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Abstract. Clustering is one of most important methods of data mining. It is 

used to identify unknown yet interesting and useful patterns or trends in da-

tasets. There are different types of clustering algorithms such as partitioning, 

hierarchical, grid and density-based. In general, clustering methods are consid-

ered unsupervised, however, in recent years the new branch of clustering algo-

rithms has emerged, namely constrained clustering algorithms. By means of so-

called constraints, it is possible to incorporate background knowledge into clus-

tering algorithms which usually leads to better performance and accuracy of 

clustering results. Through the last years, a number of clustering algorithms 

employing different types of constraints have been proposed and most of them 

extend existing partitioning and hierarchical approaches. Among density-based 

methods using constraints algorithms such as C-DBSCAN,  DBCCOM, DBCluC 

were proposed. In this paper we offer a new C-NBC algorithm which combines 

known neighborhood-based algorithm (NBC) and instance-level constraints. 
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1 Introduction 

Clustering is one of well-known and often used data mining methods. Its goal is to 

assign data objects (or points) to different clusters so that objects that were assigned 

to the same clusters are more similar to each other than to objects assigned to another 

clusters [1]. Clustering algorithms can operate on different types of data sources such 

as databases, graphs, text, multimedia, or on any dataset containing objects that could 

be described by a set of features or relationships [2]. Since clustering algorithms do 

not require any external knowledge to be run (e.g. except parameters like k in the k-

Means algorithm), the process of clustering, in opposite to classification, is also often 

referred to as an unsupervised learning. However, there has always been a natural 

need to incorporate already collected knowledge into algorithms to make them better 

both in terms of efficiency and quality of results. This need leads to the construction 

of a new branch of clustering algorithms based on so-called constraints. 

Constraint-based clustering algorithms employ the fact, that in many applications, 

the domain knowledge in the form of labeled objects is already known or could be 

easily specified by domain experts. Moreover, in some cases such knowledge can be 



automatically detected. Initially, researchers focused on algorithms that incorporated 

pairwise constraints on cluster membership or learned distance metrics. Subsequent 

research was related to algorithms that used many different kinds of domain 

knowledge [3]. 

The major contribution of this work is the offering of a constrained neighborhood-

based clustering algorithm called C-NBC which combines the known NBC algo-

rithm [5] and instance-level constraints such as must-link and cannot-link. 

This paper is divided into five sections. In Section 1 we have given a brief intro-

duction to clustering with constraints. Next, in Section 2, we shortly describe most 

known types of constraints and focus on instance-level constraints such as must-link 

and cannot-link constraints. In Section 3, the Neighborhood-Based Clustering (NBC) 

is reminded. Further, in Section 4 we present the proposed C-NBC algorithm. Conclu-

sions are drawn and further research is briefly discussed in Section 5. 

2 Instance-Level Constraints 

In constrained clustering background knowledge can be incorporated into algorithms 

by means of different types of constraints. Through the years, different methods of 

using constraints in clustering algorithms have been developed [3]. Constraint-based 

methods proposed so far employ techniques such as modifying the clustering objec-

tive function including a penalty for satisfying specified constraints [7], clustering 

using conditional distributions in an auxiliary space, enforcing all constraints to be 

satisfied during clustering process [8] or determining clusters and constraints based on 

neighborhoods derived from already available labeled examples [9]. On the other 

hand, in the distance based methods, the distance measure is designed so that it satis-

fies given constraints [10, 11]. A few density-based constrained algorithms such as 

C-DBSCAN [4], DBCCOM [16] or DBCluC [17], have also been proposed. 

Table 1. The notations related to instance-level constraints used in this work 

Notation Description 

   The set of pairs of points that are in a must-link relation. 

          
Two points    and    are in a must-link relation (must be assigned to 

the same resulting cluster). 

      The set of points which are in a must-link relation with point  . 

   The set of pairs of points that are in a cannot-link relation. 

          
Two points    and    are in a cannot-link relation (must not be as-

signed to the same resulting cluster). 

      The set of points which are in a cannot-link relation with point  . 

    Several types of constraints are known, but the hard instance-level constraints seem 

to be most useful since the incorporation of just few constraints of this type can in-

crease clustering accuracy as well as decrease runtime. In [6] authors introduced two 

kinds of instance-level constraints: the must-link and cannot-link constraints. These 

constraints are simple, however they have interesting properties. For example must-



link constraints are symmetrical, reflexive and transitive, similarly to an equivalence 

relation. Generally, if two points, say    and   , are in a must-link relationship (or, in 

other words, are connected by a must-link constraint), then these points, in a process 

of clustering, must be assigned to the same cluster  . On the other hand, if two points, 

say    and   , are in a cannot-link relationship (or are connected by a cannot-link con-

straint), then these points must not be assigned to the same cluster  .  

    In the next part of the paper, when referring to must-link and cannot-link con-

straints, we will use the notations presented in Table 1. 

3 Neighborhood-Based Clustering 

The Neighborhood-Based Clustering (NBC) algorithm [5] belongs to the group of 

density based clustering algorithms. The characteristic feature of NBC is the ability to 

measure relative local densities. Hence, it is capable of discovering clusters of differ-

ent local densities and of arbitrary shape. Below we remind the key definitions related 

to the NBC algorithm which will be used in the sequel. 

Definition 1. (ε-neighborhood, or briefly       ) ε-neighborhood of point   

(      ) is the set of all points   in dataset   that are distant from   by no more than 

 ; that is,                         , where       is a distance function. 

Definition 2. (  -neighborhood, or         in brief)   -neighborhood of point   

(      ) is a set of   (   ) points satisfying the following conditions: 

           (),                                           (). 

Definition 3. (punctured   -neighborhood, or briefly         )   -neighborhood 

of point   (        ) is equal to            , where                      
        . 

Definition 4. (reversed punctured   -neighborhood of a point  , or          in 

brief) Reversed punctured k
+
-neighborhood of a point   (        ) is the set of all 

points     in dataset   such that           ; that is:          
                . 

Definition 5. (neighborhood-based density factor of a point) Neighborhood-based 

density factor of a point   (      ) is defined as                   
          . (Points having the value of the NDF factor equal to or greater than 1, 

are considered as dense.) 

In order to find clusters, NBC starts with calculating values of     factors for 

each point    in a database  ,            . Next, for each   , a value of     is 

checked. If it is greater than or equal to  , then    is assigned to the currently created 

cluster   (identified by the value of          ). Next, the temporary variable       

for storing references to points, is cleared and each point, say  , belonging to 

       
   is assigned to  . If       is greater than or equal to  , then   is also add-

ed to      . Otherwise,   is omitted and a next point from        
   is analyzed. 

Further, for each point from      , say  ,          is computed. All unclassified 



points belonging to          are assigned to   and points having values of     

greater than or equal to 1 are added to      . Next,   is removed from      . When 

      is empty,           is incremented and a next point from  , namely     , is 

analyzed. Finally, if there are no more points in   having values of     factor great-

er than or equal to 1, then all unclassified points in   are marked as NOISE. 

4 Clustering with Constraints 

In this section we offer our new neighborhood-based constrained clustering algorithm 

called C-NBC. The algorithm is based on the NBC algorithm [5] but uses both must-

link and cannot-link constraints for incorporating knowledge into the algorithm. 

   The C-NBC algorithm employs the same definitions as NBC which are used in a 

process of clustering to assign points to appropriate clusters or mark them as noise. In 

NBC three kinds of points can be distinguished: unclassified, classified and noise 

points. In our proposal, we introduced another kind of points, namely deferred points 

(Definition 6).  

Definition 6. (deferred point) A point   is called deferred if it is involved in a cannot-

link relationship with any other point or it belongs to a   -punctured neighborhood 

        , where   is any point involved in a cannot-link relationship. 

    C-NBC (Figure 1) can be divided into two main steps. In the first step the algo-

rithms works very similarly to NBC. It calculates NDF factors and performs cluster-

ing. The difference between C-NBC and NBC is that the former additionally deter-

mines deferred points and has to deal with must-link constraints when building clus-

ters. In spite of the fact that in the first step the deferred points are not assigned to any 

cluster, these points are normally used to calculate NDF factors. In the second step 

C-NBC works so that it allocates deferred points to appropriate clusters. This is done 

by means of the AssignDeferredPointsToClusters function (Figure 2) which assigns 

points to clusters after checking if such an assignment if feasible. The detailed de-

scription of C-NBC is provided beneath. The key variables and notations related to 

C-NBC are explained in Table 2. 

Table 2. The auxiliary variables and notations used in pseudo-code of C-NBC if Figure 1 

Variable or notation Description 

          
The auxiliary integer variable used for storing currently-

created cluster’s identifier. 

            
By using such a notation we refer to a           related to 

point  . 

      
Such a notation is used to refer to a value of the NDF factor 

associated with point  . 

  ,    The auxiliary variables for storing deferred points. 

      
The variable for storing dense points. It is used for in an 

iterative process of assigning points to clusters. 



Algorithm C-NBC( ,  ,   ,   ) 

Input:     the input not clustered dataset 

     the parameter of the C-NBC 

     ,    the sets of pairs of points connected by must-link or cannot-link constraints 

Output: The clustered set with clusters satisfying cannot-link and must-link constraints. 

     ;           = 0;   // initialization of a set of deferred points    and           

 label all points in   as UNCLASSIFIED;   //             = UNCLASSIFIED 

 CalcNDF( ,  );   // calculate values of NDF factor for every point in   

┌ for each point   involved in any constraint from    or    do    

│  label   and points in          as DEFERRED   // label points as DEFERRED 

│  add   to   ;   // add DEFERRED points to    

└ endfor 

           = 0; 

┌ for each unclassified point   in   such that         do 

│              =          ; 

│  clear      ; 

│ ┌ for each point q               do 

│ │              =          ;   // set point’s cluster identifier 

│ │  if (q.ndf ≥ 1) then add   to      ; endif 

│ │  add all points   from       such that         to      ; 

│ └ endfor 

│ ┌ while (       ) do // expanding a currently created cluster 

│ │    = first point in      ; 

│ │ ┌ for each unclassified point   in             do 

│ │ │              =          ;   // set point’s cluster identifier 

│ │ │  if (         ) then add   to      ; endif 

│ │ │  add all points   from       such that         to      ; 

│ │ └ endfor 

│ │  remove   from      ; 

│ └ endwhile 

│           ++; 

└ endfor 

 label unclassified points in   as NOISE; 

 AssignDeferredPointsToClusters( ,   ,  ,   ); 

Fig. 1. The pseudo-code of the C-NBC algorithm. Most important differences between NBC 

and C-NBC are marked with gray color 

    The C-NBC algorithm starts with the CalcNDF function. After calculating the NDF 

factors for each point from D, the deferred points are determined by scanning pairs of 

cannot-link connected points. Such a points are added to an auxiliary set   . 

   Then, the clustering process is performed in the following way: for each point   

which was not marked as DEFERRED, it is checked if       is less than  . If 

       , then   is omitted and a next from       is checked. If        , then 

  as a dense point is assigned to the currently-created cluster identified by the current 

value of          . 

    Next, the temporary variable       is cleared and each not deferred point, say  , 

belonging to             is assigned to the currently-created cluster identified by 

the current value of the           variable. Additionally, if        , then it is 

assigned to       as well as all dense points which are in a must-link relation with  . 



Function AssignDeferredPointsToClusters( ,   ,  ,   ) 

Input:     the input not clustered dataset  

       the set of points marked as deferred 

      the parameter of the C-NBC algorithm 

       the set of cannot-link constraints 

Output: The clustered set with clusters satisfying cannot-link and must-link constraints 

     ;  // saving contents of    in a temporary set    

┌ do begin 

│      ; // a temporary set for storing deferred points assigned to any cluster 

│ ┌ foreach point   in    do begin 

│ │ ┌ foreach point   in          do  

│ │ │ ┌ if (      ≥ 1 and             > 0 and     )  

│ │ │ │ ┌ if (CanBeAssigned( ,            )) and // checking if p can be assigned to 

│ │ │ │ │            // cluster identified by q.clusterId 

│ │ │ │ │   (CanBeAssigned(p.nearestCannotLinkPoint, q.ClusterId)) then 

│ │ │ │ │              =              add p to   ;  

│ │ │ │ │  break;  

│ │ │ │ └ endif 

│ │ │ └ endif 

│ │ └ endfor 

│ │  remove    from   ; 

│ └ endfor 

└ while (    ) 

Fig. 2. The pseudo-code of the AssignDeferredPointsToClusters function 

    Next, for each unclassified point from      , say  , its punctured   -neighbor-

hood is determined. Each point, say  , which belongs to this neighborhood and has 

not been labeled as deferred yet is assigned to the currently created cluster and if its 

value of NDF is equal to or greater than 1, is added to      . Moreover, all dense 

points which are in a must-link relation with   are added to       as well. Later, s is 

removed from       and next point from       is processed. When       is emp-

tied, then           is incremented. 

    After all points from   are processed, unclassified points are marked as noise by 

setting the values of their           attribute to NOISE. However, in order to process 

the deferred points, the AssignDeferredPointsToCluster function is invoked. The 

function performs so that for each deferred point   it finds the nearest point   as-

signed to any cluster and checks whether it is possible (in accordance with cannot-link 

constraints) to assign   to the same cluster as  . Additionally, the function checks if 

the assignment of   to a specific cluster will not violate previous assignments of de-

ferred points. 

    In order to test the efficiency of the proposed C-NBC algorithm we performed a 

number of basic experiments using the following datasets: a manually created dataset 

containing 2800 data points, the known four dimensional iris dataset [13] and the 

birch dataset [14]. The main goal of the experiments was to test the influence of a 

number of constraints used in the process of clustering on the efficiency of the pro-

posed algorithm. In Table 2 we compare the run-times of the NBC and C-NBC algo-

rithms. Both implementations of the algorithms employ the same index structure, 



namely the R-Tree [15]. When performing experiments using C-NBC we were chang-

ing the number of must-link and cannot-link constraints from 2 to 250 except for the 

Iris dataset, which was not numerous enough to use number of both types of con-

straints greater than 50. Since additional operations must be performed, it was obvi-

ous for us that the number of constraints would have a negative impact on the effi-

ciency of the algorithm. However, we did not encounter any crucial increase (at most 

about 2 times for the largest dataset and 250 must-link and 250 cannot-link con-

straints) in the run-time of clustering using the C-NBC algorithm. For this reason, 

similarly to NBC, C-NBC can be considered as effective, efficient, and easy to use. 

Table 3. The results of the experiments. Run-times are given in milliseconds. The value of k 

(the parameter of C-NBC algorithm) is equal to 15. Number of constraints concerns both must-

link and cannot-link constraints.  |D| – number of points in a dataset, d – number of dimensions, 

* - a number of constraints was greater than the cardinality of a dataset 

Algorithm 
Number of 

constraints 

Run-times 

Manually created 

|D| = 2800, d = 2 

Iris 

|D| = 250, d = 4 

Birch 

|D| = 10000, 

d = 2 

NBC 0 3284 67 13385 

C-NBC 

2 3500 101 14132 

10 4172 105 14969 

50 6067 * 21360 

250 6457 * 29931 

5 Conclusions and further research 

In recent years a number of algorithms employing different kinds of constraints have 

been proposed. Most commonly used constraints are instance constraints which are 

widely employed in enriching clustering algorithms to utilize additional background 

knowledge. However, among density based clustering algorithms, so far only the 

DBSCAN algorithm [12] was adapted to use instance constraints. 

    In this paper we have offered C-NBC, the density based algorithm for clustering 

under instance constraints which was based on the known NBC algorithm. Our pre-

liminary experiments, confirm that the algorithm performs in line with the assump-

tions. In other words, it works so that must-link connected points are assigned to the 

same clusters and cannot-link connected points are assigned to different clusters. 

Moreover, for datasets tested, it turns out that constraints have a little effect on the 

efficiency of the algorithm. In spite of this, in our future research we would like to 

still focus on performance of constrained based clustering and on proposing other 

methods of ensuring constraints during clustering process for larger and high dimen-

sional datasets. 
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