
11

Graph Clustering Evaluation Metrics as Software
Metrics
MILOŠ SAVIĆ and MIRJANA IVANOVIĆ, University of Novi Sad

Graph clustering evaluation (GCE) metrics quantify the quality of clusters obtained by graph clustering (community detection)

algorithms. In this paper we argue that GCE metrics can be applied on graph representations of software systems in order to

evaluate the degree of cohesiveness of software entities. In contrast to widely known cohesion measures used in software engi-
neering, GCE metrics do not ignore external dependencies among software entities, but contrast them to internal dependencies

to quantify cohesion. Using the theoretical framework of cohesion measurement in software engineering introduced by Briand

et al. we investigate the properties of GCE metrics. Our analysis shows that GCE metrics are theoretically sound with respect
to the monotonicity and merge property, but also reveals that they possess certain limitations whose importance is discussed

in the paper. Finally, we propose a set of research questions for further empirical studies on this topic.

Categories and Subject Descriptors: D.2.8 [Software engineering]: Metrics—Product metrics

General Terms: Measurement, Theory

Additional Key Words and Phrases: cohesion, clustering, metrics

1. INTRODUCTION

Graph clustering is one of the most important method in complex network analysis [Boccaletti et al.
2006]. Identification of clusters (also known as communities or modules) in a network helps us to re-
duce the complexity of the network in order to be able to understand its underlying structure. Other
applications of graph clustering techniques include parallel processing of graph based data, route plan-
ning, image segmentation and VLSI physical design [Buluç et al. 2013], to mention a few. Intuitively
speaking, a cluster in a network is a part of the network where connections among members of the
cluster are much denser than with the rest of the network [Fortunato 2010]. There is a variety of
graph clustering (community detection) algorithms [Schaeffer 2007]. Naturally, they are accompa-
nied by graph clustering evaluation (GCE) metrics that quantify the quality of partitions produced
by them [Leskovec et al. 2010].

“Low coupling, high cohesion“ is one of the basic design principles in software engineering [Yourdon
and Constantine 1979]. This principle states that the coupling between modules of a software system
has to be minimal as possible keeping at the same time strong relations between elements of each
module. The main idea of this work is that highly cohesive modules that are loosely coupled to other
modules can be viewed as clusters in a graph that encompasses software entities at lower levels of

This work was supported by the Serbian Ministry of Education, Science and Technological Development through project Intelli-
gent Techniques and Their Integration into Wide-Spectrum Decision Support, no. OI174023.
Author’s address: M. Savić, M. Ivanović, Department of Mathematics and Informatics, Faculty of Sciences, University of Novi
Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, email: {svc, mira}@dmi.uns.ac.rs.

Copyright c© by the paper’s authors. Copying permitted only for private and academic purposes.
In: Z. Budimac, T. Galinac Grbac (eds.): Proceedings of the 3rd Workshop on Software Quality, Analysis, Monitoring, Improve-
ment, and Applications (SQAMIA), Lovran, Croatia, 19.-22.9.2014, published at http://ceur-ws.org.

11:82 • Miloš Savić, Mirjana Ivanović

abstraction. Therefore, the aim of this paper is to investigate existing GCE metrics as metrics reflecting
cohesion of software modules.

The rest of the paper is structured as follows. Related work is presented in Section 2. Graph clus-
tering evaluation metrics explored in this work as software metrics are defined in the next section
of the paper. Section 4 explains how GCE metrics can be applied to graph representation of software
systems. Theoretical analysis of GCE metrics as software metrics is given in Section 5. The last section
concludes the paper and presents research questions for our future work.

2. RELATED WORK

Cohesion of a software module reflects how strongly related are the elements of the module. Perhaps
the widest known cohesion metric in software engineering is LCOM (Lack of cohesion in methods)
introduced by Chidamber and Kemerer [1994] in their object-oriented metrics suite. As the name of
the metric suggests, LCOM is an inverse cohesion metric: a low value of LCOM indicates high cohesion
of a class and vice versa. LCOM is based on a specific coupling between methods: two methods in a
class are considered as data coupled if they use at least one common class attribute. Then LCOM is
the number of non-coupled methods (P) reduced by the number of coupled methods (Q) if P > Q, or
zero otherwise. From the definition of the LCOM it can be seen that this metric does not take external
dependencies into account nor method invocations (another form of method coupling).

The approach of Hitz and Montazeri [1995] to measure cohesion of software entities followed the
research of Chidamber and Kemerer. For a class we can construct graph G whose nodes are methods
defined in the class, and two methods are connected by an undirected link if they are data coupled.
LCOM of Hitz and Montazeri is the number of connected components in G. The same authors also
proposed another variant of the same metric where G includes method calls relations. Finally, they
introduced a metric called connectivity which quantifies how much G is far from being completely
connected.

Bieman and Kang [1995] introduced two cohesion metrics called tight class cohesion (TCC) and
loose class cohesion (LCC). The basic element in their metrics is again a graph representing a class
that encompasses methods of the class. TCC/LCC is the density (the actual number of links divided by
the maximal number of links) of a TCC/LCC graph. Two methods are connected in TCC graph if they
both access the same variable or there is a direct call between them. LCC graph is an extension of TCC
graph that includes indirect method calls.

Lee et al. [1995] introduced a class cohesion metric based on information flow. The basic idea is that
the strength of call coupling between invoking and invoked method is determined by the number of
parameters of invoked method: the more information passed through formal parameters, the stronger
call coupling between methods. Then, the cohesion of a method is defined as the number of calls to
other methods multiplied by the number of formal parameters. Finally, the cohesion of a class is the
sum of cohesion of its methods.

From the review of widely used software engineering cohesion metrics it can be concluded that the
cohesiveness of a software entity is estimated in isolation. In other words, those metrics rely only on in-
ternal dependencies, while external dependencies, dependencies reflecting coupling between software
modules, are not taken into account. However, external dependencies can be also important when esti-
mating cohesiveness of software modules. Firstly, a module that has much more external than internal
dependencies hardly can be considered as strongly cohesive regardless of the density or the connected-
ness of its internal parts. Secondly, having two modules that have the same degree of internal density
the one with the smaller number of external dependencies can be considered as more cohesive com-
pared to the other.

Graph clustering evaluation metrics as software metrics • 11:83

3. GRAPH CLUSTERING EVALUATION METRICS

Let G = (V,E) be a directed graph where V is the set of nodes and E set of links. Let C denote a cluster
in V (C ⊆ V), and let c be a node from C. An intra-cluster link emanating from c connects c to another
node from C, while an inter-cluster link emanating from c connects c to a node that does not belong
to C. Intra-cluster out-degree of node c is the number of intra-cluster links emanating from c, while
inter-cluster out-degree of node c is the number of inter-cluster links emanating from c.

The most common formulation of the graph partitioning problem asks for a division of the set of
nodes into balanced, disjoint subsets of nodes such that the edge cut (links connecting nodes from
different clusters) is minimized. Therefore, the basic graph clustering evaluation (GCE) metrics are
based on the size of the edge cut. Let EC denote the size of the cut (the number of inter-cluster links)
for cluster C,

EC = | {(x, y)} : x ∈ C, y 6∈ C | =
∑
x∈C

inter-cluster out-degree(x),

IC the number of intra-cluster links for C,

IC = | {(x, y)} : x ∈ C, y ∈ C | =
∑
x∈C

intra-cluster out-degree(x),

NC the number of nodes in C, and N the number of nodes in the graph. Then cut based GCE metrics,
conductance, expansion and cut-ratio, are defined as follows [Leskovec et al. 2010]:

(1) Conductance of cluster C is the size of the cut normalized by the total number of links incident
to nodes contained in C,

Conductance(C) =
EC

EC + IC
.

(2) Expansion of cluster C is the size of the cut divided by the total number of nodes in C,

Expansion(C) =
EC

NC
.

(3) Cut-ratio of cluster C is the size of the cut divided by the size of maximal cut,

Cut-ratio(C) =
EC

NC(N −NC)
.

Probably the oldest definition of graph cluster originate from circuit theory which is furtherly adopted
in social network analysis. Namely, Luccio and Sami [1969] introduced the notion of LS-set that is also
known as Raddichi strong community in social network analysis [Radicchi et al. 2004]. For directed
graphs, an LS-set is a subgraph such that the intra-cluster out-degree of each node in the set is higher
than its inter-cluster out-degree. The nodes having zero out-degree are not taken into account when de-
termining whether the cluster is Radicchi strong. If the number of intra-cluster links is higher than the
number of inter-cluster links then the subgraph is considered as Radicchi weak cluster. Each Radicchi
strong cluster is at the same time Radicchi weak cluster, while the converse is not generally true. If a
cluster is Radicchi weak or strong then its conductance is smaller than 0.5. The difference between the
number of intra- and inter-cluster links inspired ODF (out-degree fraction) family of cluster quality
measures [Leskovec et al. 2010]:

(1) Maximum-ODF of cluster C is the maximum fraction of inter-cluster links of a node observed in
the cluster,

Maximum-ODF(C) = maxc∈C
| {(c, d)} : d 6∈ C |

Dout(c)
,

11:84 • Miloš Savić, Mirjana Ivanović

where Dout(c) stands for out-degree of node c.
(2) Average-ODF of cluster C is the average fraction of inter-cluster links of nodes from C,

Average-ODF(C) =
1

NC

∑
c∈C

| {(c, d)} : d 6∈ C |
Dout(c)

(3) Flake-ODF of cluster C is the fraction of nodes in C that have higher intra-cluster out-degree than
inter-cluster out-degree,

Flake-ODF(C) =
| {x : x ∈ C, | {(x, y)} : y 6∈ C | < Dout(c)/2 |

NC
.

In other words Flake-ODF measures how C is close to being Radicchi strong cluster: if Flake-
ODF(C) is equal to 1 then C is Radicchi strong.

4. SOFTWARE NETWORKS AND CLUSTERING METRICS

Software networks are graph-based representations of a software system. The architecture of the whole
system can be represented by one directed graph that we refer to as a General Dependency Network
(GDN) [Savić et al. 2014]. The nodes of GDN represent software entities such as packages/units,
classes/modules, methods/functions and class attributes/global variables, while links represent rela-
tions between them. We can distinguish between two types of links in GDN: “vertical” (CONTAINS)
links that maintain the hierarchy of software entities and “horizontal” links that show dependencies
between entities from the same level of abstraction. Two software entities A and B are connected by a
CONTAINS link A→ B if entity A defines or declares entity B. A group of entities that are contained
in the same highly cohesive and loosely coupled entity naturally form a cluster of contained entities.
Examples of such clusters for object-oriented software systems are: (1) classes and interfaces contained
in the same package or workspace, and (2) methods and class attributes contained in the same class.
When a software is written in a procedural programming language then procedures (functions) and
global variables defined in a module form a cluster.

We can separate horizontal links of GDN into two categories:

—Intra-cluster link connects two entities from the same level of abstraction that are contained in the
same software entity, i.e.

A→ B is an intra-cluster link⇔ (∃O) CONTAINS(O → A) ∧ CONTAINS(O → B).

—Inter-cluster link connects two entities from the same level of abstraction that are contained in two
different software entities, i.e.

A→ B is an inter-cluster link⇔ (∃O1, O2)O1 6= O2 ∧ CONTAINS(O1 → A) ∧ CONTAINS(O2 → B).

The separation of links into intra- and inter-cluster links enables us to apply graph clustering eval-
uation (GCE) metrics to:

(1) Class collaboration networks in order to evaluate cohesiveness of packages. Class collaboration
network is a subgraph of GDN that shows dependencies between classes and interfaces.

(2) Extended static call graphs in order to evaluate cohesiveness of classes in OO systems or modules
in procedural software systems. Functions (methods) and global variables (class attributes) consti-
tute the set of nodes in an extended static call graph, while links denote call relationships between
functions and uses (access) relationships between functions and global variables.

It can be easily seen from the definition of GCE metrics that only the Flake-ODF metric measures
cohesion, while other metrics introduced in the previous section are inverse cohesion measures. In

Graph clustering evaluation metrics as software metrics • 11:85

contrast to cohesion metrics widely used in software engineering (see Section 2), GCE metrics do not
ignore references to external entities. On the contrary, they use the number of dependencies to external
references to determine to what extent the entity is isolated from the rest of the system. In other words,
GCE metric are based on the following principle: an entity can be considered as highly cohesive if its
elements are better connected themselves than with the entities defined outside the entity.

Figure 1 shows a class collaboration network that represent a simple software system that consists
of two packages P and Q where both packages contain three classes. It can be observed that class F
has higher inter-cluster out-degree than intra-cluster out-degree: this class references one class from
its package and two classes from package P . Therefore, package Q is not Radicchi strong cluster. This
package is neither Radicchi weak cluster since the number of intra-cluster links is not higher than the
the number of inter-cluster links. It can be also observed that the system presented in Figure 1 can
be refactored in order improve the overall degree of cohesion: if we move class F from package Q to
package F then both packages will be Radicchi strong.

Package P Package Q

A

B

C

D

EF

Package P Package Q
Intra-cluster links 3 2
Inter-cluster links 1 2
Radicchi strong yes no
Radicchi weak yes no
Conductance 0.25 0.5
Expansion 0.33 0.66
Cut-ratio 0.11 0.22
Maximum-ODF 0.33 0.66
Average-ODF 0.11 0.22
Flake-ODF 1.0 0.66

Fig. 1. Class collaboration network of a simple software system and appropriate cluster quality measures.

5. THEORETICAL ANALYSIS

Briand et al. [1996; 1998] defined several properties that a software metric should satisfy in order to
be theoretically sound (lack of) cohesion metric. Those properties are:

(1) Nonnegativity. A cohesion (lack of cohesion) metric cannot take a negative value.
(2) Normalization. The metric belongs to an interval [0, M], where M is the fixed maximal value.
(3) Null value. The cohesion of a software entity is null if Rc is empty, where Rc denotes the set of

relationships within the software entity. This means that if there are no intra-cluster links the
cohesion of the entity should be zero. On the other side, a metric measuring the lack of cohesion
should be zero if Rc is maximal. Rc is maximal if all possible relationships within the entity are
present.

(4) Maximum value. If Rc is maximal then a metric of cohesion takes the maximal value. If Rc = ∅
then a metric measuring the lack of cohesion takes the maximal value.

(5) Monotonicity. Let e be a software entity. Let e′ be the software entity such that Re ⊆ Re′ , i.e.
we added some relationships (intra-cluster links) in e to obtain e′. Then the following inequalities
must hold

C(e) ≤ C(e′), (1)
L(e) ≥ L(e′), (2)

11:86 • Miloš Savić, Mirjana Ivanović

where C and L denote a cohesion and lack of cohesion metric, respectively. In other words, the
property states that addition new intra-cluster links must not decrease/increase the value of the
cohesion/lack of cohesion metric.

(6) Merge property. Let e1 and e2 be two unrelated (unconnected) software entities. This means
that e1 does not reference e2 and vice versa, i.e. there are no relationships (inter-cluster links)
between e1 and e2. Let e be the software entity which is the union of e1 and e2. Then the following
inequalities must hold

C(e) ≤ max{C(e1), C(e2)}, (3)
L(e) ≥ min{L(e1), L(e2)}. (4)

Namely, this property says that merging two unrelated entities must not increase/decrease the
value of the cohesion/lack of cohesion metric.

As a first step in our theoretical analysis of graph clustering evaluation metrics, we state and prove
the following lemma that will be frequently used in this section.

LEMMA 1. Let P and Q be two nonnegative numerical properties of a module. If P and Q are
additive under the merge operation then a (lack of) cohesion metric defined as C = P/Q satisfies the
merge property.

PROOF. Let m1 and m2 be two modules. Without loss of generality we can assume that C(m1) ≤
C(m2). Due to the nonnegativity of P and Q the following inequality holds

P (m1)Q(m2) ≤ P (m2)Q(m1). (5)

Let m denote the module obtained by merging m1 and m2. Due to the additivity of P and Q we have
that

C(m) =
P (m1) + P (m2)

Q(m1) +Q(m2)
.

C is a cohesion metric. Let us suppose that the merge property is not satisfied, i.e.

C(m) > max{C(m1), C(m2)} = C(m2).

By elementary algebraic transformation we obtain that

P (m1)Q(m2) > P (m2)Q(m1) (6)

which is in contradiction with inequality 5.
C is a lack of cohesion metric. Again we give a proof by contradiction. If

C(m) < min{C(m1), C(m2)} = C(m1)

then by elementary algebraic transformation we again obtain inequality 6.

From the definition of GCE metrics (see Section 3) it can be easily seen that all of them are non-
negative. The maximal value of conductance is equal to 1 when Rc = ∅ and consequently this measure
satisfies both the normalization property and the maximum value property. When Rc is maximal con-
ductance is not necessarily equal to zero. Namely, conductance is equal to zero if and only if a module
does not depend on other modules. Adding intra-cluster relationship increases only the denominator
of conductance and consequently conductance satisfies the monotonicity property. The merge property
of conductance is the consequence of Lemma 1 when P is the number of inter-cluster links and Q the
sum of the number of inter- and intra-cluster links. Namely, the number of intra-cluster links is an

Graph clustering evaluation metrics as software metrics • 11:87

additive property under the merge operation. Secondly, if two modules are unrelated then they have
disjoint sets of inter-cluster links. This means that the number of inter-cluster links is also an additive
property for unrelated modules.

In contrast to conductance, expansion does not satisfy the normalization property. If we modify ex-
pansion to be a value in the interval [0,1] then we actually obtain the cut-ratio metric. Expansion also
does not satisfy the null value property and the maximum value property: both the numerator and
denominator in the definition of expansion are independent on the number of intra-cluster links. The
expansion of a module remains the same under the addition of intra-cluster links. Therefore, this met-
ric also satisfies the monotonicity property. As already mentioned, the number of inter-cluster links is
an additive property of disjoint modules. The number of nodes in a module is also an additive property
under the merge operation. Therefore, by Lemma 1 expansion satisfies the merge property.

Cut-ratio satisfies the normalization property: the maximal value of cut-ratio is equal to 1 which is
obtained when each entity from the module references all entities defined outside the module. Both
the numerator and the denominator of cut-ratio are independent of the number of intra-cluster links
and similarly as expansion this measure does not satisfy the null and the maximum value property.
If we add a new intra-cluster link the cut-ratio does not change and consequently this metric satisfies
monotonicity property. The cut-ratio metric satisfies the merge property which shows the following
lemma.

LEMMA 2. Cut-ratio satisfies the merge property.

PROOF. Let Cx denote the number of inter-cluster links emanating from nodes contained in module
x, Nx the number of nodes in module x, and N the number of nodes in the whole network. Let p and q
be two disconnected modules such that the cut-ratio of p is smaller than the cut-ratio of q, i.e.

Cp

Np(N −Np)
≤ Cq

Nq(N −Nq)
⇔ CpNq(N −Nq) ≤ CqNp(N −Np). (7)

Let r denote the union of p and q. Let us suppose that the merge property is not satisfied, i.e.
Cp + Cq

(Np +Nq)(N −Np −Nq)
<

Cp

Np(N −Np)
(8)

If we multiply both sides of inequality 8 by (Np +Nq)(N −Np −Nq)Np(N −Np) > 0, then we obtain

(Cp + Cq)Np(N −Np) < Cp(Np +Nq)(N −Np −Nq) (9)
CqNp(N −Np) < CpNq(N −Nq)− 2CpNpNq (10)

≤ CpNq(N −Nq) (11)

which is in contradiction with inequality 7.

From the definition of ODF measures it can be easily seen that they take values in the range [0,
1], which means that they satisfy bot nonnegativity and normalization property. When Rc = ∅ then
Maximum-ODF and Average-ODF are equal to 1, while Flake-ODF is equal to 0, which means that
Maximum- and Average-ODF satisfy the maximum value property, while Flake-ODF satisfies the null
value property (recall that Flake-ODF measures cohesion, while Maximum- and Average-ODF are lack
of cohesion metrics). The numerator of Maximum- and Average-ODF is independent of the number of
intra-cluster links. Consequently, those metrics does not satisfy the null value property and satisfy the
monotonicity property (addition of intra-cluster links does not change Maximum- and Average-ODF).
The merge property is trivially satisfied for Maximum-ODF.

LEMMA 3. Average-ODF satisfies the merge property.

11:88 • Miloš Savić, Mirjana Ivanović

PROOF. Let D′a denote the number of inter-cluster links emanating from node a, Da out-degree of
node a (D′a ≤ Da), and Nx the number of nodes in module x. Let p and q be two disconnected modules
such that the Average-ODF of p is smaller than the Average-ODF of q, i.e.

1

Np

∑
u∈p

D′u
Du
≤ 1

Nq

∑
u∈q

D′u
Du

⇔ Nqα ≤ Npβ, where α =
∑
u∈p

D′u
Du

, β =
∑
u∈q

D′u
Du

(12)

Let r denote the union of p and q. The Average-ODF of r is equal to

Average-ODF(r) =
1

Np +Nq

∑
u∈r

D′u
Du

=
1

Np +Nq

(∑
u∈p

D′u
Du

+
∑
u∈q

D′u
Du

)
=

α+ β

Np +Nq
(13)

Let us suppose that Average-ODF does not satisfy the merge property, i.e. (α + β)/(Np +Nq) < α/Np.
Then we obtain that βNp < αNq which is in contradiction with inequality 12.

The addition of new intra-cluster links can only increase the number of entities defined in a module
whose intra-cluster out-degree is greater than inter-cluster out-degree. Therefore, Flake-ODF satisfies
the monotonicity property. The number of entities in the module whose intra-cluster out-degree is
greater than inter-cluster out-degree is additive property under the merge operation. Therefore, Flake-
ODF also satisfies merge property by Lemma 1.

Table I. Properties of graph clustering metrics as (lack of) cohesion software metrics.
Metric Nonnegativity Normalization Null value Maximum value Monotonicity Merge
Conductance yes yes no yes yes yes
Expansion yes no no no yes yes
Cut-ratio yes yes no no yes yes
Maximum-ODF yes yes no yes yes yes
Average-ODF yes yes no yes yes yes
Flake-ODF yes yes yes no yes yes

The properties of graph clustering metrics as (lack of) cohesion software metrics are summarized in
Table I. This table indicates the limitations of GCE metrics as software metrics. As observed by Briand
et al. [1998], only a few widely known software cohesion metric fulfill all of the cohesion properties.
In other words, a measure which does not satisfy all of the properties can be considered as poorly
defined. Secondly, we can see that GCE metrics reflecting cohesion does not satisfy the null value
property, while GCE metrics reflecting lack of cohesion does not satisfy the maximum value property.
However, we believe that this is not the disadvantage of GCE metrics. Firstly, it is very unlikely to
observe full connected software modules in practice (each class from a package reference each other;
each method from a class calls each other and access to each class attribute). Secondly, in such cases
GCE metrics favour loosely coupled software modules emphasizing another quality principle of good
software design, i.e. the principle of low coupling.

6. CONCLUSION AND FUTURE WORK

In this paper we introduced the idea of applying graph clustering evaluation (GCE) metrics to graphs
representing software systems in order to evaluate cohesiveness of software entities. In contrast to
standard cohesion metrics, GCE metrics do not ignore external references. They are based on the
idea that reducing coupling between an entity and the rest of the system increases cohesion of the
elements contained in the entity. Using the theoretical framework introduced by Briand et al. we
investigated the properties of graph clustering evaluation metrics. This analysis showed that GCE
metrics are theoretically sound with respect to the most important properties of software cohesion

Graph clustering evaluation metrics as software metrics • 11:89

metrics (monotonicity and merge property), but also showed that they possess certain limitations we
should be aware of when using GCE metrics as software metrics. Our future work will extend the
present work with an empirical investigation of the following research questions:

(1) Do GCE metrics correlate to standard software cohesion metrics (LCOMs, TCC, LCC, etc.) and to
what extent?

(2) Each software entity can be described by a numerical vector containing metrics of internal complex-
ity (such as LOC, Halstead measures, cyclomatic complexity, etc.) and metric of design complexity
(metrics quantifying importance of the entity such as betweenness centrality and page rank, its
coupling to other entities such as degree centrality/CBO, inheritance for classes such as NOC and
DIT, and invocation for methods/functions). Each of these vectors can be, according to the degree
of cohesion, classified as Radicchi strong (strongly cohesive), Radicchi weak (weakly cohesive) or
poorly cohesive (entity that is neither Radicchi strong nor Radicchi weak). Therefore, our second
research question will be: are there any differences in internal and design complexity between
strongly, weakly and poorly cohesive software entities?

(3) Is it possible to automatically remodularize software system using simple refactorings such as
move class/method in order to improve the degree of cohesion of the overall system (to increase the
number of Raddichi strong clusters, to minimize the average conductance, etc.).

REFERENCES

James M. Bieman and Byung-Kyoo Kang. 1995. Cohesion and Reuse in an Object-oriented System. In Proceedings of the 1995
Symposium on Software Reusability (SSR ’95). ACM, New York, NY, USA, 259–262.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D-U. Hwang. 2006. Complex Networks : Structure and Dynamics. Physics
Reports 424, 4-5 (2006), 175–308.

Lionel C. Briand, John W. Daly, and Jürgen Wüst. 1998. A Unified Framework for Cohesion Measurement in Object-
OrientedSystems. Empirical Software Engineering 3, 1 (1998), 65–117.

Lionel C. Briand, Sandro Morasca, and Victor R. Basili. 1996. Property-Based Software Engineering Measurement. IEEE
Transactions on Software Engineering 22, 1 (1996), 68–86.

Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. 2013. Recent advances in graph partition-
ing. CoRR abs/1311.3144 (2013).

S. R. Chidamber and C. F. Kemerer. 1994. A metrics suite for object oriented design. IEEE Transactions in Software Engineering
20, 6 (1994), 476–493.

Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3-5 (2010), 75 – 174.
Martin Hitz and Behzad Montazeri. 1995. Measuring Coupling and Cohesion in Object-Oriented Systems. In Proc. International

Symposium on Applied Corporate Computing. 25–27.
Y. S. Lee, B. S. Liang, S. F. Wu, and F. J. Wang. 1995. Measuring the coupling and cohesion of an object-oriented program based

on information flow. In Proceedings of International Conference on Software Quality.
Jure Leskovec, Kevin J. Lang, and Michael Mahoney. 2010. Empirical Comparison of Algorithms for Network Community

Detection. In Proceedings of the 19th International Conference on World Wide Web (WWW ’10). ACM, New York, NY, USA,
631–640.

F. Luccio and M. Sami. 1969. On the decomposition of networks in minimally interconnected subnetworks. IEEE Transactions
on Circuit Theory 16, 2 (1969), 184–188.

F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. 2004. Defining and identifying communities in networks. Pro-
ceedings of the National Academy of Sciences 101, 9 (2004), 2658–2663.

Milos Savić, Gordana Rakić, Zoran Budimac, and Mirjana Ivanović. 2014. A language-independent approach to the extraction
of dependencies between source code entities. Information and Software Technology, 56, 10 (2014), 1268–1288.

Satu Elisa Schaeffer. 2007. Graph Clustering. Compututer Science Review 1, 1 (2007), 27–64.
Edward Yourdon and Larry L. Constantine. 1979. Structured Design: Fundamentals of a Discipline of Computer Program and

Systems Design (1st ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

