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Abstract. Over the last years, entity detection approaches which com-
bine named entity recognition and entity linking have been used to detect
mentions of RDF resources from a given reference knowledge base in un-
structured data. In this paper, we address the problem of assigning a
single URI to named entities which stand for the same real-object across
documents but are not yet available in the reference knowledge base.
This task is known as cross-document co-reference resolution and has
been addressed by manifold approaches in the past. We present a pre-
liminary study of a novel take on the task based on the use of latent fea-
tures derived from matrix factorizations combined with parameter-free
graph clustering. We study the influence of di↵erent parameters (window
size, rank, hardening) on our approach by comparing the F-measures we
achieve on the N3 benchmark. Our results suggest that using latent fea-
tures leads to higher F-measures with an increase of up to 20.5% on
datasets of the N3 collection.

1 Introduction

The Document Web contains a large amount of information that is still not
available on the Web of Data. For example, open extraction frameworks for
unstructured data have been shown to harvest a considerable amount of new
triples pertaining to real-objects for which no URI is available [3]. While no URI
has been assigned to the said real-world objects, facts pertaining to these objects
can be distributed across manifold data sources. Hence, simple URI generation
approaches based on the labels of named entities can easily fail to generate the
same URI when relying on two di↵erent labels that stand for the same real-world
object. For example, simple URI generation schemes based on strings would fail
to generate the same URI when presented with the strings “P. Diddy” and “Pu↵
Daddy” as labels for resources. Moreover, they would generate the same URI for
“Golf” across di↵erent documents even if the “Golf” stood for the sport in some
documents and for the car in others. In literature, detecting that two labels
stand for the same real-object even across documents is referred to as cross-

document co-reference resolution (CDCR) [1,2]. While a large number of CDCR
approaches have been developed in previous works (see Section 2), none of the
current approaches makes use of latent features to detect whether two labels
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stand for the same real-object. In previous work, latent features have yet been
shown to be able to generate reliable representations of real-world objects [9].

In this paper, we address the aforementioned research gap by presenting the
first CDCR approach based on latent features. Our approach represents entity
mentions as bags of words. Each entity mention is then regarded as a vector in
the space spanned by all words used to describe at least one entity mention. In
the subsequent step, we compute the latent features of the entity mentions. The
similarity of the latent representation of the entity mentions is then transformed
into a similarity graph which is clustered by using BorderFlow [8], a parameter-
free graph clustering approach. All entity mentions which belong to the same
cluster are regarded as mentions of the same real-world object and are assigned
to the same URI. Our approach is open-source and available at http://github.
com/AKSW/CoreferenceResolution.

The rest of this paper is organized as follows: First, we give an overview
of previous CDCR approaches. Then, we present our approach in detail. In
Section 4, we evaluate our approach on the N3 benchmark dataset [14] and
compare it with a baseline approach. We conclude the paper and discuss future
work in Section 5.

2 Related Work

In the following section, we will provide an overview over recent approaches
towards CDCR with a focus on their underlying techniques w.r.t. the semantic
and syntactic features they exploit.

Mayfield et al.’s [6] CDCR approach comprises five stages: (1) intra-document
processing, i.e., identification of mentions of entities, (2) entity pairs filtering,
i.e., discarding of possible entity mappings to reduce computational costs, (3)
calculating features of entities, (4) classification of entity matching by machine
learning techniques and (5) clustering of entities to map each mention to the
same equivalence class. Unfortunately, the authors evaluated their approach in
the ACE 2008 English named entity recognition task which is no longer available.
There, the approach achieved a value metric of 54.8 [10].

Haghighi et al. [4] present an unsupervised approach based upon a generative
process which is capable to use modular syntactic and semantic features making
use of latent information. For every document, the generative process creates a
number of entities mentioned in the text. For every mention a noun phrase is
created. However, since the inference algorithm only uses these noun phrases,
their approach lacks on taking a larger context into account.

Rahman et al. [12] introduce an approach which incorporates world knowl-

edge into two baseline CDCR algorithms. Thereby, the authors use YAGO1 and
FrameNet2 as underlying knowledge bases. Afterwards, they use a mention-entity

1
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/

2
https://framenet.icsi.berkeley.edu/fndrupal/

34



pair classifier and a cluster-ranking model. The results show an improvement over
each baseline.

Singh et al. [16] present an approach consisting of (1) a large scale distributed
inference mechanism based on Markov chain Monte Carlo methods and (2) they
introduce sub-entity and super-entity variables representing clusters which are
used to distribute or collect certain entities on a specific part of the machine
cloud. Furthermore, they evaluate their approach on a 1.5 million document
comprising web crawl using anker tags to Wikipedia as gold standard. Never-
theless, the authors approach misses the opportunity to consider latent features
resulting in large computational costs w.r.t. the size of the resulting Markov
chain.

Lee et al. [5] present an approach not only capable of co-referencing enti-
ties but also events. Their idea is based upon linear regression which is used
to merge clusters of entities. Furthermore, the authors featurize entities via se-
mantic role labeling. Their approach is able to co-reference entities intra- and
inter-document-wise. Although the authors claim to be better than the state-of-
the-art with respect to the CoNLL 2011 shared task [11] their published corpus
is not available anymore.

In 2013, Beheshti et al. [2] provide a systematic analysis of state-of-the-art
CDCR systems. The survey provides an in-depth structurization of the underly-
ing methods and algorithms, which are widely used to solve CDCR problems on
large scale. Furthermore, the authors highlight certain Big Data challenges, e.g.,
large amounts of pair-wise string similarity calculations and costly classification
algorithms.

Normally, these approaches are based on a trained set of parameters for se-
mantic and syntactic similarity algorithms. Recently, Andrews et al. [1] describe
an approach towards CDCR, here called entity clustering, that relies on learning
parameters from test data without the need for training data. The generative
process within assumes a mutation of semantic context and syntactic similarity
while generating the documents with cross-referenced entities. Afterwards, the
authors deploy a block Gibbs sampler to infer the clusters. Unfortunately, this
approach is only empirically evaluated.

With respect to the clustering aspect of this paper, Schae↵er [15] provides an
exhaustive overview of common graph-clustering algorithms and their use cases.

To the best of our knowledge, we present the first paper on CDCR based on
latent features, matrix decomposition as well as graph-clustering.

3 Approach

In this section, we present our approach to CDCR in more detail. We introduce
the notation necessary to understand the approach as required by each section.
Figure 1 gives an overview of the five steps that underly our approach. In a first
step, a Matrix M is generated containing the context of every entity mention.
After that, this matrix is decomposed into two smaller matrices L and R with
M ⇡ LR>. In parallel, a second matrix S is created which contains the pairwise
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similarities of the labels of the entity mentions. These matrices are used to
generate a symmetric graph G in which (1) every entity mention is a node and
(2) two nodes are connected if their similarity is higher than a certain threshold.
G is finally clustered. Mentions that belong to the same cluster are considered
to be mentions of the same entity. Hence, they are all assigned the same URI.

M

Matrix
Generation

Matrix
Factorization

Graph
Generation

String Similarity 
Matrix Generation

S

L,R
Graph

Clustering

Fig. 1: The five steps of our approach.

3.1 Matrix Generation

The first step of our approach consists of generating a matrix which describes
the context of every named entity mention inside the texts by means of a bag of
words. To this end, the given corpus is preprocessed by tokenizing the documents,
removing stop words and indexing the remaining tokens. In these tokenized
documents, the context of a named entity mention is defined as the multiset of
tokens inside a window with the size ±� that is centered on the named entity’s
tokens. The contexts are stored in a matrix M containing a row for every named
entity mention and a column for every indexed word. The entries of the matrix
are the counts of the words inside the entity mention’s context. As an example,
let us consider the sentence

Example 1. Yesterday, VW’s CEO presented the new Golf in Munich.

from which the stopwords {the, in} are removed. For the window size � =
1, we get the bag-of-word multiset {new (1), Munich (1)} as representation of
“Golf”. Within the vector space spawned by (presented, new, Munich, Germany),
this mention has the vector representation (0, 1, 1, 0). In the following, we will
consider five entity mentions g1, g2, g3, g4 and g5 labelled with the same word
“golf” as example. These entity mentions will be assumed to be represented by
the vectors g1 = (2, 2, 2, 0), g2 = (1, 0, 0, 1), g3 = (0, 0, 0, 1), g4 = (1, 0, 0, 0) and
g5 = (0, 1, 1, 0).

3.2 Matrix Factorization

The matrix M is now a matrix of dimensions n ⇥ m (denoted M(n,m)). The
goal of a matrix factorization is to compute the matrices L(n, ⇢) and R(m, ⇢)
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such that M ⇡ LR>. We call ⇢ 2 N\0 the rank of the factorization. Several
approaches have been used to factorize matrices. Here, we loosely follow the
tensor factorization approach presented in [9]: Given two matrices L and R
that are supposed to be the factors of M , the overall quadratic error of the
approximation is the square Frobenius norm of E = M � RL>, i.e., ||E||2F =
||M �RL>||2F . Previous works have shown that to prevent overfitting, the error
function to minimize must be extended. While several approaches have been
suggested to this end, we adopt the error expression given by ||E||2F � �

2 (||R||2F +
||L||2F ), where � 2 [0, 1] controls how well L and R fit M . Thus, the error
derivatives are as follows:

@eij
@rik

= �2eij ljk + �rik (1)

and
@eij
@ljk

= �2eijrik + �ljk. (2)

We can now adopt a gradient descent approach to update the matrices L and R
and reduce the error they lead to by overwriting each lik resp rjk as follows:

ljk  ljk � ↵
@eij
@ljk

= ljk + ↵

 
2

nX

i=1

eijrik � �ljk

!
(3)

and

rik  rik � ↵
@eij
@rik

= rik + ↵

0

@2
jX

j=1

eij ljk � �rik

1

A . (4)

We initialize L and R with random entries between 0 and maxmij . For our
example, we get

M =

0

BBBB@

2 2 2 0
1 0 0 1
0 0 0 1
1 0 0 0
0 1 1 0

1

CCCCA
. (5)

For ⇢ = 2, our approach computes

L =

0

BBBB@

1.385 1.102
�0.006 0.501
0.079 �0.051
�0.234 0.712
0.933 �0.168

1

CCCCA
and R =

0

BB@

0.331 1.406
1.059 0.446
1.118 0.363
0.062 0.066

1

CCA . (6)

The intuition behind our approach is that L is a better and compressed descrip-
tion of the entity mentions than M . Hence, we now use L in combination with
a string similarity function to compute the similarity of entity mentions.
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3.3 String Similarity Matrix

The string similarity matrix S is an optional feature of our approach. Each entry
sij of S describes the similarity between the label of the ith and the jth entity in
our input corpus. Assuming a symmetric string similarity function such as the
3-gram similarity (which we use in our experiments), we also get a symmetric
string similarity matrix S. We assume sij = 1 if no string similarity is specified.
sij = 1 also holds for our example, as all mentions are labelled with “golf”.

3.4 Graph Generation

The aim of the graph generation is to generate a similarity graph G = (V,E,w)
that will allow detecting mentions of the same real-world object through clus-
tering. The set of vertices of V is the set of entity mentions in our corpus. We

define the weight function w : V ⇥ V ! [0, 1] as w(vi, vj) = sij ⇥
l(i,·)·l(j,·)

||l(i,·)||⇥||l(j,·)|| ,

where l(i,·) is the ith row-vector of L and stands for the latent description of the
ith entity mention in the corpus. Given that many graph clustering approaches
are polynomial in the number of edges, we can control |E| by only setting an
edge between vi and vj if w(vi, vj) � ✓ 2 [0, 1]. For ✓ = 0.3 and ⇢ = 2 we end up
with the graph displayed in Figure 2(a). As comparison, Figure 2(b) shows the
graph obtained with by setting L = M , i.e., generating G without using latent
features.

g1

g2

g3 g4

g5

0.61

0.31 0.34

0.61

0.95

0.92

(a) Graph generated using
⇢ = 2

g1

g2

g3

g4

g5

0.41

0.58 0.82

0.71

0.71

(b) Graph generated using M
instead of L

Fig. 2: Graphs generated by our approach for the example dataset.

3.5 Graph Clustering

We now cluster the graph G to detect mentions that stand for the same real-
world object. Our approach can rely on any graph clustering approach. In our
current implementation, we rely on the BorderFlow algorithm [8] because it is
parameter-free. BorderFlow regards any set C ✓ V as having a border b(C) =
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{v 2 C : 9u 2 V \C with (v, u) 2 E}. The flow ⌦(C1, C2) between two sets
C1 ✓ V and C2 ✓ V is defined as ⌦(C1, C2) =

P
v2C1,u2C2

w(v, u). Based on

these definitions, BorderFlow implements a local graph clustering paradigm by
mapping each node v 2 V to the set of nodes C ✓ V that is such that v 2 C
and C is a node-maximal set w.r.t. the function

bf(C) =
⌦(b(C), C)

⌦(b(C), V \C)
. (7)

While finding the optimal C for each v can be very time-consuming, the heuristic
presented in [7] allows determining an approximation of C in an e�cient manner.
We employ this heuristic herein.

Now, the result of BorderFlow is not a partitioning of the graph. Rather,
clusters may overlap. We thus employ a hardening approach to generate a par-
titioning of the input graph. To this end, each node v 2 V which belongs to two
di↵erent clusters C1 and C2 is assigned to C1 i↵

bf(C1 [ {v}) + bf(C2\{v}) � bf(C2 [ {v}) + bf(C1\{v}). (8)

In all other cases, v is assigned to C2. We call this form of hardening flow

maximization. Other forms of hardening can be conceived of, e.g., minimizing the
number of union operations that need to be carried out to achieve a partitioning
of the graph (set-based). A third possibility is the silhouette hardening that
chooses the cluster C1 if the dissimilarity of v to each other element of C1 is
smaller than the dissimilarity to all elements of C2 [13].

For our example, we get the clusters {g1, g5} and {g2, g3, g4} for ⇢ = 2 when
using BorderFlow with any partitioning approach. If we replace L withM , we get
the clusters {g1}, {g2, g4} and {g3, g5}. This result on toy data already suggests
that matrix factorization leads to results that di↵er from those gathered when
using raw data. In the subsequent section, we show empirically that using L to
generate G leads to more accurate results than using M to generate G.

4 Evaluation

4.1 Experimental Setup

Goals The goal of our experiments was two-fold. First, we wanted to measure
the e↵ect of the di↵erent parameters on our approach. Moreover, we wanted to
know whether the factorization outperforms a comparable baseline. To achieve
the first goal of our experiments, we conducted experiments where we varied
the rank ⇢ as well as the window size � while keeping all other parameters
fixed. We addressed the second goal by creating a baseline as follows: We ran
our pipeline as described in the sections above with the sole di↵erence that (1)
we did not carry out a factorization and (2) we use M instead of L as input
for the graph clustering. All other steps (matrix generation, graph generation,
graph clustering) remained unchanged. The similarity threshold for the graph
generation is set to ✓ = 0.1 for all our experiments.
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Datasets We use the three corpora of the N3 collection [14] in our experiments.

– The News-100 corpus comprises 100 German news articles from news.de.
Each of these articles contains the German word “Golf”—a homonym that
has three di↵erent meanings inside these documents. The word could mean
(a) a gulf, e.g., the Mexican gulf, (b) the ball sport or (c) a compact car
of the German manufacturer Volkswagen. This is clearly the most di�cult
dataset, as many resources share exactly the same name but have di↵erent
meanings.

– The Reuters-128 corpus contains 128 English economy news articles from
the Reuters news agency. The documents in this dataset are smaller than
the ones from the News-100 corpus providing a shallow context.

– The third corpus, RSS-500, contains 500 documents each with only one
sentence. The sentences were randomly chosen from a larger amount of RSS
news feeds, as described in [3]. Every sentence contains exactly two named
entities.

Table 1 provides further detailed information about the corpora. On average,
each named entity occurs nearly 5 times in the News-100 corpus. Within the
Reuters-128 corpus nearly two mentions per named entity exist on average while
in the RSS-500 corpus only every tenth entity is mentioned more than once.

Table 1: Features of the corpora

News-100 Reuters-128 RSS-500

Documents 100 128 500
Tokens 48199 33413 31640
Entities 362 444 849
Mentions 1655 880 1000

4.2 Results

Influence of rank In our first series of experiments, we fixed the window size
to 4 and measured the influence of the rank ⇢ on the precision, recall and F-
measure. The left side of Figure 3 shows the results of our experiments on the
three datasets. Most importantly, our results show that we outperform the base-
line in most settings. We achieve the best increase of performance on the RSS-500
corpus, where we achieve a 20.5% increase in F-measure over the baseline. This
result suggest that our approach does not tend to overgeneralize through the
compression on information that is carried out during the factorization. Instead,
our results suggest that we get rid of a significant amount of noise while factor-
izing. Our results on the other two datasets show that we also achieve a better
F-measure (increases of 18.2% on Reuters-128 and 6.3% on News-100, see Ta-
ble 2). An analysis of the results reveals that this increase is mostly due to the
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significant increase in precision that we achieve in most settings. On the other
hand, our recall is rarely ever worse than that of the baseline. This suggests that
BorderFlow tends to generate smaller clusters with factorization than when the
baseline approach is used. We measure the statistical significance of our results
using a Wilcoxon signed rank-test with 95% confidence. Our results are signifi-
cant in all cases.

Influence of window size In this experiment, we set the rank to 100 for
all experiments and measured the e↵ect of the window size on the overall F-
measure of our approach. The right half of Figure 3 shows the results of this
series of experiments on the three datasets. Overall, our results suggest that for
this rank, the window size does not have a major influence on the F-measure.
This also seems to hold for other ranks. Interestingly, a small window size seems
to lead to good results in most cases when we use the factorization. While we
assume that this might be due to the factorization being able to convert transfer
information from other context to the words within the window while computing
the latent features of each entity mention, we still need to study this behavior
more thoroughly. This result indicates that small window sizes are su�cient
for our approach to achieve better F-measures than the baseline on the CDCR
problem. This might mean that a small set of words is already su�cient to
disambiguate resources across di↵erent documents.

4.3 E↵ect of hardening

In all results presented above, we used a hardening based on the borderflow ra-
tio. We also implemented the set-based hardening and the silhouette hardening
mentioned above and compared the results we achieve with these hardenings.
Overall, our results suggest that the borderflow-maximization approach that we
used for hardening generates the best results both for the baseline and our ap-
proach. Moreover, we outperform the baseline independently from the hardening
used.

Table 2: Best improvements in F-measure of our approach (OA) over the baseline
(BL)

Flow Max. Set-Based Silhouette

BL OA BL OA BL OA

News-100 25.86 32.21 23.87 28.81 26.56 34.05

Reuters-128 47.89 66.16 47.00 56.65 47.59 59.60

RSS-500 71.11 91.62 69.57 85.71 68.97 88.22
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Fig. 3: Precision, recall and F1-score of our approach with di↵erent ranks (left)
and di↵erent window sizes (right) compared to the baseline (BL). The diagrams
show the results for the flow maximization hardening.
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Discussion Overall, our initial results suggest that we indeed outperform the
proposed baseline by using matrix factorization (see Table 2). Still, many ques-
tions do remain open. The most important question that we did not address is
when should a high rank be used? First, in our experiments, ⇢ = 10 was su�-
cient across all datasets to outperform the baseline. To the best of our knowl-
edge, finding the optimal rank for a factorization problem is an open question.
Nevertheless, we think that the answer to this question lies in the amount of
information contained in the corpus. The higher the information density of a
corpus, the higher the rank required to characterize entity adequately. A sec-
ond question that remains unanswered is whether we can improve the results of
the factorization by considering known resources in the dataset. We will address
this question in future work by disambiguating using a combination of textual
information and Linked Data.

5 Conclusion

In this paper, we presented a CDCR approach based on latent features. We
showed that our approach can outperform our baseline by more than 10% F-
measure. We will use our approach to complement the entity linking frame-
work [17] when it is used in batch mode, i.e., over a document corpus at once.
Moreover, we will develop means to detect an appropriate rank for factorization.
To this end, we plan to use the derivative of the mean squared error ||M�LR>||2F .
Finally, we will develop a deterministic approach to initialize L and R. Prelim-
inary results on random matrices show that we can already reduce the initial
value of ||E||2F by more approximately 40%, leading to a significantly faster
convergence of the factorization.
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