
The OWL Full/DL gap in the field

Nicolas Matentzoglu and Bijan Parsia

The University of Manchester
Oxford Road, Manchester, M13 9PL, UK

{bparsia,matentzn}@cs.manchester.ac.uk

Abstract. OWL 2 Full remains a “catch all” language in the sense that
it treats as well formed any legal RDF graph. In contrast, OWL 2 DL, and
its sub profiles, exclude large classes of RDF graphs as malformed and
thus meaningless. Many ontology documents on the web appear to fall
under OWL Full. However, not all ways of being OWL Full are indicative
of modelling intent. In this paper, we look at the prevalence of OWL 2
DL violations in a large corpus of ontologies gathered from the Web1. We
present a new classification of violations and analysis of those that are
safely repairable. We find that a high preponderance (69%) of violations
are repairable and are, indeed, mainly “mere” declaration failures. This
suggests for example that declarations as a conformance criterion should
be rethought.

Keywords: OWL, Ontologies, OWL profiles, repair

1 Introduction

Both the OWL 1 and OWL 2 standards define families of languages2 with vary-
ing expressivity. One goal of the OWL 2 working group was to improve on the
profile distinctions of OWL 1. In OWL 1, there were three profiles:

1. OWL Lite, which was intended to be an easy to learn, easy to implement,
computationally tractable version of OWL. Unfortunately, it’s expressive
power was to encode the Description Logic SHIF which precluded its being
easy to implement and computationally tractability (SHIF ’s key decision
problems are in EXPTIME). Furthermore, due to the (ineffectual) contor-
tions of the grammar, it was quite difficult to model, especially if one was
trying to avoid “hard” constructions.

2. OWL DL, which was close to a known maximal DL (SHOIN). SHOIN
was shown to be decidable, and “reasonable” implementation techniques
were known. Unfortunately, an effective, goal-directed algorithm for decid-
ing SHOIN satisfiability was not discovered until Horrocks et al. 2007 [3],
although implementations followed swiftly afterwards.

1 Note: It is of course the case that the “violations” of the OWL 2 DL syntactic con-
straints might be deliberate and desired. That an ontology violates those conditions
is not, ipso facto, a problem with the ontology. It still might be desirable to generate
an approximate OWL DL ontology from an OWL Full ontology.

2 Known as species in OWL 1 and profiles in OWL 2. We will use profile exclusively.

3. OWL Full, which was in terms of the RDF syntax maximally and a “straight-
forward” extension of the idiosyncratic semantics of RDF. (In contrast,
SHOIN is a notational variant of a fragment of first order logic extended
with counting quantifiers.)

Thus, none of the OWL 1 profiles straightforwardly met their desiderata.
In particular, the “lite” profile really was not lightweight and the gap between
OWL DL and OWL Full was larger than it needed to be in some odd ways.
Furthermore, the utility of many features of OWL Full was very unclear and
there was evidence that further extensions would be paradoxical [7].

One reason that OWL Light was a failure is that the state of the art in
lightweight DLs was relatively impoverished at the time of standardisation. Sub-
sequently, there was a renaissance of research into sub-Boolean Description Log-
ics in the form of the EL family, the DL Lite family, and Description Logic
Programs (DLP). Each of these families were well understood, had reasonable
implementations, and addressed concrete application spaces. For these languages
it was also, demonstrably, much easier to get a non-toy implementation up and
running.

OWL 2 introduced a new set of profiles:

1. OWL 2 EL, OWL 2 QL, and OWL 2 RL, which are based on usefully expres-
sive Description Logics with key decisions problems in PTIME. They also
were designed in light of known implementation techniques. For example,
OWL RL was tuned for forward chaining rule engines and even included
a (non-optimal) rule set as a reference implementation. These, collectively,
replaced OWL Lite.

2. OWL 2 DL, which was close to a known maximal DL (in this case, SROIQ)
for which “reasonable” implementation techniques were known (and already
implemented). Furthermore, there were extensions (such as a restricted form
of metamodelling known as “punning”) to narrow the gap between OWL 2
DL and OWL 2 Full.

3. OWL 2 Full, remains a syntactically maximal, same-semantics extension of
RDF. The semantics were altered in a variety of ways to address concerns
and generally make them weaker (and thus less prone to contradiction and
paradox as well as somewhat easier to work with).

OWL 2 Full remains a “catch all” language in the sense that it treats as well
formed any legal RDF graph. In contrast, OWL 2 DL, and sub profiles, exclude
large classes of RDF graphs as malformed and thus meaningless. If it was the
intention of an ontology author to create an ontology outside of OWL 2 DL,
then the existence of such graphs is a problem. However, not all ways of being
OWL Full are indicative of modelling intent. For example, missing declarations
nominally place an ontology outside OWL 2 DL, but since this almost never has
any real effect on the meaning of the ontology, it is undesirable for OWL 2 DL
tools to reject such ontologies, or to switch into OWL 2 Full mode.

There is a tradition in the OWL community of “repairing” certain classes of
OWL 2 Fullisms (or, to a lesser extent, other profile violations) either automati-
cally or interactively. Such repair strategies can suggests revisions to the profiles
to bring OWL 2 DL and OWL 2 Full closer together. In the ideal, they would
converge, or, at least, have clearly motivated uses. Applying syntactic patches
to OWL Full ontologies has been proposed for example by Bechhofer et al.[1, 9].

Some repairs are lossless or effectively lossless, i.e., there is no entailment
(perhaps “of note”) lost by converting the OWL 2 Full ontology into an OWL 2
DL ontology. However, some repairs are approximations. For example, repairing
an unambiguously inferable declaration is lossless. Dropping a transitivity axiom
for a property that appears in a cardinality restriction removes several, almost
certainly intended, entailments. Reasoners such as Pellet[8] try to repair unsup-
ported axioms internally, but often, OWL DL violations are dealt with by simply
dropping the violating axiom. In the case of an illegal axiom interaction, this
could potentially be non-deterministic (dropping one of the interacting axioms).

The higher the degree we can expand the class of repairs (or build them into
the language) the better. At the moment, users are still caught between access to
the bulk of the OWL infrastructure (i.e., staying in OWL 2 DL) or not having
to conform to rather complex syntactic conditions which are idiosyncratically
enforced (i.e., falling into OWL 2 Full).

In this paper, we look at the prevalence of OWL 2 DL violations in a large
corpus of ontologies gathered from the Web. We present a new classification of
violations and analysis of which are safely repaired and apply safe repairs to that
corpus. We find that a high preponderance (70%) of violations are repairable and,
indeed, are mainly “mere” declaration failures. This suggests that declarations
as a conformance criterion should be rethought.

2 Errors and conformance in OWL

OWL ontology documents can be encoded in a wide variety of syntaxes, but
the only one required by the standards is the RDF/XML syntax. Document
conformance3 is thus defined in terms of RDF/XML. We do not deal with errors
at the XML or RDF level, which is normal in OWL repair discussions. Thus, if
the document is not well-formed XML or does not parse to a legal RDF graph,
we do not treat it as any sort of OWL ontology. The only exception here are
non-absolute IRIs. While they are strictly illegal (both in the RDF data model
and the XML, since not wellformed), most parsers (such as the ones in the OWL
API) do process them anyway. In some sense it might be arguable why such
violations are attributed to the OWL Full / OWL DL gap, since they are not
even OWL Full or RDF(S) strictly speaking. We include them here however,
because they are a very common violation, straight forwardly fixable, and would
lift a good number of ontologies into the OWL DL profile.

The key conformance distinction we consider is whether a document is OWL 2
Full or OWL 2 DL. According to the conformance spec, every possible RDF/XML

3 http://www.w3.org/TR/owl2-conformance/#Document_Conformance

document encodes an OWL 2 Full ontology, but only those graphs that “survive”
the canonical parsing process4 are OWL 2 DL ontologies. The canonical parsing
process is rather complex and includes a scattered set of constraints (mostly
gathered in Section 3 of the Structural Specification5).

Tools which have defined OWL 2 conformance conditions are entailment
checkers and query answering tools (in other words, reasoners). A conform-
ing reasoner that is given documents which do not meet the document con-
formance conditions (that is, exhibit a parsing failure) must return Error. Any
attempt to repair the document along the lines discussed here makes the tool
non-conforming.

This is reasonable and many reasoners have a flag that allows them to be
non-conforming and thus more forgiving of variant input. Furthermore, there is
no conformance constraint on ontology editors or preprocessors, so it is easy to
imagine pairing such tools with reasoners in order to handle more documents.
Of course, given that some repairs are fairly non-deterministic, this will result
in hard to cope with variance between such tools. This gives more imperative to
either standardising repair and approximation strategies or, at least, making the
process better defined. Reasoners with a repair strategy would do well to clearly
document it, or, better yet, separate it out so that the repair strategy can be
used across reasoners.

3 Classification of Violations

Our direct, application purpose in revisiting OWL 2 DL violations is the devel-
opment of a large corpus of OWL documents crawled from the Web. This corpus
is primarily intended for experimentation with OWL 2 DL tools, esp. reasoner
performance. Thus, we want as broad a set of OWL 2 DL documents and are
rather more tolerant of meaning-altering changes. We also believe that, given the
huge difference in available infrastructure between OWL 2 Full and OWL 2 DL
(most importantly sound, complete and terminating reasoning procedures) that
keeping one’s ontology in OWL 2 Full should be a carefully considered choice
which is deliberately made for some tangible reason. It should be noted that
while the followings enumeration of violations is intended to be complete (and
we do believe it is complete), it should not be taken as guaranteed, since there
is no official document listing all violations in a straight forward way, and they
do have to be extracted manually from the OWL 2 specification.

We distinguish between four classes of profile violations:

1. Declaration Failure (vio-dec): Entities such as classes and properties have to
be declared according to the OWL 2 specification[6], section 5.8.

2. Inherent Violation of the DL Profile (vio-dl): Some axioms are expressible
in OWL (legal syntax), but do not have the benefit of clear DL semantics

4 http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Canonical_Parsing_

of_OWL_2_Ontologies
5 http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Ontologies

(OWL 2 Full), such as (DL) illegal punnings or (DL) illegal use of non-simple
object properties.

3. Misuse of reserved vocabulary (vio-res): IRIs from the reserved vocabulary
(apart from some exceptions such as owl:Thing) must not be used to identify
entities in an axiom.

4. Violation of the OWL Syntax (vio-syn): Axioms or expressions that violate
the grammar of OWL 2 fall under this category. For example, some axioms
require a specific number of operands and IRIs of the elements in OWL 2
have to be well formed.6

In the following, we will discuss these classes of violations in more detail.
Numbers in brackets behind violation descriptors indicate section in the OWL 2
specification[6].

3.1 Declaration Failure

Failure of declaration is by far the most common violation. According to the
OWL 2 DL specification[6], section 5.8, entities used in axioms have to be de-
clared somewhere. There are five types of missing declarations according to our
classification:

1. UseOfUndeclaredClass
2. UseOfUndeclaredAnnotationProperty
3. UseOfUndeclaredObjectProperty
4. UseOfUndeclaredDatatype
5. UseOfUndeclaredDataProperty

3.2 Inherent Violation of the DL Profile

We are distinguishing between 13 different kinds of violations that clearly violate
the DL profile and cannot be automatically fixed without in some way or another
change the logical structure of the ontology. The restrictions on simple roles are
summarised in [6], section 11.8.

1. Illegal use of non-simple properties (11.8)
(a) UseOfNonSimplePropertyInCardinalityRestriction
(b) UseOfNonSimplePropertyInIrreflexivePropertyAxiom
(c) UseOfNonSimplePropertyInObjectHasSelf
(d) UseOfNonSimplePropertyInAsymmetricObjectPropertyAxiom
(e) UseOfNonSimplePropertyInInverseFunctionalObjectPropertyAxiom
(f) UseOfNonSimplePropertyInFunctionalPropertyAxiom

6 There is a tension in the recommendations. The structural syntax clearly restricts the
term OWL 2 Ontology to ontologies meeting these basic syntactic criteria. However,
this entails, by the reverse translation to RDF, that some RDF graphs are not OWL 2
Ontologies. However, the RDF Semantics treats every RDF graph as an OWL Full
ontology and assigns it a specific meaning.

(g) UseOfNonSimplePropertyInDisjointPropertiesAxiom
2. UseOfPropertyInChainCausesCycle (11.2)
3. IllegalPunning7

4. UseOfTopDataPropertyAsSubPropertyInSubPropertyAxiom (11.2)
5. CycleInDatatypeDefinition (11.2)
6. UseOfBuiltInDatatypeInDatatypeDefinition (11.2)
7. UseOfDefinedDatatypeInDatatypeRestriction (9.4)

3.3 Misuse of reserved vocabulary

A very common example for misusing reserved vocabulary is to create a sub-
property of an existing RDF property, such as rdfs:label. According to the speci-
fication (sections 5.1 - 5.6), most entities that are part of the reserved vocabulary
(with a few exceptions, such as rdfs:Literal) cannot be directly used in an axiom.

1. UseOfReservedVocabularyForOntologyIRI (3.1)
2. UseOfReservedVocabularyForObjectPropertyIRI (5.3)
3. UseOfReservedVocabularyForAnnotationPropertyIRI (5.5)
4. UseOfReservedVocabularyForIndividualIRI (5.6)
5. UseOfReservedVocabularyForDataPropertyIRI (5.4)
6. UseOfReservedVocabularyForVersionIRI (3.1)
7. UseOfReservedVocabularyForClassIRI (5.1)
8. UseOfUnknownDatatype (5.2): A datatype that is neither in the OWL 2

datatype map, nor rdfs:Literal, but part of the reserved vocabulary.

3.4 Violation of the OWL Syntax

Some ontologies contain expressions that are not well-formed with respect to the
OWL 2 grammar. Parsers could choose to rigorously reject these kinds of on-
tologies (draconian error handling), for example, the Functional Syntax Parser of
the OWL API is very unforgiving with respect to wellformedness. Many parsers,
however, such as the OWL/XML parser allow parsing all sorts of broken ex-
pressions. The most common violations of this type are the use of non-absolute
IRIs for entities in OWL 2, or an insufficient number of operands in certain
expressions (unary, binary and n-ary).

1. Non absolute IRIs (2.4)
(a) OntologyIRINotAbsolute
(b) OntologyVersionIRINotAbsolute
(c) UseOfNonAbsoluteIRI

2. Insufficient Operands in Expression
(a) InsufficientIndividuals (9.6.2,9.6.2)
(b) InsufficientDataRangeOperands (7.1,7.2)
(c) InsufficientPropertyExpressions (i.e. 9.2.3)
(d) InsufficientObjectExpressionOperands (8.1.1,8.1.2)

7 http://www.w3.org/TR/owl2-new-features/#F12:_Punning

(e) InsufficientAxiomOperands (9.1.2-9.1.4)
(f) EmptyOneOfExpression (7.4,8.1.4)

3. Datatype related syntactic violations
(a) LexicalNotInLexicalSpace (5.7)
(b) UseOfIllegalFacetRestriction (7.5)

4 Fixing Violations

4.1 Fixing Declaration Failures

Injecting declarations does not impact the logical meaning of an ontology in
most cases. Some profile checkers, such as the one in the OWL API[2] or in the
owlapi-tools libraries will sometimes believe that a given violation is a declaration
failure for an entity that is part of the reserved vocabulary. Repairing this failure
will simply cause another kind violation (vio-res). Some patterns of axioms plus
declaration failure have ambiguous legal resolutions for OWL 2 DL. For example,

C SubClassOf: (P some D).

absent any other information, could be declaring a restriction on an object
property (P) or a data property (to an unknown datatype, D). OWL 2 DL forbids
punning between classes and datatypes (as well as object- and data properties),
so this cannot be resolved by declaration for both interpretations. We claim that
it is perfectly sensible to prefer the object property/class interpretation8. This
resolution (with perhaps a bit of care with names from the XSD namespace)
would permit dropping declarations as required syntax (thus eliminating a huge
class of “silly” errors plus a source of file size bloat). Supporting warnings for
such cases would allow users who were failing to declare yet desiring the variant
interoperation to catch the situation easily. A slight modification would be to
require declarations only when the inferred declaration is ambiguous. In general,
we think its better to highlight potentially rare situations (such as punning or
ambiguous situations) than expect that people will maintain unwieldy declara-
tion sets.

4.2 Fixing Inherent Violations of the DL Profile

Not possible without changing the meaning of the ontology, at least in a gen-
eral way. However, there are bugs here which are merely nominal. Consider the
following example drawn from our corpus:

locatedIn Characteristics: Transitive.

Wine SubClassOf: locatedIn min 1 Thing.

This nominally violates the restriction on non-simple roles appearing in cardi-
nality restrictions. But it is easy to see that this expression can be replaced by
an equivalent, non-violating version:

8 In absence of any contrary evidence, for example in the ABox

locatedIn Characteristics: Transitive.

Wine SubClassOf: locatedIn some Thing.

We have not, at this time, developed a repairer for this sort of issue. A
proper attempt would not only resolve all such cases (that is, for every violating
ontology which has a “straightforward” non-violating equivalent, generate that
equivalent), but provide “sensible” approximations for the substantially violating
ontologies.

4.3 Fixing misuse of reserved vocabulary

There is no straight forward way to fix violations of this type. One might think
of rewriting expressions in such a way that the misused entities are pulled into
a different (new) namespace, but this might not be desirable in all cases. For
example, an ontology engineering environment might exploit rdfs : label to
display class names, as well as potential sub-annotation-properties, e.g. urn :
displayScreenLabel. Analogously, some tools might also support more than just
the OWL 2 datatypes — removing that information would be hugely undesirable.

4.4 Fixing Violations of the OWL Syntax

Generally speaking, there are no direct semantics for an expression that is mal-
formed. It would be, however, impractical to simply discard an entire ontology
just because it contains some minor syntactic errors. Non-absolute IRIs can be
easily replaced by absolute ones without impairing the logical structure of an
ontology. Other violations, such as the datatype related ones, are virtually un-
fixable without simply dropping expressions or entire axioms. The syntactic vi-
olations relating to insufficient operands however are sometimes fixable without
affecting the semantics. The three types of axioms related to the Insufficien-
tAxiomOperands violation are DisjointClasses, EquivalentClasses and Disjoin-
tUnion. If they contain less than two operands, they can simply be dropped.
The same goes for the InsufficientIndividuals (SameIndividual, DifferentIndivid-
uals) and InsufficientPropertyExpressions (EquivalentObjectProperties, Disjoin-
tObjectProperties, DisjointDataProperties, EquivalentDataProperties, HasKey,
SubPropertyOf(ObjectPropertyChain)). EmptyOneOfExpressions (DataOneOf,
ObjectOneOf) and InsufficientDataRangeOperands (DataIntersectionOf, DataU-
nionOf) violations cannot be easily fixed. OneOf expressions are generally part
of larger expressions that would need to be adjusted as well, which is not possible
without at least potentially violating the authors modelling intentions. The same
goes for the the problem with insufficient data range operands, because we cannot
simply replace them with a “general” data range without losing something. For
violations of the kind InsufficientObjectExpressionOperands (ObjectUnionOf,
ObjectIntersectionOf), we propose a minor rewriting that corresponds to the
DL semantics:

For ObjectUnionOf:

1. if expression contains no operands, we rewrite the whole expression to owl:Nothing

2. else if expression contains only owl:Nothing, we rewrite the whole expression
to owl:Nothing

3. else if expression contains only one operand c1, we rewrite the whole expres-
sion to ObjectUnionOf(c1, owl:Nothing)

For ObjectIntersectionOf:

1. if expression contains no operands, we rewrite the whole expression to owl:Thing
2. else if expression contains only owl:Thing, we rewrite the whole expression

to owl:Thing
3. else if expression contains only one operand c1, we rewrite the whole expres-

sion to ObjectIntersectionOf(c1,owl:Thing)

4.5 Summary: Which Violations can be safely fixed?

For readability, we list the violations that can be safely fixed9 without changing
the meaning of an ontology.

1. Declaration failures (vio-dec):
– UseOfUndeclaredClass (inject declaration)
– UseOfUndeclaredObjectProperty (inject declaration)
– UseOfUndeclaredDatatype (inject declaration)
– UseOfUndeclaredDataProperty (inject declaration)
– UseOfUndeclaredAnnotationProperty (inject declaration)

2. Non-absolute IRIs (vio-syn):
– UseOfNonAbsoluteIRI (rewrite)
– OntologyIRINotAbsolute (rewrite)
– OntologyVersionIRINotAbsolute (rewrite)

3. Some of the insufficient operands violations (vio-syn):
– InsufficientPropertyExpressions (drop axiom)
– InsufficientObjectExpressionOperands (rewrite)
– InsufficientAxiomOperands (drop axiom)
– InsufficientIndividuals (drop axiom)

5 Materials and Methods

A comprehensive survey of OWL 2 DL profile violations was conducted over
MOWLCorp (original serialisations)[5]10, a corpus of 21K ontologies (unique
files containing at least a single TBox axiom). A previous version of the corpus
was described in detail elsewhere [4].

For violation checking, we used an extended and modified version of the
profile checker shipped with the owlapi-tools11. The experiment was implemented
in Java, building on the OWL API (version 3.5.0)[2].

Note: The UseOfNonAbsoluteIRI violation was not fixed for this survey (fu-
ture work), so it will be listed in a separate category (fixable).

9 That is, assuming that our ambiguous declaration interpretation is accepted.
10 Find more information and summary statistics here: http://mowlrepo.cs.

manchester.ac.uk/datasets/mowlcorp/
11 https://github.com/owlcs/owlapitools

5.1 Data Gathering

For every (parseable) ontology in the corpus we gather its static metrics (axiom
counts, entity counts, profile memberships, etc) and its DL profile violations,
apply the fixes described in section 4.5, and observe how many ontologies were
safely re-writeable to fall under the DL profile without affecting their logical
structure.

6 Results

Repair data was successfully gathered for 20,137 ontologies in the corpus (out
of 20,995). Some ontologies in the corpus were unloadable due to unavailable
imports (695 ontologies), parsing problems12 (132 ontologies) or other reasons
(31 ontologies). As can be seen from Table 1, roughly 70% of all occurring viola-
tions can be safely fixed according to our classification scheme without affecting
the logical meaning of the ontology (mainly, but not only, due to the fact that
missing declarations cause 70% of all violations). Table 2 shows the number of
successful and unsuccessful repairs. 8,255 ontologies that did not previously fall
under the OWL 2 DL profile were successfully repaired, a large number of which
actually turned out to fall under the OWL 2 RL profile (80%). 2,541 ontologies,
roughly 13% of the corpus, underwent failed repair attempts. For all of these
ontologies, the attempt to inject a missing declaration caused yet another il-
legal punning, or another “NonAbsoluteIRI” violation, which explains the fact
that the total numbers of illegal punning violations (and non absolute IRI ones)
actually rose during the repair (Table 3). However, these additional violations
were not caused by the repair: They were already there before, and either not
correctly detected (incomplete profile checker) or double counted (the profile
checker counts violations per axiom, and if 2 axioms cause an illegal punning,
the violation is counted twice).

Table 6 shows a detailed breakdown of the violation with the number of on-
tologies having at least one such violation. IllegalPunning and UnknownDatatype
are the two largest classes (and are largely disjoint). UnknownDataype is ar-
guably not an error per se, although if no system can handle that datatype they
are functionally so.

7 Discussion

Two striking features of the results stand out: the distribution of ontologies into
profiles and the relatively small number of certain sorts of violation e.g., non
simple roles in cardinality restrictions. While this is not a profile survey per se,
we were surprised by the large number of OWL RL ontologies after repair. Since
OWL RL has an OWL Full friendly design, we need to examine the repairs more

12 The new OBO parser in the latest OWL API version appears to be less forgiving
then the old one.

Table 1. The total number of violations before and after repair, by category. For
detailed breakdown, see Table 6.

After Before % Repair

Declaration Failure 0 16,993,219 100.00%
Inherent DL 7,329,499 7,277,524 -0.71%
Misused Vocabulary 208,069 208,069 0.00%
Syntactic Violation 91,677 95,051 3.55%

Unfixable 7,538,030 7,486,055 -0.69%
Fixable 0 16,997,550 100.00%
Potentially fixable 91,215 90,258 -1.06%

All 7,629,245 24,573,863 68.95%

Table 2. Profile Membership of parseable files before and after the repair. Notice that
two files became OWL 2 ontologies as a result of repair.

Before After Diff

Exclusive OWL2 16,270 8,025 -8,245
DL 2,249 3,342 1,093
EL 180 342 162
QL 36 45 9
RL 294 6,178 5,884

OWL EL + QL 185 508 323
RL 62 107 45

OWL QL + RL 43 68 25

OWL EL + QL + RL 525 1,231 706

Total 19,844 19,846 2

closely to see if we are altering potentially significant semantics. It would also
be interesting to have a better understanding of what makes them OWL RL
(e.g., the gap between these ontologies being in RL and being also in EL). We
note that from a constructor perspective, OWL RL allows quite a few (albeit in
restricted locations), so that might suffice to explain its large numbers.

The fact that a large number of violating ontologies merely have unknown
datatypes is very promising: Adding datatypes to OWL 2 is, by design, rather
straightforward. Thus, a potentially easy extension to OWL 2 might bring signif-
icant benefit. Alternatively, if most of these uses are mere legacy datatypes, then
a tool could potentially significantly help by suggesting modern alternatives.

Illegal punning and reserved vocabulary use are perhaps not as simply amenable
to specification tweaks. This awaits further investigation.

Table 3. All violations before (B) and after (A) the repair. |O| corresponds to the
number of affected ontologies by a particular violation. Grouped by bins, sorted by
number of affected ontologies before the repair.

Violation Total (B) Total (A) Fixed |O| (A) |O| (B)

UndeclaredAnnotationProp 5,704,211 0 100.00% 10,162 0
UndeclaredClass 2,665,962 0 100.00% 9,424 0

UndeclaredObjProp 8,498,762 0 100.00% 2,385 0
UndeclaredDataProp 75,712 0 100.00% 779 0
UndeclaredDatatype 48,572 0 100.00% 245 0

UnknownDatatype 90,247 90,247 0.00% 3,756 3,756
ResVocForClassIRI 60,756 60,756 0.00% 2,081 2,081

ResVocForObjPropIRI 8,548 8,548 0.00% 1,086 1,086
ResVocForIndividualIRI 15,917 15,917 0.00% 774 774
ResVocForDataPropIRI 2,380 2,380 0.00% 548 548

ResVocForAnnotationPropIRI 30,214 30,214 0.00% 321 321
ResVocForOntologyIRI 7 7 0.00% 7 7

ResVocForVersionIRI 0 0 - 0 0

IllegalPunning 7,273,783 7,325,760 -0.71% 4,056 4,056
NSimPropInCardinalityRestriction 2,852 2,852 0.00% 151 151

NSimPropInFunctionalProp 51 51 0.00% 36 36
NSimPropInDisjointProperties 621 621 0.00% 15 15

PropInChainCausesCycle 67 65 2.99% 15 14
NSimPropInAsymmetricObjPropAx 86 86 0.00% 10 10

NSimPropInInverseFunctionalObjProp 9 9 0.00% 9 9
NSimPropInIrreflexiveProp 48 48 0.00% 7 7

TopDataPropAsSubPropInSubPropAx 3 3 0.00% 3 3
CycleInDatatypeDefinition 4 4 0.00% 1 1

BuiltInDatatypeInDatatypeDefinition 0 0 - 0 0
DefinedDatatypeInDatatypeRestriction 0 0 - 0 0

NSimPropInObjectHasSelf 0 0 - 0 0

InsufficientIndividuals 384 0 100.00% 316 0
InsufficientObjectExpressionOperands 2,739 0 100.00% 295 0

NonAbsoluteIRI 90,258 91,215 -1.06% 153 153
LexicalNotInLexicalSpace 462 462 0.00% 136 136

InsufficientAxOperands 1,147 0 100.00% 63 0
InsufficientPropExpressions 60 0 100.00% 40 0

OntologyIRINotAbsolute 1 0 100.00% 1 0
OntologyVersionIRINotAbsolute 0 0 - 0 0

IllegalFacetRestriction 0 0 - 0 0
EmptyOneOfExpression 0 0 - 0 0

InsufficientDataRangeOperands 0 0 - 0 0

One way to conceptualise what we have done in this paper compared with
[1] is to update their work on OWL 1 to OWL 2. OWL 2 tried to narrow the
gap some between OWL DL and OWL Full, though in also introduced a more
complex syntax for OWL DL (to handle new features such as role chains). Fur-
thermore, some features in OWL 2, in particular declarations, introduce new
classes of very common violations. In [9], only 18% of the OWL Full documents
remained so after patching in comparison to the 47% remaining in our experi-
ments. Its not clear that we can make any useful generalisations from these facts,
as the corpora in each paper are very different and neither the repairs nor the
detection of violations nor even the base language (OWL 1 vs. OWL 2) are the
same. Investigating the residual OWL Full ontologies in our corpus in order to
understand how OWL Full is being used is critical future work.

8 Conclusions

There is clearly too much noise generated by the current violation regime. There
is no reason to burden users with declaration fiddling and clearly many users and
tools simply will not bother. In this sense, the market seems to have spoken. An
interactive approach, where users could be made aware of particular violations
and their consequences and then are suggested ways to repair them, might be
an interesting add-on for existing debugging tools. Overall, we are encouraged
that it will be possible to significantly close the gap between arbitrary OWL 2
and OWL 2 DL ontologies.

References

1. S. Bechhofer and R. Volz. Patching Syntax in OWL Ontologies. In International
Semantic Web Conference, pages 668–682, 2004.

2. M. Horridge and S. Bechhofer. The OWL API: A Java API for OWL ontologies.
Semantic Web, 2:11–21, 2011.

3. I. Horrocks and U. Sattler. A tableau decision procedure for shoiq. J. Autom.
Reasoning, 39(3):249–276, 2007.

4. N. Matentzoglu, S. Bail, and B. Parsia. A Snapshot of the OWL Web. In Interna-
tional Semantic Web Conference (1), pages 331–346, 2013.

5. N. Matentzoglu and B. Parsia. The Manchester OWL Corpus (MOWLCorp), orig-
inal serialisation. July 2014.

6. B. Motik, B. Parsia, and P. Patel-Schneider. OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (Second Edition), 2012.

7. P. F. Patel-Schneider. Building the semantic web tower from rdf straw. In IJCAI,
pages 546–551, 2005.

8. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. Web Semantics, 5:51–53, 2007.

9. T. D. Wang, B. Parsia, and J. A. Hendler. A Survey of the Web Ontology Landscape.
In International Semantic Web Conference, pages 682–694, 2006.

