WebQR: Building a Knowledge Representation
Application on the Semantic Web

Wouter Beek!, Sander Latour?, and Stefan Schlobach®

L VU University Amsterdam
2 Perceptum BV

Abstract. The Semantic Web (SW) was originally positioned as a com-
bination of Knowledge Representation (KR) and the Web. However, most
applications that use SW data today lean more towards the Information
Retrieval spectrum. The reason for this is that traditional KR systems
are designed to work with datasets that are small, curated, homogeneous,
and application-specific. However, the SW is large-scale, messy, and het-
erogeneous. We present a software project called WebQR in which we
take a traditional KR application: Qualitative Reasoning, but implement
it on top of the SW. We show that reimagining a traditional KR sys-
tem in the context of the SW opens up many opportunities but presents
several problems for application development as well.

1 Introduction

The Semantic Web (SW) was originally positioned by Tim Berners-Lee as a com-
bination of Knowledge Representation (KR) and the Web [2]. However, most ap-
plications that use SW data today lean more towards the Information Retrieval
and/or Databases spectrum (e.g., search, recommendation, data integration),
than to the original gamut of KR. The reason for this is that traditional KR ap-
plications have worked with datasets that are small, curated, homogeneous, and
optimized for a specific system. In sharp contrast to that, the SW is large-scale,
messy, heterogeneous, and application-independent. We present WebQR, which
takes a traditional KR application: Qualitative Reasoning (QR), but implements
this on top of the SW. As such, WebQR provides a significant departure from
the way in which contemporary QR modeling tools are designed. It also pro-
vides an interesting use case for implementing a traditional KR system on the
SW (denoted as KR+SW systems from now on).

Overview

Section [2] gives an overview of existing QR modeling tools, and identifies their
major culprits. Section [3] enumerates the design principles that guide WebQR
developed. Section {4] explains how these abstract design principles are made
concrete. Key lessons that were learned during development are enumerated in
Section Bl

ISWC 2014 Developers Workshop Copyright held by the authors 102

2 Related work

Qualitative Reasoning [5] is a traditional KR approach in which declarative
knowledge about the continuous behavior of a physical system, e.g. the com-
bustion engine of a car, is used in order to simulate the future behavior of that
system. The behavior of the system is not represented numerically, but symboli-
cally, making it easy to process by humans. By encoding knowledge declaratively,
a QR model provides handles for giving advanced forms of user feedback such
as allowing simulation results to be explained.

Betty’s Brain [§], VModel [6] and Garp/DynaLearn [3] are QR modeling
tools that target ground school, middle school, and university-level students, re-
spectively. Creating a causal model in Betty’s Brain is as simple as creating a
traditional concept map. Modeling in the latter two tools requires the modeler to
learn a tool-specific language. Formulating a model in these languages requires
various ontological distinctions to be made by the modeler, e.g. whether some-
thing is an object (stable) or a quantity (varying over time). In line with this,
Betty’s Brain can only perform relatively simple simulations, while the latter
two are more advanced in this respect. Qualitative Concept Map (QCM) [4] and
DAE-hybrid [7] are QR modeling tools that target professional modelers rather
than students. The latter tool makes smart reuse of existing software projects
such as Modelica?l

In general, we see that existing QR modeling tools are either expressive and
difficult to use, or easy to use but limited in terms of the simulations they can
perform. Despite their similarity, these tools make no use of each others soft-
ware components, nor do they support each others modeling languages, thereby
limiting model interchange and reuse. Another commonality is that they all use
WIMP (Windows, Icons, Menu, Pointer) GUIs, and none of them (re)uses mod-
ern Web standards and/or Web services. With the exception of DAE, they do not
make use of related projects such as concept mapping tools and visual editors.
With the exception of Betty’s Brain and DAE existing QR tools seem to have a
small userbase and have problems with being sustained over a longer period of
time.

3 Development principles

The development of WebQR is guided by a core set of design principles, which
we posit are generic enough to transfer to the development of other KR+SW
systems.

Principle 1 Represent QR models as 5-star [1l] Linked Data.

Principle [1] makes it possible for QR models to be exchanged as Linked Data.
Even if different tools define different schemas some of the core QR concepts can
still be interlinked thereby promoting model reuse.

3 https://www.openmodelica.org/

ISWC 2014 Developers Workshop Copyright held by the authors 103

https://www.openmodelica.org/

Principle 2 Replace QR application components with generic SW seruvices.

As we saw in Section [2] existing KR systems are often developed in isolation
from other projects, creating their own model editor, representation language,
reasoning engine, etc. As a consequence KR systems are renown for being code
giants that are difficult to maintain and reuse. If a QR model is represented as
Linked Data existing (generic) SW services can be used to replace custom QR
application components (Principle . For example, semantic recommendation
systems can guide QR model construction, SW reasoners can perform (parts of)
the QR simulation process, Web-based concept modeling tools serve as the basis
for the modeling interface, visualization widgets can give views on simulation
outcomes. Reusing (Semantic) Web services has many benefits such as reducing
the code base and distributing the development effort.

Principle 3 Replace QR content libraries with SW data.

In traditional QR systems it takes a lot of effort to build a model that is able to
display non-trivial behavior. Only some QR environments come with interesting
content out-of-the-box. Since existing content libraries have to be created by
knowledgable experts and are not reusable across systems, they are typically
quite small. Adherence to Principle [3| would bring an unprecedented amount of
content to a QR application. The SW contains elaborate descriptions of millions
of concepts that could be of interest to a QR modeler. Even if only common
sense knowledge would be extracted from the SW (e.g., that water is a liquid
that freezes at 0 and boils at 100 degrees Celsius) this would already reduce
the more repetitive parts of QR modeling, thereby lowering the barrier towards
actually using a QR application.

Principle 4 Publish QR-created content as part of the LOD cloud.

Principle [] basically states that WebQR should not only read from the SW, but
should also write to it. In a QR model causal relations are expressed between
quantities, e.g. “if the volume of a gas decreases its pressure increases”. Such
causal knowledge of how physical systems behave is typically missing from to-
day’s SW. Therefore the collection of causal relations that are created in WebQR
would be a valuable crowd-sourced contribution to the Linked Open Data (LOD)
cloud.

4 Implementation

Client side: In line with Principle[2] the WebQR UI is post-WIMP. It does not
have the complexity of multiple windows, toolbars, menus, status bars, etc. but
has a Web-based (HTML5) UI that is build on top of a UI that is used for visually
modeling advanced (modal) logical modelsﬁ This is where the user creates and

*http://rkirsling.github.io/modallogic/| which in turn uses http://d3js.org

ISWC 2014 Developers Workshop Copyright held by the authors 104

http://rkirsling.github.io/modallogic/
http://d3js.org

manipulates her model. In this Ul QR models are visualized as Scalable Vector
Graphics (SVG) with annotated styles and animations (CSS3) to make them
look more appealing. User interaction with the canvas is tablet/touch-first and
desktop/mouse-compatible. Touching the canvas adds a new concept. Touching
a concept displays additional information about it. Dragging a line between two
concepts adds a (directed) relation. The second UI component is a floating box
that appears whenever the user needs to disambiguate an action. In line with
Principle [3| it contains a machine-generated, ranked list of suggestions queried
from the SW (e.g. a list of relevant relations after drawing a line between two
concepts) and an input field for custom text. Use of the custom text field is
minimized by supporting the user with intelligent suggestions most of the time
(examples at the end of this section). For some user interactions it is difficult
to give suggestions, e.g. the first concept a user creates cannot easily be guessed
since there is no context. The client-side codebase is concise, mostly reusing
existing JavaScript libraries.

Server-side: The server-side is where user-created concepts and relations are
represented by SW resources (Principle . The LOD scraping library lodCacheE|
enriches the server-side store by automatically the LOD cloud and adding rel-
evant data about the user-created resources (Principle |3). The WebQR server
is written in SWI—PrologEI, a high-level relational programming language that
allows the reasoning aspects of QR to be written concisely. The server-side is
not a stand-alone component, but a plugin of ClioPatriﬂ a triple store that
has been used in both research and production environments. Content created
within WebQR, e.g. the causal relations that have been defined by users, are
exposed as an external service by using a SPARQL endpoint (Principle .

Client/server API: As can be glanced from the foregoing, the client and
server sides of WebQR are very different. The strength of JavaScript to pro-
vide a dynamic light-weight Web-based UI is coupled with the strength of a
knowledge-intensive triple store in order to produce an optimal overall product.
This is realized by having an efficient client/server API that is based on REST
principles. Data is interchanged between the client and server components seam-
lessly because of the use of JSON which is native to JavaScript and is converted
to/from SWI-Prolog-specific dictionaries.[9]

SW reasoning: WebQR uses SW reasoning techniques (Principle [2)) in order
to derive new knowledge throughout its modeling and simulation components.
For example, Statements [1| and [2| are part of the WebQR vocabulary. Suppose
that Statement [3]is added in the user interface by drawing a line from Temper-
ature to Pressure. Statements [4] and [f] are now inferred by WebQR. Although
the deduction may be considered trivial, existing tools require the user to explic-
itly specify that Temperature and Pressure are quantities while WebQR. infers
this. Notice that such inference requires no custom code since these are generic,

® https://github.com/wouterbeek/lodCache
S http://www.swi-prolog.org
" http://cliopatria.swi-prolog.org

ISWC 2014 Developers Workshop Copyright held by the authors 105

https://github.com/wouterbeek/lodCache
http://www.swi-prolog.org
http://cliopatria.swi-prolog.org

application-independent RDF 1.1 entailments.

<qr :positivelyInfluences, rdfs:domain, qr:Quant ity> (1)
<qr:positivelylnfluences, rdfs:range, qr:Quantity) (2)
<dbpedia:Temperature7 gr:positivelyInfluences, dbpedia:Pressure> (3)
<dbpedia :Temperature, rdf:type, qr:Quant ity) (4)

<dbpedia:Pressure, rdf :type, qr:Quantity> (5)

Reasoning with imperfect knowledge: As mentioned in Section [[]SW data
is messy. This means that inferences like the one mentioned above cannot always
be made and are sometimes made incorrectly. As mentioned in Section Bl we be-
lieve this provides a new challenge for traditional KR approaches. In line with
Principles[I]and 2] WebQR implements non-standard reasoning capabilities in or-
der to make non-trivial use of SW data. Again, suppose a user adds the concepts
Water and Temperature. WebQR can prioritize the relations that may be added
between those concepts based on knowledge available in the LOD cloud. This is
done by finding the shortest path within the DBpedia SKOS categories hierarchy
between the user-created concepts and the concepts dbpedia:Category:0Objects
and dbpedia:Category:Quantity that are aligned to the WebQR vocabulary. De-
pending on which shortest path is shorter, user-created concepts are asserted to
be either objects (stable) or quantities (varying over time). Based on such as-
sertions the relation qr:hasQuantity is assigned a higher likelihood than relation
qr:positivelyInfluences thereby aiding the modeling process.

5 Lessons learned

We now enumerate the most important lessons that were learned during WebQR
development.

Lesson 1 Be aware that even some very simple (common sense) knowledge can-
not be easily extracted from the SW today.

Lesson [l is a correction of Principle [3} today’s LOD cloud does not contain
some of the most obvious knowledge that one would like to use in a KR system.
For example dbpedia:Properties_of water contains the distance between the H
and O atoms of H>O (being 95.84pm), but does not include the boiling point
of water. The boiling point of water is, however, necessary for simulating the
changing behavior of a water substance that has a temperature quantity that
can change its value over time. Such data can, of course, be added to the LOD
cloud but this requires extra work on the side of the modeler.

Lesson 2 Be aware that some straightforward operations are difficult to perform
on the SW.

Lesson [2] is a correction of Principle [2| and is best explained with an example.
If a modeler adds a concept with the name “Monkey” it makes sense to show a

ISWC 2014 Developers Workshop Copyright held by the authors 106

ranked list of suggested IRIs with the most common meaning appearing at the
top. However, contemporary SW infrastructure (SPARQL in this case) does not
support a notion of “most common meaning”, returning a song about monkeys,
a band, and the game Monkey Island before returning the animal species.

Lesson 3 Do not expect all reasoning operations to be straightforwardly per-
formed by generic SW reasoners.

Even though we were able to perform some of the reasoning in terms of SW
representations several rules in the simulation engine were difficult to trans-
late to generic SW/OWL parlance while maintaining acceptable performance.
Especially the introduction of temporal states in the simulation results, each de-
scribing a self-contained description of the modeled system, requires non-trivial
extensions of OWL. Development of WebQR currently focuses on writing the
remaining part of the simulation engine in terms of DL-calculable vocabularies.

6 Conclusion

We have been able to recreate some of the functionality that existing QR mod-
eling environments have with a codebase that is tiny when compared to the
functionally-equivalent subparts of those related projects. We claim that our
approach towards reimagining existing KR systems in the context of the (Se-
mantic) Web leads to application that are more lightweight, more sustainable,
more reusable, and more usable. We hope to inspire other developers of KR+SW
applications to follow a similar route and make optimal use of the rich data source
the SW provides.

References

1. Berners-Lee, T.: Linked Data. http://www.w3.org/DesignIssues/LinkedData.
html (2010)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
2001

3.](Brede)weg, B., Liem, J., Beek, W., Linnebank, F., et al.: Dynalearn: An Intelligent
Learning Environment for Learning Conceptual Knowledge . AI Magazine 34(4),
46-65 (2013)

4. Dehghani, M., Forbus, K.: QCM: A QP-Based Concept Map System. In: Proc. of
the 23nd Int. Workshop on Qualitative Reasoning (2009)

5. Forbus, K.: Qualitative Modeling. In: van Harmelen, F., Lifschitz, V., Porter, B.
(eds.) Handbook of Knowledge Representation, chap. 9, pp. 361-394. Elsevier (2008)

6. Forbus, K., Carney, K., Sherin, B., Ureel, L.: VModel: A Visual Qualitative Mod-
eling Environment for Middle-School Students . In: Proc. of the 16th Innovative
Applications of AT Conf. (July 2004)

7. Klenk, M., de Kleer, J., Bobrow, D., Janssen, B.: Qualitative Reasoning with Mod-
elica Models. In: Proc. of the 28th AAAT Conference on Al (2014)

8. Leelawong, K., Biswas, G.: Designing Learning by Teaching Agents: The Betty’s
Brain System. Int. J. of Al in Education 18(3), 181-208 (2008)

9. Wielemaker, J.: SWI-Prolog Version 7 Extensions. In: Proc. of CICLOPS (2014)

ISWC 2014 Developers Workshop Copyright held by the authors 107

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

	 WebQR: Building a Knowledge Representation Application on the Semantic Web

