourse]
are non-empty, i.e., the query classes have possible instances. In Table 1 we compare
the number of possible instances that are being checked (i.e., the number of performed
consistency checks), denoted by EntNo in the table, and the running time of three dif-
ferent algorithms w.r.t. the above queries, i.e., i) Algorithm evaluateExtensionQans,
ii) the algorithm from our previous work when static ordering is used [5], which is de-
noted by Static in the table and iii) Algorithm evaluateIntersecQans. Algorithm Static
takes as input a query and an ontology and orders the atoms of the query based on the
known and possible instances of query classes and properties. Then, the query evalua-
tion starts with the first atom, retrieves the known mappings and checks all remaining

3 http://hermit-reasoner.com/
4 https://code.google.com/p/owl-bgp/



Table 1. Query answering times in seconds for UOBM with one dep using i) the static algorithm
from [5], ii) evaluateIntersecQans and iii) evaluateExtensionQans

Static evaluateIntersecQans evaluateExtensionQans
Query Time EntNo Time EntNo Time EntNo

q1 20.84 47 11.79 29 10.54 19
q2 21.63 51 10.70 26 12.06 26
q3 12.78 32 5.05 12 5.60 12
q4 569.06 1694 1,216.18 3709 256.77 1332
q5 2,198.66 2117 829.64 2198 18.36 135

possible mappings using either dedicated reasoner methods or entailment checks. While
the former is quite cheap, involving only look-ups to the memory, the latter is usually
significantly more expensive, involving reasoning procedures. For the next query atom,
the evaluation is analogous with the difference that the join variables are taken into ac-
count, i.e., the evaluation is restricted only to already established mappings if a joined
variable has been evaluated in a previous step.

From Table 1 we see that Algorithm evaluateExtensionQans considerably reduces
the number of performed consistency checks in comparison to Static and hence the
query answering times for all queries. As explained in the previous section this is
achieved by exploiting the known and possible instances of atoms belonging to the
extension of the query. For example, in Query q1 Algorithm Static results in the order-
ing [isAdvisedBy(x,y), GraduateStudent(x), Woman(y)], while the use of the exten-
sion atom Professor(y) significantly reduces the query specific instances of Woman(y)
and hence the ordering [isAdvisedBy(x, y),Woman(y),GraduateStudent(x)] is chosen
based on the reduced instance sets, which leads to better performance results. Similarly,
for Queries q2 and q3 the use of the extension atoms Facutly(y) and TeachingAssistant(x)
significantly reduces the mappings for the atoms Woman(y) and Woman(x) respec-
tively. In the same way for Queries q4 and q5, which contain atoms with (complex) class
expressions, the use of the extension atoms GraduateStudent(x) and Employee(x) sig-
nificantly reduces the number of mappings for x that need to be checked. Note that
the query extension phase takes around 0.3 seconds for all the above queries. Algo-
rithm evaluateIntersecQans also performs better than Static because only the possible
mappings that belong to the known or possible sets of all query atoms are checked.

Regarding the comparison between the algorithms evaluateExtensionQans and
evaluateIntersecQans we see that evaluateExtensionQans performs much better than
evaluateIntersecQans for queries containing atoms with (complex) class expressions
and it performs similarly for queries without atoms with (complex) class expressions.
It is worth noting that on Query q5 Static performs worse than evaluateIntersecQans
even though Static performs less consistency checks than evaluateIntersecQans. This
happens because the two algorithms choose a different ordering and, in particular, Static
evaluates the atom ∃worksFor.Organization(x) first, which requires more expensive
consistency checks than the complexity of the consistency checks performed for the
atom Woman(x) and the afterwards evaluation of ∃worksFor.Organization(x) based
on the reduced x-mappings.



6 Conclusions

In the current paper we presented an approach for using the TBox of an ontology to
optimize the evaluation of SPARQL instance queries evaluated under the OWL Direct
Semantics entailment regime. For those queries we showed how we can build equiva-
lent queries with additional atoms which can be exploited to reduce the set of possible
mappings for query variables. Through our experimental evaluation we showed that the
use of these extension atoms can lead to a significant reduction in query answering time,
which can be up to two orders of magnitude.
Acknowledgements This work was supported by IKY in collaboration with DAAD in
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