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Extended abstract

Abstract. One of most commonly used methods of data mining is clus-
tering. Its goal is to identify unknown yet interesting and useful patters in
datasets. Clustering is considered as unsupervised, however recent years
have shown a tendency toward incorporation external knowledge into
clustering methods making them semi-supervised methods. Generally,
all known types of clustering methods such as partitioning, hierarchical,
grid and density-based, have been adapted to use so-called constraints.
By means constraints, the background knowledge can be easily used with
clustering algorithms which usually leads to better performance and ac-
curacy of clustering results. In spite of growing interest in constraint
based clustering this domain still needs attention. For example, a promis-
ing relative constraints have not been widely investigated and seem to
be very promising since they can be easily represent domain knowledge.
Our work is another step in the research on relative constraints. We have
used and simplified the approach presented in [1] so that we created a
mechanism of using relative constraints as features.

Keywords: clustering, density-based clustering, constrainted cluster-
ing, relative constraints

1 Introduction

Normally, clustering proceeds in an unsupervised manner. However, in some
cases, it is desirable to incorporate external knowledge into a clustering algo-
rihtm. Let us consider the following example. A system designed for analysing
customers’ data of a GSM company is going to be built. The purpose of this sys-
tem is to give managers the ability to detect new groups of customers for which
new and customised individual plans could be offered. The number of customers
is large and each of them can be described by the great number (thousands) of
attributes. In order to analyse and cluster the dataset any clustering algorithm
that is capable of dealing with large and high dimensional datasets can be ap-
plied. However, the company employs a number of experinced analysts which



2 Piotr Lasek and Krzysztof Lasek

know the market and can give invaluable insights into the system. The question
is how to easily incorporate analysts’ knowledge into clusteiring algorithms so
that it could enrich the clustering results.

One of the ways of incorporating external knowledge into clustering algo-
rithms is to use so-called constraints [2]. Several types of constraints are known.
In [6] authors introduced simple yet very popular instance-level constraints,
namely: the must-link and cannot-link constraints. If we say that two points
p0 and p1 are in a must-link relationship (or are connected by a must-link con-
straint) then, by means of a clustering process, these points will be assigned to
the same cluster c. On the other hand, if we say that two points p0 and p1 are
in a cannot-link relationship (or are connected by a cannot-link constraint) then
these points will not be assigned to the same cluster c.

Incorporation of of just few constraints of above type can increase clustering
accuracy as well as decrease runtime [3].

In [1], Asafi and Cohen-Or presented an interesting method of incorporating
instance constraints into any clustering algorithm. They proposed to treat con-
straints as additional features of a given object. In order to incorporate these
contraints, they alter the original distance matrix so that they set the distances
between objects in a must-link relationship to shortest distance between any two
objects in the input dataset. Then, the triangle inequality is restored. Addition-
aly, in order to take cannot-link constraints into account, they employed the idea
of the diffusion distance which was used to compute modified distances between
objects satisfying cannot-link constraints [7]. In other words, the process of using
instance-level constraints as features is composed of two steps. First, must-link
constraints are used to modify a distance matrix. Then, by using the Diffu-
sion Map to compute diffusion distances, cannot-link constraints are taken into
account. The above reminded computations are performed using the following
formulas:

D̃i,j = D̂i,j +
∑

c=1...N

αD
(c)
i,j ,

where D̂i,j is the matrix created by adding must-link constraints to the original
distance matrix Di,j , α is used to scale distance space from (−1, 1) interval to

(−α, α) (α is the longest distance in Di,j), D̃i,j is the matrix constructed by

adding D
(c)
i,j matrices to it, where c = 1, ..., N (N is a number of cannot-link

constraints) and each D
(c)
i,j matrix represents one cannot-link constraint. D

(c)
i,j

is called the diffusion distance matrix [8] and is computed using the following
formulas:

D
(c)
i,j = |vi − vj |,

vi =
φ(i, c2)− φ(i, c1)

φ(i, c2) + φ(i, c1)
,

where c1 and c2 are cannot-link objects in a cannot-link relationship and i is
the index of the object in the dataset. φ is the function given by the following
formula:

φ(x, y) = |Ψt(x)− Ψt(y)|,
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where
Ψt(x) = (λt1ψ1(x), λ

t
2ψ2(x), . . . , λ

t
1ψn(x))

T ,

where λti are the eigen values and ψi are the eigen vectors of the input dataset’s
Diffusion Map, n is the number of objects in a dataset and t is a time parameter
which can be determined experimentally [7].

Diffusion maps are based on the observation that when walking from one
point to another in a dataset, it is more probable to traverse points that are lo-
cated nearby than far away. This observation leads to defining the probability of
traversing from point a to b. As described above, in order to use a Diffusion Map,
several computation has to be done. First, the distance matrix needs to be built.
Then, the computed distance matrix has to be normalized by using the sums of
its rows. Next, the spectral decomposition is performed to using eigenvalues and
eigenvectors of the previously normalized matrix. The dimensionality reduction
is performed by omitting the smallest eigenvalues. For this reason diffusion maps
can be used to deal with high dimensional datasets by discovering an underlying
manifold from data and to give a simpler global description of the dataset [6].

2 Relative constraints as features

In recent studies relative constraints gain more and more attention due to the
fact that they can easily represent domain knowledge [4] [5]. Relative constraints
are usually defined as object triples and are presented in the following way: ab|c,
where a, b and c are objects from the dataset and a is closer to b than to c. The
formula ab|c is equivalent to the following comparision: d(a, b) < d(a, c) where
d is the distance function. The intuition behind relative constraints (comparing
to instance-level constraints) is that it may be easier to define relative similarity
between objects and use this knowledge in a process of clustering than strictly
define which objects should or should not be assigned to specific clusters.

Our proposal of using relative constraints comprises the ideas presented by [1]
and [2]. In our approach we employ relative constraints into the clustering process
so that we similarly construct modified diffusion distance matrix. However, our
method may be considered simpler because of the fact that we do not have
to restore triangle inequality property. Because of that, the resulting distance
matrix is given by the following formula:

D̃i,j = Di,j +
∑

r=1...N

αD
(r)
i,j ,

where r is a set of relative constarints (a set of objects triples).
Further, in our method in order to compute the diffusion distance matrix

D
(r)
i,j of diffusion distances between objects, the following formulas are used:

D
(r)
i,j = |vi − vj |,

where

vi =
min(φ(i, a) + φ(i, b))− φ(i, c)

min(φ(i, a) + φ(i, b)) + φ(i, c)
,
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where a, b and c are points which are in a relative relationship ab|c.

3 Experiments and results

In order to test our method we implemented a framework for performing data
clustering experiments. We have implemented appropriate functions for comput-
ing diffusion distance matrices which were later used in a neighborhood-based
clustering algorithm (NBC) [9] to determine nearest neighbors. We have per-
formed a number of experiments using several well known benchmarch datasets
[10]. Due to the fact that in order to determine diffusion distance matrix a eigen
vectors end eigen values must be computed, the overall time efficiency of the
method is low. However, the qualitative results are very promising. Moreover,
in comprasion to instance-level, relative constraints can be specified by experts
more easily since an a priori knowledge about assignement of the object to the
same cluster is not requried. The only information necessary to obtain from a
domain expert is the specification of the relation between two objects.

4 Conclusion and further research

In the nearest future we are going to focus to make our method more efficient.
Moreover we want to focus on examination of the influence of the t parameter
on the quality and efficiency of our method. Additionally we would like to test
different core functions used for when determining the Diffusion Map ane check
their influence on the results of the clustering.
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