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Clone Wars
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Code clones are unwanted phenomena in legacy code that make software maintenance and development hard. Detecting these

clones manually is almost impossible, therefore several code analyser tools have been developed to identify them. Most of these
detectors apply a general token or syntax based solution, and do not use domain specific knowledge about the language or the

software. Therefore the result of such detectors contains irrelevant clones as well. In this paper we show an algorithm to refine

the result of existing clone detectors with user defined domain specific predicates to preserve only useful group of clones and to
remove clones that are insignificant from the point of view defined by the user.

Categories and Subject Descriptors: D.2.3 [Software Engineering] Coding Tools and Techniques; D.2.7 [Software Engineer-
ing] Distribution, Maintenance, and Enhancement; F.2.2 [Analysis of algorithms and problem complexity] Nonnumerical
Algorithms and Problems

General Terms: Languages, Design

Additional Key Words and Phrases: Grouping, Filtering, Clone detection, Erlang, Suffix tree, Static program analysis

1. INTRODUCTION

Code clones, the result of the ”copy&paste” programming technique, have negative impact on software
quality and on the efficiency of the software maintenance process. Although copying may be the fastest
way of creating a new feature, after a while it is really hard to detect and maintain the multiple
instances of the same code snippets.

Based on static source code analysis, clone detectors try to identify code clones automatically. Sev-
eral clone detectors exist [Roy et al. 2009] applying different techniques to select the clones. These
techniques include string, token, syntax and also semantics based approaches.

In the context of the Erlang programming language [Armstrong 2007], there are three clone detec-
tors [Li and Thompson 2009; Fördős and Tóth 2014b; 2013] implementing different techniques to select
duplicated code. Although the clones identified by these techniques can be considered duplicates, some
of them are irrelevant in certain points of view. The filtering system of Clone IdentifiErl allows users
to tailor the result in different ways using domain specific knowledge about the language.

This filtering technique can be easily applied on duplicate code detectors that yield clone pairs [Fördős
and Tóth 2014b; 2013]: it simply leaves out the pairs which do not fulfil the requirements. When a clone
detector groups the identified clones [Baker 1996; Koschke 2012; Fördős and Tóth 2014a], the result
is more comprehensible, but makes the filtering less straightforward. Filtering out some part of a
group of clones results in smaller groups of clones. Sometimes smaller means that we have less group
members, in other cases we have smaller clones – or both.
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In this paper we show a general, language independent algorithm to refine the result of existing
clone detectors that produce groups of clones. We apply domain specific predicates to the clones to filter
out useful groups of clones from different points of view. For example, the clone elimination process
can be simplified by removing clone instances that are difficult to be eliminated. The filtering system
can be also used to exclude those clones from the result that are duplicates of any given exceptions.
For instance, consider that the generated source code should be removed from the results. We also
emphasize here that maintenance time can be decreased by focusing on the clones that cause the
hardest problems, so the developer can work on the most useful maintenance tasks.

2. RELATED WORK

Clone detection is a wide field of research. Here we focus on filtering and grouping techniques.
Several detectors for duplicates exist, but only a few of them concentrate on functional languages,

such as [Brown and Thompson 2010] developed for Haskell, and Wrangler [Li and Thompson 2009] for
Erlang. We have proposed Clone IdentifiErl [Fördős and Tóth 2013] for Erlang, which is an AST/metric
based approach. We have also published a purely metric driven algorithm [Fördős and Tóth 2014b] that
characterises the Erlang language by using software metrics to identify clones in Erlang programs.
In Clone IdentifiErl, a new standalone extensible filtering system has been introduced to filter out
irrelevant clones, whilst in [Fördős and Tóth 2014b] we have given a filtering system that is capable of
removing both irrelevant and false positive clones. The papers [Fördős and Tóth 2014b; 2013] argued
for the necessity of this step, and presented a domain-specific implementation for Erlang.

Earlier, Juergens and Göde [2010] have proposed an iterative, configurable clone detector (ConQAT)
containing a filtering system. ConQAT can remove repetitive generated code fragments and overlap-
ping clones by iteratively reconfiguring and rerunning its initial clone detector.

Different clone detection techniques have been used by known detectors. Some of them, e.g. the
suffix-tree algorithm [Baker 1996], form groups from the resulting clones. On the other hand, there
are algorithms that produce clone pairs. In this latter case, it is also possible to group the results, but
this has an additional computational overhead. For example, paper [Fördős and Tóth 2014a] shows a
general and broadly usable method to group the result of clone detection algorithms.

Although significant research has been carried out in this area, grouping and filtering in one step
is a novel technique. The method, presented in this paper, does not conflict with the already existing
techniques and tools: it is an additional tool to refine existing results.

3. IMPROVING CLONE DETECTION

There are many algorithms for detecting code duplicates. They differ in accuracy as well as in execution
time. Our goal is to improve accuracy without compromising efficiency. In this paper, we propose a
standalone, and also a language independent, approach that can be used after any duplicated code
detector to tailor its results. Here, we also present how it can be configured to facilitate accurate clone
detection in Erlang programs.

Clone detectors result in either clone pairs or clone groups. Regardless of the format of the result,
our algorithm can improve it until pairs can be considered as groups of two-elements. Therefore, our
algorithm is defined to work with initial clone groups. It examines each initial clone group whether all
elements of the group are “relevant” enough. The goodness of an element is judged by easily replaceable
filters, thus the behaviour of the algorithm can be customised to fit various purposes. Our algorithm
decomposes a group into sub-groups on which all the filters hold, and removes irrelevant elements
from the result.

The algorithm provided here assumes certain properties for initial groups. Namely, each clone in
a group must have the same amount of building blocks. In our Erlang implementation, the building
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block is a top-level expression, where a top-level expression refers to the main expression or to a se-
quence of main expressions making up a function clause. There are many clone detectors [Roy et al.
2009] that produce initial clone groups for which the required property holds. Note that a well-known
detection technique, the suffix tree based algorithms [Baker 1996; Koschke 2012], provide initial clone
groups with the required property. A clone detector employing suffix tree [Gusfield 1997] has been im-
plemented in Wrangler [Li and Thompson 2009] (and also in RefactorErl [RefactorErl project 2014]),
and we will use this kind of initial groups for the practical evaluation of our approach in this paper.
Before we detail our algorithm, we briefly review the general clone detection technique that uses suffix
tree.

3.1 Suffix tree

Usually, clone detectors that use suffix tree are token-based algorithms. Tokens of the analyzed pro-
gram are mapped to words of a formal language based on the token kind. For instance, identifiers and
literals can be mapped to ‘a‘, the begin keyword is mapped to ‘b‘, the case keyword is mapped to ‘c‘ and
so on. The suffix tree is constructed from using the transformed tokens. The groups of initial clones are
gathered as subtrees from the entire suffix tree. This step requires O(n ∗ log n) (n denotes the number
of tokens) steps in the worst case.

The main advantages of this technique are the low computational cost and the compact result, be-
cause it demands no further grouping. Several duplicated code detectors [Baker 1996; Koschke 2012]
use this algorithm as their initial clone detectors, because suffix tree based clone detection is a general
technique that can be easily applied to detect clones in any programming language.

However, its general applicability implies its weak points. It is a token-based detector with no built-
in knowledge of programming languages, thus several clones forming no valid syntactical unit may
appear in its result. These clones need to be further cut to meet the syntactical rules of the program-
ming language in which the clones were implemented. Hereupon, it produces several useless clones
that consist of a few tokens and have nearly no syntactic characteristics. Last but not least, finding
gapped clones becomes impossible, because the algorithm of suffix tree cannot deal with these clones.

3.2 Filtering

Our algorithm examines each initial clone group whether its elements satisfy the required properties
described by the user defined filters. Filters are applied to the building blocks of the clone instances
that belong to the same group. Filters can be chosen arbitrarily to fit any purpose.

Our algorithm allows developers to concentrate only on important clones by removing irrelevant
clones from the result, as Clone IdentifiErl does. Our algorithm can also come to rescue, if the result
needs to be cleaned by excluding elements that are required to be duplicated. For instance, consider
constraints originating from business logic, or the cases when a function acts as a bridge that connects
two applications. Expressions referring to these functions are obviously clones, but they are necessarily
present. For another example, consider that the examined source code contains a parser (e.g.: yecc)
generated source code which can be excluded from the clone groups by using our algorithm. To best of
our knowledge, no Erlang specific approach can handle such exceptions.

In this paper, we show how our algorithm can ease the elimination process by using Erlang specific
filters. Although a suffix tree based detector is being employed to produce the initial clones, our imple-
mentation already ensures that the initial clones of a group are real syntactic clones that differ only in
the used identifiers and operators. Thus, we only want to check that the following two predicates hold
for a group to ease the elimination process.

—The elements of the group refer to nearly the same set of functions.
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% First instance

?Query:exec(Nd, ?Query:seq([?Expr:clause(),

?Clause:form(),

?Form:func()]))

% Second instance

?Query:exec(RecNode, ?Query:seq([?Rec:file(),

?File:included(),

?File:module()]))

Fig. 1. A clone whose instances refer to different functions

Fig. 2. Record types referred by expressions in five three-
unit long clone instances of a group

Fig. 3. Maximal sized groups containing one-unit long
clone instances

—The elements of the group refer to the same record definitions.

The first property excludes clones whose elements call mostly different functions, because the func-
tionalities implemented in these clones are likely to be independent. Thus, the elimination of these
clones is not a high-priority task. For instance, consider Figure 1. The latter property is greatly Erlang
specific. Note that these filters should only be replaced when tailoring the algorithm to report clones
written in another programming language.

3.3 Grouping & filtering in one step

In this section we briefly explain how to process an initial clone group by filtering and regrouping
clones. The algorithm decomposes a group containing m pieces of n-unit long clone instances into
subgroups based on filtering results.

The original group can be best understood as an expression matrix of size n ×m: a column in this
matrix is a clone instance, i.e. a sequence of n (top-level) expressions appearing in the program that
was categorized by the initial grouping as a clone of the other columns in the same matrix. A row in
the matrix contains m occurrences of a “similar” expression. For efficiency of the initial clone detection
phase, this similarity may be too permissive. We can design more specific “filters” to express domain-
specific knowledge about “relevant” clones, by considering two expressions similar in a more restrictive
manner. For instance, we can introduce a filter which considers two expressions different if they refer
to different record types – even if they were declared similar by the initial clone detection.

A subgroup is formed as an intersection of some selected rows and columns from the original ex-
pression matrix. Columns of a subgroup are clones that are relevant from the point of view of the
applied filtering mechanism. Our algorithm will try to find maximal sized sub-groups, with elements
consisting of as many units as possible.

For the sake of the example, assume that we characterise expressions based on the referred record
types. Let us denote an expression with ‘a‘ if it refers to a record type ‘a‘. In Figure 2, a characterisation
of an initial clone group can be seen. The group contains five (i.e.: m = 5) three-unit long clone instances
(i.e.: n = 3). The elements of the matrix represent the records referred by the expressions of the clones;
the third element of the first row is an expression referring to record ‘a‘ (only). Note that only two
of the initial clones in the group are considered relevant by this filtering: column 1 and column 3.
Furthermore, our algorithm will identify a shorter clone consisting of two top-level expressions c;e in
columns 2 and 4 as well.
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Fig. 4. Joining sub-groups Fig. 5. Finding sub-groups to be glued

We want to maximise both the length (number of columns) and the size (number of rows) of every
constructed sub-group. These properties are orthogonal to each other, therefore the maximisations of
them impede each other.

We propose an iterative algorithm. We start by identifying sub-groups having one-unit long clone
instances. For our example, such sub-groups are shown in Figure 3: in each row, the elements that
belong to the same sub-group are painted using the same shade of grey. Obviously, we create maximal
sized sub-groups. In the third row, for instance, we could identify two sub-groups (one for d and another
one for e), both containing two columns. In the first row, however, we have a sub-group with three
columns.

Next, we try to improve the other dimension, i.e. to lengthen the elements of sub-groups. This goal
is achieved in two steps. First, we try to join the previously determined sub-groups; here care must
be taken not to lose any existing maximal sized sub-groups. We can join two sub-groups if there are
no rows between them (clones are continuous blocks of top-level expressions), and they share at least
two columns (i.e. at least two clones contain the matching expressions). Furthermore, if there is a clone
instance in any of the to-be-joined sub-groups that is not included in the newly created sub-group, then
the original sub-group containing this clone instance must be preserved (otherwise it can be thrown
away). We will come back to this covering problem soon.

Joining is illustrated in Figure 4. Note that matrix elements may belong to multiple sub-groups, as
happened with the bs in the second row of the expression matrix. We could join those bs with the as of
the first row, as well as with the ds of the third one.

In the second step of sub-group lengthening, we iteratively glue overlapping sub-groups together.
Check the left half of Figure 5: two groups (a;b in the first two rows and b;d in the last two rows) are
glued together based on the overlapping in the second row (dashed rectangles). Naturally, it is required
that glued sub-groups have at least two common columns: without that they would not be clones. Here
the sub-groups share the first and the third columns.

Again, if a clone instance that belongs to any of the input sub-groups is not present in the glued sub-
group, then its containing sub-group must be preserved. (We will refer to this phenomena as the new
sub-group not covering the old one.) This can be observed in the right half of Figure 5. After construct-
ing the new sub-group a;b;d in columns 1 and 3, we can drop sub-group b;d, but we must preserve the
sub-group a;b in the first two rows, since it contains the third column, which is not included in the new
sub-group, and hence the new sub-group does not cover the original a;b sub-group.

The gluing step is repeated until there are no sub-groups that can be glued together. Then the
algorithm terminates, and outputs the determined sub-groups as a refined grouping of clones.

4. FORMAL DESCRIPTION

Now we define our filtering&grouping algorithm more precisely. The algorithm operates on a single
clone group, represented as an expression matrix of size n×m. Each column represents a sequence of
top-level expressions in a function clause (a clone instance), and a row corresponds to similar expres-
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sions with respect to an initial clone detection algorithm.

G ∈ En×m

For filtering out irrelevant clones, we will use a reflexive and symmetric (but not necessarily transi-
tive) binary relation over expressions.

f ⊆ E × E

Our algorithm takes a clone group G and a filtering relation f , and produces a set of subgroups,
which refines the grouping G.

G, f 7→ {G1, G2, . . . Gr}

Each subgroup Gi represents a clone group made up of mi clone instances, each instance having
length ni, where 1 ≤ ni ≤ n and 2 ≤ mi ≤ m.

Gi ∈ Eni×mi

A subgroup selects a block of rows and some of the columns of the original expression matrix. The
initial clones represented by the selected columns in the subgroup contain an expression sequence (the
selected rows) which is accepted as a “relevant” clone.

We can represent a subgroup with a “selection” s, relative to an initial group G. The block of rows
selected by s is denoted by s.r, where s.r.` is the lower, and s.r.u is the upper bound of the selection.
The set of columns selected by s is denoted by s.c. (To improve the efficiency of the algorithm, s.c can
be represented as an ordered list of numbers.)

s = (r, c) where r = (`, u), ` ∈ [1..n], u ∈ [`..n], c ⊆ {1, . . . ,m}

The algorithm is defined as two steps (Sections 4.1 and 4.2, respectively) followed by an iteration of a
third step (Section 4.3). No more than n − 2 iterations of the third step are needed; the algorithm can
terminate earlier if fixed point is reached.

4.1 One unit long clone instances

The first step of the algorithm produces S1, a set of selections of the initial group.

G, f 7→ S1

Each clone instance of each selection in S1 has length 1 (these clone instances are formed from only
one expression). This is the only step of the algorithm where filtering takes place, and predicate f is
used. All pairs formed from the elements of each selection in S1 satisfy predicate f . In the subsequent
steps we shall maximize both the length of reported clone instances, and the size of the subgroups.

S1 =

n⋃
i=1

{ (
(i, i), c

) ∣∣∣ c ∈ MaxProperCliques
(
graph(f,G, i)

)}
where graph(f,G, i) is the graph of f regarding to the expressions of the ith row in G with vertices
{1, . . . ,m} and edges {

(p, q)
∣∣∣ (G[i, p], G[i, q]

)
∈ f
}

and V ∈ MaxProperCliques(g) means that V is a clique (the vertices of a complete subgraph) of g which
contains at least 2 vertices, and V is not included in a larger clique (i.e. V is inclusion-maximal [Bomze
et al. 1999]).
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4.2 Joining clone instances

The second step of the algorithm takes clone subgroups containing one unit long clones, and try to join
subgroups.

S1 7→ S2

Joining can be defined in two steps. First, we introduce S′1 as follows.

S′1 =
{(

(`1, u2), c1 ∩ c2
) ∣∣∣ ((`1, u1), c1

)
∈ S1,

(
(u1 + 1, u2), c2

)
∈ S1, |c1 ∩ c2| > 1

}
Let the binary relation covers over selections be defined as a partial order in the following way:
s1 covers s2 if and only if

s2.c ⊆ s1.c ∧ s1.r.` ≤ s2.r.` ∧ s2.r.u ≤ s1.r.u

Finally, we can provide S2 by combining S1 and S2 and eliminating selections that are already covered
by other, larger selections.

S2 = S′1 ∪ S1 \
{
s
∣∣ ∃s′ ∈ S′1 : s′ covers s

}
4.3 Glueing clone instances

The third step, which must be repeated until fixed point is reached (which will happen after no more
than n− 2 iterations) is also described in two steps.

S′i =
{
s
∣∣∣ s1, s2 ∈ Si, s1.r overlaps with s2.r, s.r.` = min(s1.r.`, s2.r.`), s.r.u = max(s1.r.u, s2.r.u),

s.c = s1.c ∩ s2.c, |s.c| > 1
}

where two blocks of rows are overlapping, i.e.

(`1, u1) overlaps with (`2, u2) if and only if (`1 ≤ `2 ≤ u1) ∨ (`2 ≤ `1 ≤ u2).

Now we can define Si+1 by removing all the selections from S′i that are covered by other, larger selec-
tions.

Si+1 = S′i \
{
s
∣∣ ∃s′ ∈ S′i : s

′ covers s
}

When the iteration of this third step reaches fixed point, the last set of selections, St can be used to
determine the set of subgroups returned by our algorithm. For each selection ((`, u), c) ∈ St, we yield
a subgroup of size (u− `+ 1)× |c|, containing the intersection of the selected rows and columns of the
initial expression matrix.

5. CONCLUSIONS

In this paper, we proposed a broadly usable filtering algorithm that quickly removes those clones from
the results that are insignificant from the point of view defined by the user. The proposed algorithm is
language independent, thus the results of many duplicated code detectors can efficiently be improved.
By removing irrelevant clones, the maintenance costs can be decreased, because the programmers need
to only deal with important issues.

In this paper, we defined rules that are specialised for easing the clone elimination process in Erlang
programs. We discussed the underlying ideas, and we also gave a formal description of our algorithm.

We note that we successfully evaluated the realisation1 of the algorithm and assessed the results. All
of our goals were reached; clones that are hard to eliminate are not present in the results. The filtering

1The authors would like to thank to Bence Szabó for the implementation.
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phase requires only a small extra computational cost that is infinitesimal. Moreover, it removes clones
that are insignificant from the point of view defined by the user. Thus, the algorithm quickly cleans
the result and helps programmers focus on only important cases.

Future work will consist of evaluating the proposed algorithm by using initial clones reported by
different clone detectors and studying and comparing the results of these test runs. Differences in the
results will indicate areas for future study.
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Viktória Fördős and Melinda Tóth. 2013. Identifying Code Clones with RefactorErl. In Proceedings of the 13th Symposium on
Programming Languages and Software Tools, ISBN 978-963-306-228-9. Szeged, Hungary, 31–45.
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