
WebProtégé: a Web-based Development
Environment for OWL 2 Ontologies

Matthew Horridge, Tania Tudorache, Csongor Nyulas, and Mark Musen

Stanford Biomedical Informatics Research Group
Stanford University, California, USA

Abstract. We present the latest version of WebProtégé: a free, open-
source Web-based tool for editing OWL ontologies. WebProtégé allows
users to create, upload, share and collaboratively edit OWL ontologies. It
contains various tools that are designed to support collaborative editing
processes, including issue discussion, complete change tracking support
and watches. Besides providing complete OWL 2 editing capabilities,
WebProtégé also features a default simplified user interface that is tar-
geted at OWL neophytes. This simplified interface, which we have de-
signed using empirical techniques, offers a quick and easy way to edit
commonly used OWL 2 axiom and class constructors. In this paper we
describe these features and the main ideas behind the tool. WebProtégé
is available for use at http://webprotege.stanford.edu.

1 Introduction

WebProtégé is a web-based, multi-user, collaborative editing environment for
OWL ontologies. It is perhaps best thought of as a kind of “GoogleDocs” for
ontologies. We use this analogy because WebProtégé assumes a very similar
application model: When a user logs in they see a list of the ontologies that they
own or the ontologies that other WebProtégé users have shared with them. They
can control who can view, comment on and edit their ontologies, thus they can
share ontologies with collaborators for editing or viewing. They can also make
an ontology completely public so that it can be viewed and commented on by
anyone who visits WebProtégé.

While WebProtégé has been around for some time—the first version was
made available around 2008 [17]—this latest version was released in 2013 and is
a complete rewrite. The major change is that WebProtégé is now underpinned by
the OWL API [4], it now has complete support for editing OWL 2 ontologies [10],
and it now features a simplified user interface that is designed to be used by OWL
neophytes [6].

In this paper, we present the main motivation for WebProtégé, we exam-
ine features that are salient for editing OWL 2 ontologies, and we discuss our
roadmap and planned features for the system.



2 WebProtégé Overview

When a user logs into WebProtégé they are presented with a list of the projects
that they either own, or for which they have editing, commenting or viewing
rights. A project is essentially a set of ontologies plus metadata, sharing settings
and user interfaces settings. Users create their own projects, which are hosted
on our servers at Stanford (http://webprotege.stanford.edu).1 They either
start by creating a new ontology, or they start by uploading a set of existing
ontologies that they have already worked on. Having created a project, a user
can then “share” it, adding the names of collaborators to the list of those who
can edit it, comment on it, or view it.

Fig. 1: The main editing interface in WebProtégé. The lefthand pane presents the
class tree, indicating which classes have discussions attached to them. The middle
pane presents the class frame for the selected class. The righthand pane shows the
discussions for the selected class and also shows a live feed of changes.

The default WebProtégé user interface is shown in Figure 1. In essence it
consists of a series of tabs that provide links to pre-configured perspectives. Each
perspective consists of a layout of views known as portlets. Each portlet presents
a specific portion of the ontologies in a project or information about a project.
For example, the class hierarchy portlet displays the asserted class hierarchy (left
hand side of Figure 1), the entity description portlet displays information about
the selected entity (middle pane in Figure 1), while the notes and discussions
portlet displays issues that pertain to the selected entity (right hand side of
Figure 1).

1 Users can also set up local WebProtégé installations if they have a desire to do
so. For more details see the link to the admin guide at https://github.com/

protegeproject/webprotege/



A key feature of the WebProtégé user interface is that project owners are able
to configure their projects with custom perspectives and custom layouts within
these perspectives. This means that other users see these layouts by default when
they view the project in question. Furthermore, each user is able to override a
project configuration in order to satisfy their own tastes and to meet the needs of
the tasks that they personally have to accomplish. One benefit to this approach
is that different configurations can be used to suit different groups of users that
may have different levels of expertise in OWL.

3 Revision-based Change Tracking

Structured change tracking support, which records the changes made to ontolo-
gies in a project, is built into the core of WebProtégé. Changes are recorded as
axiom additions and removals using structures borrowed from the OWL API.
Metadata about each axiom change set is also recorded, in particular, the au-
thor, the timestamp of the change, and a high level comment that describes
the change. High level comments are either automatically generated by the user
interface, and are thus related to a user interface operation for example “Added
A as a subclass of B”, or they may be manually specified in the form of commit
comments.

The change history can be viewed in a number of ways including viewing
changes over a particular time period, viewing changes made by a particular
author, or viewing changes that affect a particular entity (class, property, indi-
vidual etc.). Figure 2 shows an example of the “changes by entity” portlet, which
groups together changes that are syntactically related to the selected entity.

Fig. 2: The “changes by entity” portlet displaying syntactically related changes for the
selected entity (A320).

The change tracking support also facilitates revision based history control.
For a given project, it is possible to retrieve the ontology changes that are as-



sociated with a specific revision of that project. Although WebProtégé does not
currently feature the ability to produce a diff between two versions of an ontol-
ogy, the revision based change support allows prior versions of ontologies to be
downloaded and compared in external diff tools such as Ecco [2], Bubbastis [9]
or the OWL difference engine [13].

Finally, in relation to change tracking support, users can “watch” ontologies
for changes. They can watch changes that affect the syntactic frame of a specific
entity, changes that affect the frames of subclasses of a given class, or watch all
possible changes to an ontology. When changes occur that fall into a scope of a
watch, the user for that watch is notified via email.

4 A Simplified User Interface for OWL Neophytes

Although WebProtégé offers full-blown editing support for OWL 2 ontologies
the default user interface configuration, which a user is presented with when
they create a project, is the simple user interface that is shown in Figure 1.
The display shown in Figure 1 is for editing class descriptions, however similar
displays exists for property and individual descriptions.

This simple interface shows forms that are capable of editing a subset of the
types of axiom and class constructors that are available in OWL 2. The initial
design of this user interface was based on an empirical analysis of commonly
used OWL constructs in a corpus of biomedical ontologies. Over the course
of five months we analysed the projects that were created by users uploading
existing OWL ontologies into WebProtégé in order to analyse the “fit” of the
simple user interface against a wider corpus of (non-biomedical) ontologies. We
found that this UI design captures much of what users need to say while shielding
them from the direct use of class expressions, quantifiers and Manchester syntax
details. A complete description of the design and evaluation of the UI may be
found in our ISWC 2013 paper [6]; we simply present the main ideas here.

The simplified user interface that we have developed is shown as the centre
pane in Figure 1 and an enlarged view is shown in Figure 3. The particular
UI shown here is the main editing form for class frames. The form is com-
posed of fields which constitute tables of property–value pairs. The fields feature
auto-completion for property, class, individuals and datatype names. The auto-
completion is type sensitive: it will offer only the types of entities that can be
entered based on the information in the ontology up to this point. For example,
the auto-completion prevents the user from entering datatypes as fillers for ob-
ject property restrictions. In terms of OWL, one row in the table corresponds
to one or more axioms. In the example in Figure 3, the row hasFlightControlSystem

and FlyByWireSystem corresponds to the axiom SubClassOf(:A320, ObjectSomeValues-

From(:hasFlightControlSystem :FlyByWireSystem)).
A key feature of this simplified UI is that it minimises the distinctions that

users have to make explicitly. For example, in previous versions of the tool [16],
when a user created a new property, they had to decide explicitly whether the
property was an object or a data one. Similarly, when entering class expressions



Fig. 3: Property–value pairs being edited. The class frame in the figure contains mixed
object and data property usage. It also contains a mix of ObjectSomeValuesFrom, Ob-

jectHasValue and DataHasValue class expressions. The auto-completion box prompts the
user to create new entities where necessary. We eliminated the need to choose explicitly
between object and data properties; we determine property types based on filler values.

the user had to make various choices such as choosing between SomeValuesFrom and
AllValuesFrom restrictions, and between SomeValuesFrom and HasValue restrictions.
In this simplified UI, we use simple and reliable heuristics to determine the
type of property and the type of restriction that the user creates based on the
fillers that she specifies. Figure 3 displays a class description that has mixed
use of data and object properties. It also contains mixed use of different types
of class expressions, individuals, and data values: the first row corresponds to
an ObjectSomeValuesFrom class expression whose filler is a class, the second row
an ObjectHasValue class expression whose filler is an individual, and the third row
a DataHasValue class expression whose value is an integer literal. At no point
when entering the information shown in Figure 3 has the user explicitly had
to decide upon and choose the types of class expressions, or decide upon and
choose the types of properties—the system determines these distinctions in a
straightforward but highly effective way.

Finally, this UI also supports a kind of on-the-fly object creation and type
inference. In the fourth row in Figure 3 the user wants to specify a new type of
flap for the class (aircraft) they are describing. However, hasFlap is a new property
name. In this case, the system accepts the new property name, warns the user
that it is new (in case the user has simply made a typo) and allows them to move
on to specify a filler. In this case, the user specifies a new class (DoubleSlottedFlap).
Once they enter this information, WebProtégé creates the necessary declarations
of the appropriate type and generates the class expressions and axioms under
the hood.

In addition to editing logical information, WebProtégé provides support for
describing extra-logical information about entities through OWL annotations.
These annotations are part of the class frame (Figure 1). WebProtégé provides



Fig. 4: Editing an OWL 2 class description using auto-completion to complete class,
property and individual names.

auto-completion support that allows users to reuse annotation vocabulary from
well known metadata sets such as DublinCore and SKOS [1] (Figure 1).

5 Complete Editing Support for OWL 2 Ontologies

At the other end of the scale from the simplified UI, WebProtégé provides com-
plete syntactic editing support for OWL 2 ontologies. One of the main changes
in this latest version of WebProtégé is that it underpinned by the OWL API—
the de-facto standard API for working with OWL 2 ontologies. This means that
WebProtégé “natively” supports OWL 2 both on the back-end and on the front-
end. Indeed, the user interface can be configured with components that allow
OWL 2 entity frames to be edited. Descriptions are presented using a slightly
extended version of the Manchester OWL Syntax [5]. The extensions, which are
minor, allow source ontologies in an imports closure to be specified for sets of
axioms. For example, in Figure 4, the syntax “[in root-ontology]” specifies that as-
sociated annotation assertions and subclass axioms reside in the project root
ontology (the root of the project imports closure). This small extension allows
axioms to easily be moved between ontologies in an imports closure.

Figures 4, 5 and 6 show different aspects of the main view for full-blown
OWL 2 entity description editing. As can be seen, WebProtégé supports inte-
grated development environment (IDE) style code editing. It offers many of the
standard code features that are expected of IDEs.

Auto-completion As a user types in expressions they can invoke the auto-
completion facility (Figure 4) so that they can easily re-use existing entity names
and built in keywords. Auto-completion is context sensitive so that it only of-



Fig. 5: Error highlighting whilst editing an OWL 2 class description. WebProtégé
features syntax checking and error highlighting for class descriptions written in the
Manchester OWL Syntax. If a name is not recognised, the user interface prompts
the user to create the name as a new type of class, object property, data property,
annotation property, datatype, or individual as appropriate.

fers names corresponding to entity types that can be entered into the current
location.

Error checking and on-the-fly object creation Descriptions of entities
are checked as a user enters them into the editing area. If unrecognised entity
names are encountered they are highlighted in red (Figure 5). Unlike the desktop
version, WebProtégé allows inline entity creation. For example, in Figure 5, the
user has typed hasRange, but this name is not recognised as it is not bound to an
existing entity. At this point the user can decide that hasRange is indeed a new
entity and they can choose to create it on the fly—in this case as a data-property.

Change committing Once a user has finished editing the description of an
entity they can choose to “commit” the changes to the project so that other
users can see them. As shown in Figure 6, they can either choose to commit the
changes with or without a high level comment. This allows users to elaborate
on the reasons for multiple, possibly complex changes in the context of a change
to an entity description. If a user chooses not to explicitly commit changes they
will be auto-committed when the selected entity changes.

6 Form-based Ontology Editing

Another major feature of the UI, which has successfully been used in a very large
project that is producing the next version of the International Classification of
Diseases [14, 15], is that it can display fine-grained customised Web-forms for



Fig. 6: When a user has finished editing a class description they get prompted to
commit the changes that they have made. The user can commit the changes with a
default commit message, or they can specify a custom message that can be used to
describe the changes and the rationale for them in more detail.

editing descriptions of entities and for instance acquisition. An example of such
a form is shown in Figure 7. The form is created with a markup language that
allows the layout of widgets to be specified along with a description of how these
widgets should behave with respect to the underlying ontology.

In contrast to the forms in Protégé 3, which are automatically generated
from the TBox in an ontology, the forms in WebProtégé are designed by hand
and manually linked to the underlying ontology. While this requires some ini-
tial setup, we have found that there are several benefits to this loosely coupled
approach. In particular, the underlying ontology does not need to be polluted
with a tangled mess of expressive axioms or baroque modelling choices in order
to get “the forms to come out right”. For example, it is not necessary to make a
property functional in order to make the form display radio buttons instead of
check boxes, or a drop down box instead of a list box. Similarly, domains need
not be specified in order to get entry fields for properties on a form, and ranges
need not be specified to restrict values for a form field to specific entities in an
ontology.

7 Current and Future Work

Reasoning support Our top priority at the moment is OWL reasoner inte-
gration. We intend to offer cloud-based reasoning to support to projects that
require it (resource permitting). The end functionality will be similar to the
functionality that is offered in the desktop suite. That is, WebProtégé will allow
users to check the consistency of ontologies in their project, all users to view an
entailed class and property hierarchies, and entailed types for individuals. We



Fig. 7: A sample of some of the forms used to edit the International Classification
of Diseases (ICD) ontology. The forms are created using a markup language, which
specifies the form controls to use, the layout and how to bind these controls to the
underlying ontology. This lose coupling offers a great deal of flexibility.

will also support DL queries in a similar manner to the DL query tab in the
desktop version.

We envisage that, at least by default, users will not interact with a rea-
soner directly. Instead, a reasoner will be enabled for a project and it will run
in the background, with consistency checking and satisfiability checking being
performed automatically against each project revision. As users perform edits
the reasoner will automatically catch up and users will be able to query against
the latest revision that has been processed by the reasoner.

Integration with third party tools such as GitHub In the software en-
gineering world the software “Git” is rapidly becoming the tool of choice for



version control and collaborative software engineering projects. GitHub2 is a so-
cial coding website that hosts Git-based projects and provides tools such as wikis,
release pages and issue trackers. While GitHub primarily hosts software projects,
it is also used by some ontology authors in the Biomedical Ontology Community
for hosting ontology-based projects. For example, the Uber Anatomy Ontology
(UBERON) project [3] is hosted on GitHub.3 Projects such as UBERON take
advantage of the GitHub’s social coding tools, in particular issues trackers, and
also use it to keep track of previous versions. Given the rising popularity of
GitHub-based ontology projects, it is our intention to provide some kind of in-
tegration with tools like GitHub. In particular, we imagine that project releases
could be pushed from WebProtégé to an associated GitHub repository and that
GitHub issue trackers could also be linked to from within WebProtégé.

Support for different ontological sources Recent work on tools such as
RightField [18], Populous [7] and Tawny OWL [8] has taken a somewhat different
approach to ontology editing for domain experts than traditional tools such
as Protégé. Rather than having domain experts directly edit and manipulate
ontologies in ontology editors, these tools have them edit raw source material
for ontologies, which then gets “compiled” into OWL. This raw source material
has take the form of spreadsheets and comma separated value (CSV) files in
tools such as RightField and Populous, and in the case of Tawny-OWL it has
taken the form of a particular dialect of the Clojure programming language. We
believe that this kind of approach has certain advantages over direct ontology
manipulation. In particular, domain experts can work with tools such as MS-
Excel that they have experience with and are comfortable working with; they can
perform bulk manipulation or bulk data entry if working with spreadsheet like
tools; and finally, the translation to OWL can be specified in a standoff way that
can be re-run, altered, optimised and experimented with in order to produce an
end ontology that meets application requirements. While WebProtégé currently
supports a form of bulk data entry whereby users can work in Excel and import
the resulting spreadsheets and CSV files into the system, we intend to evolve
this idea so that multiple different source file formats can be used. We can also
imagine that data entered through WebProtégé forms could be stored in its raw-
data state, which could later be compiled into OWL, thus allowing a flexible
translation process. Ultimately, we envisage that any translation and import
process will be declaratively specified using a tool such as Mapping Master [12,
11].

8 Availability and Uptake

WebProtégé is open source and freely available at http://webprotege.stanford.
edu. We encourage potential users to take advantage of this hosted solution as it
can be used with zero setup costs. Furthermore, we have a strict privacy policy;

2 http://www.github.com
3 https://github.com/obophenotype/uberon



we regularly update it in a seamless fashion so that it has the latest bug fixes
and features; and we provide nightly project backup.

At the time of writing the version of WebProtégé hosted at http://webprotege.
stanford.edu contains just over 10,000 ontology projects. While there are many
small ontologies, the largest ontologies that have been loaded into the system
are hundreds of thousands of axioms in size and there are projects that have
tens of thousands of changes.

For users who are unable to use our hosted solution, WebProtégé is also
freely available for download from our GitHub site: http://www.github.com/
protegeproject/webprotege. It can be set up on a local network, which is
convenient for users working behind a corporate firewall, for example.

Finally, WebProtégé is written using the Google Web Toolkit. All code and
developer documentation is available on our GitHub site.

Acknowledgements This work was supported by Grants GM103316 and
R01GM086587 from the National Institute of General Medical Sciences of the
United States National Institutes of Health.

References

1. Thomas Baker, Sean Bechhofer, Antoine Isaac, Alistair Miles, Guus Schreiber, and
Ed Summers. Key choices in the design of simple knowledge organization system
(SKOS). Journal of Web Semantics, 20:35–49, 2013.

2. Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Ecco: A hybrid diff tool for
OWL 2 ontologies. In Pavel Klinov and Matthew Horridge, editors, Proceedings of
OWL: Experiences and Directions Workshop 2012, volume 849 of CEUR Workshop
Proceedings, 2012.

3. Melissa Haendel, James P. Balhoff, Frederic B. Bastian, David C. Blackburn, Ju-
dith A. Blake, Yvonne Bradford, Aurélie Comte, Wasila M. Dahdul, Thomas Decec-
chi, Robert E. Druzinsky, Terry F. Hayamizu, Nizar Ibrahim, Suzanna E. Lewis,
Paula M. Mabee, Anne Niknejad, Marc Robinson-Rechavi, Paul C. Sereno, and
Christopher J. Mungall. Unification of multi-species vertebrate anatomy ontolo-
gies for comparative biology in uberon. Journal of Biomedical Semantics, 5:21,
2014.

4. Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for OWL
ontologies. Semantic Web, 2(1):11–21, February 2011.

5. Matthew Horridge, Nick Drummond, John Goodwin, Alan L. Rector, Robert
Stevens, and Hai Wang. The Manchester OWL syntax. In Bernardo Cuenca Grau,
Pascal Hitzler, Conor Shankey, and Evan Wallace, editors, OWLED, volume 216
of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

6. Matthew Horridge, Tania Tudorache, Jennifer Vendetti, Csongor Nyulas, Mark A.
Musen, and Natalya Fridman Noy. Simplified OWL ontology editing for the Web:
Is WebProtégé enough? In Harith Alani et al, editor, International Semantic Web
Conference (1), volume 8218 of Lecture Notes in Computer Science, pages 200–215.
Springer, 2013.

7. Simon Jupp, Matthew Horridge, Luigi Iannone, Julie Klein, Stuart Owen, Joost
Schanstra, Katy Wolstencroft, and Robert Stevens. Populous: a tool for building
OWL ontologies from templates. BMC Bioinformatics, 13(S-1):S5, 2012.



8. Phillip Lord. The semantic web takes wing: Programming ontologies with Tawny-
OWL. In Mariano Rodriguez-Muro, Simon Jupp, and Kavitha Srinivas, editors,
Proceedings of the 10th International Workshop on OWL: Experiences and Di-
rections (OWLED 2013) co-located with 10th Extended Semantic Web Confer-
ence (ESWC 2013), Montpellier, France, May 26-27, 2013, volume 1080. CEUR-
WS.org, 2013.

9. James Malone, Ele Holloway, Tomasz Adamusiak, Misha Kapushesky, Jie Zheng,
Nikolay Kolesnikov, Anna Zhukova, Alvis Brazma, and Helen Parkinson. Mod-
elling sample variables with and experimental factor ontology. Bioinformatics,
26(8):1112–1118, March 2010.

10. Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology
Language structural specification and functional style syntax. W3C Recommen-
dation, W3C – World Wide Web Consortium, October 2009.

11. Martin J. O’Connor, Christian Halaschek-Wiener, and Mark A. Musen. M2: A
language for mapping spreadsheets to OWL. In Evren Sirin and Kendall Clark,
editors, OWLED, volume 614 of CEUR Workshop Proceedings. CEUR-WS.org,
2010.

12. Martin J. O’Connor, Christian Halaschek-Wiener, and Mark A. Musen. Map-
ping master: A flexible approach for mapping spreadsheets to OWL. In Peter F.
Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian
Horrocks, and Birte Glimm, editors, International Semantic Web Conference (2),
volume 6497 of Lecture Notes in Computer Science, pages 194–208. Springer, 2010.

13. Timothy Redmond and Natalya F. Noy. Computing the changes between ontolo-
gies. In Vit Novacek, Zhisheng Huang, and Tudor Groza, editors, EvoDyn 2011
Knowledge Evolution and Ontology Dynamics., volume 784 of CEUR Workshop
Proceedings. CEUR-WS.org, October 2011.

14. Tania Tudorache, Sean M. Falconer, Natalya Fridman Noy, Csongor Nyulas, Tev-
fik Bedirhan Üstün, Margaret-Anne D. Storey, and Mark A. Musen. Ontology
development for the masses: Creating ICD-11 in webprotégé. In Philipp Cimiano
and Helena Sofia Pinto, editors, EKAW, volume 6317 of Lecture Notes in Computer
Science, pages 74–89. Springer, 2010.

15. Tania Tudorache, Csongor Nyulas, Natalya Fridman Noy, and Mark A. Musen.
Using semantic web in ICD-11: Three years down the road. In Harith Alani et al,
editor, International Semantic Web Conference (2), volume 8219 of Lecture Notes
in Computer Science, pages 195–211. Springer, 2013.

16. Tania Tudorache, Csongor Nyulas, Natalya Fridman Noy, and Mark A. Musen.
WebProtégé: A collaborative ontology editor and knowledge acquisition tool for
the web. Semantic Web, 4(1):89–99, 2013.

17. Tania Tudorache, Jennifer Vendetti, and Natalya Fridman Noy. WebProtege: A
lightweight owl ontology editor for the web. In Catherine Dolbear, Alan Rut-
tenberg, and Ulrike Sattler, editors, OWLED, volume 432 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

18. Katy Wolstencroft, Stuart Owen, Matthew Horridge, Wolfgang Müller, Finn Ba-
call, Jacky L. Snoep, Franco du Preez, Quyen Nguyen, Olga Krebs, and Carole A.
Goble. Rightfield: Scientific knowledge acquisition by stealth through ontology-
enabled spreadsheets. In Annette ten Teije et al, editor, Knowledge Engineering
and Knowledge Management - 18th International Conference, EKAW 2012, Gal-
way City, Ireland, October 8-12, 2012. Proceedings, volume 7603 of Lecture Notes
In Computer Science, pages 438–441. Springer, 2012.


