
µRaptor: A DOM-based system with appetite
for hCard elements

Emir Muñoz1,2, Luca Costabello1, and Pierre-Yves Vandenbussche1

1 Fujitsu Ireland Limited
2 National University of Ireland, Galway

E-mail: Emir.Munoz@ie.fujitsu.com

Abstract. This paper describes µRaptor, a DOM-based method to ex-
tract hCard microformats from HTML pages stripped of microformat
markup. µRaptor extracts DOM sub-trees, converts them into rules, and
uses them to extract hCard microformats. Besides, we use co-occurring
CSS classes to improve the overall precision. Results on train data show
0.96 precision and 0.83 F1 measure by considering only the most com-
mon tree patterns. Furthermore, we propose the adoption of additional
constraint rules on the values of hCard elements to further improve the
extraction.

1 Introduction

In this paper we present our contribution to the Linked Data for Information Ex-
traction Challenge1 at the LD4IE 2014 Workshop. The challenge aims at using
embedded structured data in web pages, e.g., RDFa, Microformats, or Micro-
data, to bootstrap and train supervised systems to extract structured data from
the Web. Current web pages information extraction techniques focus on the (au-
tomatic) induction of wrappers to scrape meaningful parts (see [2] for a survey).
However, by extracting all the properties contained in hCards2, such techniques
achieve low precision and recall. [1] reports a F-score of 0.59 extracting per-
son attributes from plain web pages. By relying on (X)HTML pages with hCard
markup, µRaptor identifies hCard-like sections in (X)HTML documents without
the need for hCard markup, and generates a corresponding RDF representation.

Extracting hCard information from (X)HTML pages presents two main
challenges: 1) the identification of hCard sections in non semantically anno-
tated (X)HTML pages, and 2) the qualification of hCard elements type (e.g.
family-name, given-name). Our system addresses the two challenges by using
the training document set to extract DOM sub-trees containing assessed hCard
description and generating CSS selector rules. To increase the CSS selector rules
precision, we generate a co-occurrence matrix of CSS classes and hCard proper-
ties. This also enhances the qualification of hCard property types. Furthermore,
using value constraints rules associated to hCard properties, we assess the prob-
ability for an HTML element to be of a particular hCard type.
1
http://data.dws.informatik.uni-mannheim.de/LD4IE/

2
http://microformats.org/wiki/hcard. A microformat used for publishing, people,
companies, and organizations on the Web, using vCard properties.

67

2 µRaptor System Description

Our system is composed of two distinct phases: The first phase aims at training
the Information Extraction system (i.e. it learns the tree structures of hCard in
the train set DOM); the second phase targets hCard semantic markup extraction.
A flow diagram of our system is illustrated in Figure 1. Moreover, the source code
of µRaptor is publicly available at https://github.com/emir-munoz/uraptor,
and works with the data provided in the Challenge website3.

Fig. 1: µRaptor system architecture with training and evaluation parts.

2.1 Training Phase

1) hCard DOM sub-trees extraction. The training phase of our system
takes as input the training set composed of 9,386 HTML documents containing
hCard semantic markup. First, we clean the input HTML pages by removing
all non-content related tags (e.g., style, JavaScript). Then, for each document,
hCard sections are extracted using the [class*=vcard] CSS selector, returning
sub-trees of the original DOM tree containing the hCard markup.
2) CSS classes and hCard co-occurrence matrix computation. HTML
elements annotated with hCard markup may also be annotated with other CSS
classes. To achieve higher precision during the extraction phase, we compute
a matrix of hCard element and other CSS class co-occurrences that will help
refining the extraction rules and qualifying the hCard elements type.
3) DOM patterns, filtering, and conversion to CSS selectors. Once all
hCard DOM sub-trees have been extracted, we count their frequencies. We keep
only the most frequent patterns (thus achieving higher extraction precision) and

3
http://data.dws.informatik.uni-mannheim.de/LD4IE/data/

68

convert them into rules to guide the extraction of hCards in other documents dur-
ing the extraction phase. This conversion is done by transforming the extracted
DOM sub-trees into CSS selectors4 using the child combinator operator5. Since
tree-like structures cannot be directly expressed with CSS selectors, we prune
each DOM sub-tree, leaving only the longest path, and we convert such path to
a chain of CSS child combinators (see example in Figure 2). Co-occurring classes
are used at this stage to increase the precision of the extraction rules. For in-
stance, in the rule with selector “div > img + cite” we found that the most
common co-occurring class with vcard annotation is comment-author. Hence,
we modify the rule to “div.comment-author > img + cite”.
4) hCard element value constraint rules extraction. Sometimes the
extracted hCard microformats contain erroneous data (e.g. phone numbers
in class="email" annotations). Although not implemented in the current
µRaptor version, we propose to detect and fix such inconsistencies with a tech-
nique that we introduced in [3]. Such strategy creates content patterns that can
be used as constrains to validate hCard properties extraction.

Fig. 2: A sample DOM-subtree to CSS selector conversion.

2.2 Extraction Phase

5) hCard DOM patterns detection. During the extraction phase, we run
each of the extracted rules over the test set of documents (containing no hCard
markup) to identify hCard candidates. Rules are applied in a specific order:
From the most long/specific to the most short/general, according to their CSS
selectors. We add the constraint that only one rule will visit a hCard candidate.
6) hCard elements qualification. Once a DOM sub-tree containing a hCard
candidate is extracted, we modify its DOM elements structure to add the corre-
sponding hCard markup as captured during the training phase. In other words,
we assign hCard properties such as vcard, fn, adr, email, and so forth, to ele-
ments in the DOM. Finally, we generate the N-Quads output file using Apache
Any236 with the HTML document URI as graph name (context).

3 Results and Discussions

µRaptor evaluation (Figure 1, step 7) was performed against the gold standard
provided built using Apache Any23. We use Information Retrieval measures,

4
http://www.w3.org/TR/css3-selectors/

5
http://www.w3.org/TR/css3-selectors/#child-combinators

6
http://any23.org

69

namely Precision (P), Recall (R) and F1-score to evaluate the performance of
our system. Let be A = {gold standard n-quads}, and B = {µRaptor n-quads},
then

P =
|A| \ |B|

|B| , R =
|A| \ |B|

|A| , and F1 =
2PR

P +R

We report our results over training and testing data in Table 1. A higher
recall can be reached by adding more rules at the cost of overfitting the system.

Table 1: µRaptor results achieved in datasets.

Dataset P R F1

Train 0.96 0.73 0.83
Test 0.92 0.67 0.77

Average 0.94 0.7 0.8

During our analysis, the first interesting observation is that the occurrences
of hCard properties in the training dataset follow a logarithmic distribution (see
Figure 3). Aside from rdf:type (that occurs in 35.2% of cases), the most popular
properties are vcard:n (16.5%), vcard:fn (10.2%), vcard:given-name (10.1%),
vcard:family-name (9.9%). The remaining properties account for a 18.1% and
consists in the long tail of the distribution (e.g. vcard:role occurs 32 times
only, vcard:honorific-prefix only once). To extract the latest properties, we
could define specific rules to extract the less frequent cases. However, we did
not consider less frequent cases, thus a↵ecting our overall recall. This has been
observed in the results given by the Challenge organizers after evaluation over
the test set. Less frequent properties are not found by the current set of rules,
adversely a↵ecting the overall recall. Again, µRaptor can easily be extended with
more rules to cover those cases improving the performance of the system.

Fig. 3: Properties occurrences in training data (note the logarithmmic scale).

70

Surprisingly, we notice that the gold standard provided for the challenge does
not include a number of hCard microformats, due to an Apache Any23 inability
to detect a certain number of them while parsing (X)HTML pages (however, the
extraction is successful if only the HTML snippet is provided). For instance, the
following microformat7 in train1 dataset has not been extracted:

 Posted by

<span class="fn" itemprop="author" itemscope="itemscope"

itemtype="http :// schema.org/Person">

<meta content="https :// plus.google.com /117423557913834377613"

itemprop="url">

<a href="https :// plus.google.com /117423557913834377613"

rel="author" title="author profile">

Bianca Swanepoel

µRaptor, on the other hand, extracts more RDF n-quads than the gold stan-
dard, thus a↵ecting the precision (we attribute this to the preliminary (X)HTML
pages cleaning, Figure 1, step 1). The cleaning phase removes non relevant and
noisy parts in the (X)HTML allowing a better extraction. A manual inspection
found that our “extra” N-Quads are valid extractions.

4 Conclusion

µRaptor is a rule-based system that extracts structured information such as
hCards, relying on (X)HTML pages DOM model. By considering only the 30
most frequent tree patterns for hCards (out of ca. 700), we achieved 0.94 of
average precision. Experiments determined that adding few more rules produces
a marginal di↵erence in F1-measure. Despite our approach performs well on
training and testing data, µRaptor does not cover all hCard properties, since
not all of them are used by web designers or content management systems (e.g.,
Drupal), making challenging to extract patterns to identify them.

Acknowledgments. This work has been supported by KI2NA project funded by

Fujitsu Laboratories Limited and Insight Centre for Data Analytics at NUI Galway

(formerly known as DERI Galway).

References

1. T. István Nagy. Person attribute extraction from the textual parts of web pages.
Acta Cybern., 20(3):419–439, Aug. 2012.

2. B. Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Data-
Centric Systems and Applications. Springer, 2011.

3. E. Muñoz. Learning Content Patterns from Linked Data. In Linked Data for
Information Extraction (LD4IE) Workshop, ISWC. CEUR, 2014.

7 Snippet included in http://www.themigratingswans.blogspot.ie/2013/12/

december-3.html

71

