
A Tractable Rule Language in the Modal and
Description Logics that Combine CPDL with

Regular Grammar Logic

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. Combining CPDL (Propositional Dynamic Logic with Con-
verse) and regular grammar logic results in an expressive modal logic
denoted by CPDLreg. This logic covers TeamLog, a logical formalism
used to express properties of agents’ cooperation in terms of beliefs,
goals and intentions. It can also be used as a description logic for ex-
pressing terminological knowledge, in which both regular role inclusion
axioms and CPDL-like role constructors are allowed. In this paper, we de-
velop an expressive rule language called Horn-CPDLreg that has PTime
data complexity. As a special property, this rule language allows the
concept constructor “universal restriction” to appear at the left hand
side of general concept inclusion axioms. We use a special semantics for
Horn-CPDLreg that is based on pseudo-interpretations. It is called the
constructive semantics and coincides with the traditional semantics when
the concept constructor “universal restriction” is disallowed at the left
hand side of concept inclusion axioms or when the language is used as
an epistemic formalism and the accessibility relations are serial. We pro-
vide an algorithm with PTime data complexity for checking whether a
knowledge base in Horn-CPDLreg has a pseudo-model. This shows that
the instance checking problem in Horn-CPDLreg with respect to the con-
structive semantics has PTime data complexity.

1 Introduction

Combining CPDL (Propositional Dynamic Logic with Converse) [16] and reg-
ular grammar logic [6, 7, 31] results in an expressive modal logic denoted by
CPDLreg [10, 26]. This logic covers TeamLog [12, 13], a logical formalism used
to express properties of agents’ cooperation in terms of beliefs, goals and in-
tentions. It can also be used as a description logic, in which both regular role
inclusion axioms and CPDL-like role constructors are allowed.

Description logics (DLs) are variants of modal logics suitable for expressing
terminological knowledge. They represent the domain of interest in terms of indi-
viduals (objects), concepts and roles. A concept stands for a set of individuals, a
role stands for a binary relation between individuals. In comparison with modal
logic, concepts correspond to formulas, role names correspond to modal indices,

roles correspond to programs in dynamic logic, and the constructors ∀R.C and
∃R.C correspond to the modalities [R]C and 〈R〉C, respectively.

In this work, CPDLreg is considered as a DL and the objective is to develop
an expressive rule language in CPDLreg that has PTime data complexity.

1.1 Related Work and Motivation

The data complexity of the general Horn fragment in the basic DL ALC is NP-
hard [25]. The hardness is caused by that basic roles are not required to be serial
(i.e., to satisfy the condition ∀x∃y R(x, y)). A naive approach for overcoming the
NP-hardness is to disallow the concept constructor ∀R.C at the LHS (left hand
side) of v in TBox axioms [15, 1, 2, 17, 18, 20, 34, 33, 4].
EL [1, 2], DL-Lite [5, 4], DLP [15], Horn-SHIQ [17] and Horn-SROIQ [33]

are well-known rule languages in DLs with PTime data complexity. The com-
bined complexity of Horn fragments of DLs were considered, amongst others,
in [19]. Some tractable Horn fragments of DLs without ABoxes have also been
isolated in [1, 3]. To guarantee PTime data or combined complexity, all of the
rule languages in the mentioned works disallow the concept constructor ∀R.C
at the LHS of v in TBox axioms.

More sophisticated approaches for dealing with the mentioned NP-hardness
are as follows:

– allowing ∀R.C to appear at the LHS of v in TBox axioms when R is serial
and using the traditional semantics for it,

– allowing a special kind of ∀R.C like ∀∃R.C (defined as ∀R.C u ∃R.C) to
appear at the LHS of v in TBox axioms and using the traditional semantics
for it,

– allowing ∀R.C to appear at the LHS of v in TBox axioms and using a special
semantics for it.

As discussed in the long version [27] of the current paper, our previous
works [21–24, 8, 32, 30, 11, 29, 28] on rule languages in propositional modal and
description logics follow the first two of the above approaches.

The objective of this paper is to formulate an as rich as possible Horn frag-
ment in CPDLreg together with an appropriate semantics for it. As discussed
in [25, 28], for R ∈ R, the concept constructor ∀∃R.C is more constructive than
∀R.C at the LHS of v in TBox axioms. For the case when R is not a basic role,
a constructor similar to [π]

3
ϕ of [23] seems to be too strong and complicated for

practical applications. A natural question is: Can the concept constructor ∀R.C
be directly used at the LHS of v in TBox axioms? Our answer is: Yes, why not?
To obtain the PTime data complexity, just formulate and use an appropriate
semantics for that constructor.

1.2 Our Contributions and the Structure of This Paper

We introduce a rule language called Horn-CPDLreg that is a fragment of
CPDLreg with PTime data complexity. As a special property, it allows the

concept constructors ∀∃R.C and ∀R.C to appear at the LHS of v in TBox
axioms. We use a special semantics for Horn-CPDLreg that is based on pseudo-
interpretations. It is called the constructive semantics and coincides with the
traditional semantics when the concept constructor ∀R.C is disallowed at the
LHS of TBox axioms or when the language is used as an epistemic formalism
and the accessibility relations are serial. We provide an algorithm with PTime
data complexity for checking whether a knowledge base in Horn-CPDLreg has a
pseudo-model. This shows that the instance checking problem in Horn-CPDLreg

with respect to the constructive semantics has PTime data complexity.
The rest of this paper is structured as follows. Section 2 recalls the notation

and semantics of CPDLreg. Section 3 defines the rule language Horn-CPDLreg.
Section 4 presents the constructive semantics of Horn-CPDLreg and its proper-
ties. Section 5 provides our algorithm for checking whether a given knowledge
base in Horn-CPDLreg has a pseudo-model. Section 6 contains concluding re-
marks. Due to the lack of space, proofs of our results are presented in [27].

2 Preliminaries

Our language uses a countable set C of concept names, a countable set R+ of
role names, and a finite set I of individual names. We use letters like a, b to
denote individual names, letters like A, B to denote concept names, and letters
like r, s to denote role names. We use r to denote the inverse of r. For R = r,
let R stand for r. Let R− = {r | r ∈ R+} and R = R+ ∪R−. We call the roles
from R basic roles.

A context-free semi-Thue system S over R is a finite set of context-free pro-
duction rules R → S1 . . . Sk over alphabet R (i.e., R, S1, . . . , Sk ∈ R). It is
symmetric if, for every rule R → S1 . . . Sk of S, the rule R → Sk . . . S1 is also
in S.1 It is regular if, for every R ∈ R, the set of words derivable from R using
the system is a regular language over R.

A context-free semi-Thue system is like a context-free grammar, but it has
no designated start symbol and there is no distinction between terminal and
non-terminal symbols. We assume that, for R ∈ R, the word R is derivable from
R using such a system.

A role inclusion axiom (RIA for short) is an expression of the form
S1 ◦ · · · ◦ Sk v R, where k ≥ 0 and S1, . . . , Sk, R ∈ R. In the case k = 0, the
LHS of the inclusion axiom stands for the empty word ε.

A regular RBox R is a finite set of RIAs such that

{R→ S1 . . . Sk | (S1 ◦ · · · ◦ Sk v R) ∈ R}

is a symmetric regular semi-Thue system S over R. We assume that R is given
together with a mapping A that associates every R ∈ R with a finite automa-
ton AR recognizing the words derivable from R using S. We call A the RIA-
automaton-specification of R.

1 In the case k = 0, the right hand sides of the rules stand for ε.

>I = ∆I ⊥I = ∅ εI = {〈x, x〉 | x ∈ ∆I}
(¬C)I = ∆I \ CI R

I
= (RI)−1

(C uD)I = CI ∩DI (R ◦ S)I = RI ◦ SI

(C tD)I = CI ∪DI (R t S)I = RI ∪ SI

(∀R.C)I = {x ∈ ∆I | ∀y (〈x, y〉 ∈ RI ⇒ y ∈ CI)} (R∗)I = (RI)∗

(∃R.C)I = {x ∈ ∆I | ∃y (〈x, y〉 ∈ RI ∧ y ∈ CI)}

Fig. 1. Interpretation of complex concepts and complex roles.

Recall that a finite automaton A over alphabet R is a tuple 〈R, Q, q0, δ, F 〉,
where Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ Q×R×Q is the
transition relation, and F ⊆ Q is the set of accepting states. A run of A on a
word R1 . . . Rk over alphabet R is a finite sequence of states q0, q1, . . . , qk such
that δ(qi−1, Ri, qi) holds for every 1 ≤ i ≤ k. It is an accepting run if qk ∈ F . We
say that A accepts a word w if there exists an accepting run of A on w. The set
of all words accepted by A is denoted by L(A).

Concepts and roles are defined, respectively, by the following BNF grammar
rules, where A ∈ C and r ∈ R+:

C ::= > | ⊥ | A | ¬C | C u C | C t C | ∀R.C | ∃R.C
R ::= ε | r | R | R ◦R | R tR | R∗ | C?

We use letters like C, D to denote concepts, and letters like R, S to denote roles.
A terminological axiom, also called a TBox axiom, is an expression of the

form C v D. A TBox is a finite set of TBox axioms. An ABox is a finite set of
assertions of the form C(a) or r(a, b). A knowledge base in CPDLreg is a tuple
〈R, T ,A〉 consisting of a regular RBox R, a TBox T and an ABox A.

An interpretation is a pair I = 〈∆I , ·I〉, where ∆I is a non-empty set called
the domain of I and ·I is a mapping called the interpretation function of I that
associates each individual name a ∈ I with an element aI ∈ ∆I , each concept
name A ∈ C with a set AI ⊆ ∆I , and each role name r ∈ R+ with a binary
relation rI ⊆ ∆I ×∆I . The interpretation function ·I is extended to complex
concepts and complex roles as shown in Figure 1.

Given an interpretation I and an axiom/assertion ϕ, the satisfaction relation
I |= ϕ is defined as follows, where ◦ at the right hand side of “if” stands for the
composition of binary relations:

I |= S1 ◦ · · · ◦ Sk v R if SI1 ◦ · · · ◦ SIk ⊆ RI

I |= ε v R if εI v RI

I |= C v D if CI ⊆ DI

I |= C(a) if aI ∈ CI

I |= r(a, b) if 〈aI , bI〉 ∈ rI .

If I |= ϕ then we say that I validates ϕ.

An interpretation I is a model of an RBox R, a TBox T or an ABox A if it
validates all the axioms/assertions of that “box”. It is a model of a knowledge
base KB = 〈R, T ,A〉, denoted by I |= KB , if it is a model of R, T and A.

A knowledge base is satisfiable if it has a model. For a knowledge base KB ,
we write KB |= ϕ to mean that every model of KB validates ϕ. If KB |= C(a)
then we say that a is an instance of C w.r.t. KB .

The length of a concept, an assertion or an axiom ϕ is the number of symbols
occurring in ϕ. The size of an ABox is the sum of the lengths of its assertions.
The size of a TBox is the sum of the lengths of its axioms.

A reduced ABox is a finite set of assertions of the form A(a), ¬A(a) or r(a, b).
The data complexity of the instance checking problem 〈R, T ,A〉 |= C(a) is de-
fined when A is a reduced ABox and is measured w.r.t. the size of A, while
assuming that R+, R, T and C(a) are fixed.

3 The Horn-CPDLreg Fragment

A Horn-CPDLreg TBox axiom is an expression of the form Cl v Cr, where l
stands for “left”, r stands for “right”, Cl and Cr are concepts defined by the
following BNF grammar:

Cl ::= > | A | Cl u Cl | Cl t Cl | ∃Rl∃.Cl | ∀Rl∀.Cl | ∀∃r.Cl | ∀∃r.Cl (1)

Rl∃ ::= r | R | Rl∃ ◦Rl∃ | Rl∃ tRl∃ | R∗l∃ | Cl? (2)

Rl∀ ::= r | R | Rl∀ ◦Rl∀ | Rl∀ tRl∀ | R∗l∀ | (¬Cl)? (3)

Cr ::= > | ⊥ | A | ¬Cl | Cr u Cr | ¬Cl t Cr | ∃Rr∃.Cr | ∀Rl∃.Cr (4)

Rr∃ ::= r | R | Rr∃ ◦Rr∃ | Cr? (5)

A Horn-CPDLreg TBox is a finite set of Horn-CPDLreg TBox axioms.
A Horn-CPDLreg clause is a TBox axiom of the form C1 u . . . u Ck v D,

> v D, > v ∃r.> or > v ∃r.>, where:2

– each Ci is of the form A, ∃Rl∃.A, ∀Rl∀.A, ∀∃r.A or ∀∃r.A,
– D is of the form ⊥, A, ∃r.A, ∃r.A or ∀Rl∃.A,
– Rl∃ and Rl∀ are now restricted by the following BNF grammar:

Rl∃ ::= r | r | Rl∃ ◦Rl∃ | Rl∃ tRl∃ | R∗l∃ | A? (6)

Rl∀ ::= r | r | Rl∀ ◦Rl∀ | Rl∀ tRl∀ | R∗l∀ | (¬A)? (7)

A clausal Horn-CPDLreg TBox consists of Horn-CPDLreg clauses.
A Horn-CPDLreg ABox is a finite set of assertions of the form Cr(a) or

r(a, b), where Cr is a concept of the form specified by (4).
A Horn-CPDLreg knowledge base is a tuple 〈R, T ,A〉 consisting of a regular

RBox R, a Horn-CPDLreg TBox T and a Horn-CPDLreg ABox A. When T is a

2 The clauses > v ∃r.> and > v ∃r.> can be replaced by > v ∃r.A> or > v ∃r.A>,
respectively, where A> is a fresh concept name. We include them just for convenience.

⊥I = ∅ εI∃ = {〈x, x〉 | x ∈ ∆I} εI∀ = εI∃

>I = ∆I R
I∃ = (RI∃)−1 R

I∀ = (RI∀)−1

(¬C)I = ∆I \ CI (R ◦ S)I∃ = RI∃ ◦ SI∃ (R ◦ S)I∀ = RI∀ ◦ SI∀

(C uD)I = CI ∩DI (R t S)I∃ = RI∃ ∪ SI∃ (R t S)I∀ = RI∀ ∪ SI∀

(C tD)I = CI ∪DI (R∗)I∃ = (RI∃)∗ (R∗)I∀ = (RI∀)∗

(∀∃R.C)I = (∀R.C u ∃R.C)I (C?)I∃ = {〈x, x〉 | CI(x)} (C?)I∀ = (C?)I∃

(∀R.C)I = {x ∈ ∆I | ∀y (〈x, y〉 ∈ RI∀ ⇒ y ∈ CI)}
(∃R.C)I = {x ∈ ∆I | ∃y (〈x, y〉 ∈ RI∃ ∧ y ∈ CI)}

Fig. 2. The meaning of complex concepts and complex roles in a pseudo-interpretation.

clausal Horn-CPDLreg TBox and A is a reduced ABox, we call such a knowledge
base a clausal Horn-CPDLreg knowledge base.

A Horn-CPDLreg query for the instance checking problem is an expression of
the form C(a), where a ∈ I and C is a concept of the family Cl specified by (1).

4 The Constructive Semantics of Horn-CPDLreg

Pseudo-interpretations were introduced by us in [22, 23, 25]. Here, we extend that
notion for CPDLreg to deal with inverse roles, using a slightly different notation
that is closer to the traditional notation of DLs.

Definition 4.1. A pseudo-interpretation is a pair I = 〈∆I , ·I〉, where ∆I is a
non-empty set called the domain of I and ·I is a mapping called the interpre-
tation function of I that associates each individual name a ∈ I with an element
aI ∈ ∆I , each concept name A ∈ C with a set AI ⊆ ∆I , and each role name
r ∈ R+ with a pair 〈rI∃ , rI∀〉 of binary relations such that:

– rI∃ ⊆ rI∀ ⊆ ∆I ×∆I ,
– for every x ∈ ∆I , if Y = {y | 〈x, y〉 ∈ rI∃} 6= ∅ then {y | 〈x, y〉 ∈ rI∀} = Y .

The interpretation function ·I is extended to complex concepts and complex
roles as shown in Figure 2. C

Observe that, given a pseudo-interpretation I and a role R, we have that
RI∃ ⊆ RI∀ , and (∀R.C)I may differ from (¬∃R.¬C)I . If 〈x, y〉 ∈ RI∃ then we
call 〈x, y〉 a firm R-edge. If 〈x, y〉 ∈ RI∀ \RI∃ then call 〈x, y〉 a pseudo R-edge.

Definition 4.2. Given a pseudo-interpretation I and an axiom/assertion ϕ, the
satisfaction relation I |w ϕ is defined as follows:

I |w S1 ◦ · · · ◦ Sk v R if SI∃1 ◦ · · · ◦ S
I∃
k ⊆ RI∃ and SI∀1 ◦ · · · ◦ S

I∀
k ⊆ RI∀

I |w ε v R if εI∃ v RI∃

I |w C v D if CI ⊆ DI

I |w C(a) if aI ∈ CI

I |w r(a, b) if 〈aI , bI〉 ∈ rI∃ .

If I |w ϕ then we say that I validates ϕ. A pseudo-interpretation I is a
pseudo-model of an RBox R, a TBox T or an ABox A if it validates all the
axioms/assertions of that “box”. It is a pseudo-model of a knowledge base
KB = 〈R, T ,A〉, denoted by I |w KB , if it is a pseudo-model of R, T and
A. A knowledge base is satisfiable w.r.t. the constructive semantics if it has
a pseudo-model. We define that 〈R, T ,A〉 |w C(a) if, for every pseudo-model I
of 〈R, T ,A〉, it holds that I |w C(a). C

Remark 4.3. An interpretation I can be treated as a pseudo-interpretation with
rI∃ = rI∀ = rI for all r ∈ R+. Thus, given an interpretation I, I |= KB iff
I |w KB , and I |= C(a) iff I |w C(a). Conversely, a pseudo-interpretation I
satisfying rI∃ = rI∀ = rI for all r ∈ R+ can be treated as an interpretation.
In particular, if I |= (> v ∃R.>) for all R ∈ R, then I can be treated as an
interpretation.

Proposition 4.4. Let KB = 〈R, T ,A〉 be a Horn-CPDLreg knowledge base.

1. If C(a) is a Horn-CPDLreg query then, for the Horn-CPDLreg knowledge
base KB ′ = 〈R, T ∪ {C v A}, A ∪ {¬A(a)}〉, where A is a fresh concept
name, we have that:
(a) KB |w C(a) iff KB ′ does not have any pseudo-model,
(b) KB |= C(a) iff KB ′ does not have any model.

2. KB can be converted in polynomial time in the sizes of T and A to a
Horn-CPDLreg knowledge base KB ′ = 〈R, T ′,A′〉 with A′ being a reduced
ABox such that KB has a pseudo-model (resp. model) iff KB ′ has a pseudo-
model (resp. model).

3. KB can be converted in polynomial time in the size of T to a Horn-CPDLreg

knowledge base KB ′ = 〈R, T ′,A〉 with T ′ being a clausal Horn-CPDLreg

TBox such that:
– KB has a pseudo-model (resp. model) iff KB ′ has a pseudo-model (resp.

model),
– if T does not use the constructor ∀R.C at the LHS of v then T ′ does

neither.

Corollary 4.5. Every Horn-CPDLreg knowledge base KB can be converted in
polynomial time in the sizes of T and A to a clausal Horn-CPDLreg knowledge
base KB ′ = 〈R, T ′,A′〉 such that KB has a pseudo-model (resp. model) iff KB ′

has a pseudo-model (resp. model).

We present basic properties of the constructive semantics of Horn-CPDLreg.

Theorem 4.6. Let KB be a clausal Horn-CPDLreg knowledge base and C(a)
be a Horn-CPDLreg query. Then:

1. If KB |w C(a) then KB |= C(a).
2. If {> v ∃R.> | R ∈ R} ⊆ T then:

(a) if KB has a pseudo-model then it also has a model,
(b) KB |w C(a) iff KB |= C(a).

3. If KB is specified without using the constructor ∀Rl∀.Cl in the grammar
rule (1) and has a pseudo-model then it also has a model.

4. If KB and C are specified without using the constructor ∀Rl∀.Cl in the gram-
mar rule (1), then KB |w C(a) iff KB |= C(a).

5 Checking Constructive Satisfiability in Horn-CPDLreg

In this section we present an algorithm that, given a clausal Horn-CPDLreg

knowledge base KB = 〈R, T ,A〉 together with the RIA-automaton-specification
A of R, checks whether the knowledge base has a pseudo-model.

5.1 Automaton-Modal Operators

We say that a role is in the inverse-and-test normal form (ITNF) if in its con-
struction the inverse operation is applied only to role names and the test operator
C? is applied only to concepts C of the form A or ¬A. Such a role can be treated
as a regular expression over the alphabet Σ = R ∪ {A?, (¬A)? | A ∈ C} (where
◦ corresponds to ; and t corresponds to ∪). The regular language characterized
by such a role R is denoted by L(R). A word R1R2 . . . Rk over Σ is also treated
as the role R1 ◦R2 ◦ · · · ◦Rk.

For each role R in ITNF, let AR be a finite automaton recognizing the regular
language L(R). For each role R in ITNFsuch that R /∈ R, let AR be a finite
automaton recognizing the language L(R′), where R′ is obtained from R by
simultaneously substituting each S ∈ R by a regular expression representing
L(AS).

The automaton AR can be constructed from R in polynomial time, and
AR can be constructed in polynomial time in the length of R and the sizes
of the automata (AS)S∈R. Roughly speaking, AR can be obtained from AR by
simultaneously substituting each transition 〈q1, S, q2〉 by the automaton AS .

Given a role R in ITNF, by AR we denote AS with S being R in ITNF.
Given an interpretation (resp. pseudo-interpretation) I and a finite automa-

ton A over alphabet Σ, we define AI (resp. AI∀ , AI∃) to be {〈x, y〉 ∈ ∆I ×∆I |
there exist a word R1 . . . Rk accepted by A and elements x0 = x, x1, . . . , xk = y
of ∆I such that 〈xi−1, xi〉 ∈ RIi (resp. 〈xi−1, xi〉 ∈ RI∀i , 〈xi−1, xi〉 ∈ RI∃i) for all
1 ≤ i ≤ k}.

We will use auxiliary concept constructors [A]C, [A]∃C and 〈A〉C, where
A is a finite automaton over alphabet Σ and C is a concept. Such construc-
tors (called formulas with automaton-modal operators) were used earlier, among
others, in [16, 14, 24, 9, 25, 10]. The semantics of concepts [A]C, [A]∃C, 〈A〉C are
specified below:

– given an interpretation I,

([A]C)I =
{
x ∈ ∆I | ∀y

(
〈x, y〉 ∈ AI implies y ∈ CI

)}
,

(〈A〉C)I =
{
x ∈ ∆I | ∃y

(
〈x, y〉 ∈ AI and y ∈ CI

)}
;

– given a pseudo-interpretation I,

([A]C)I =
{
x ∈ ∆I | ∀y

(
〈x, y〉 ∈ AI∀ implies y ∈ CI

)}
,

([A]∃C)I =
{
x ∈ ∆I | ∀y

(
〈x, y〉 ∈ AI∃ implies y ∈ CI

)}
,

(〈A〉C)I =
{
x ∈ ∆I | ∃y

(
〈x, y〉 ∈ AI∃ and y ∈ CI

)}
.

For a finite automaton A over Σ, let the components of A be denoted as in

A = 〈Σ,QA, qA, δA, FA〉.

If q is a state of a finite automaton A then by Aq we denote the finite au-
tomaton obtained from A by replacing the initial state by q.

Lemma 5.1. Let I be a pseudo-model of a regular RBox R, A the RIA-
automaton-specification of R, and C a concept. Then:

– (∀R.C)I = ([AR]C)I and (∃R.C)I = (〈AR〉C)I ,
– CI ⊆ ([AR]∃〈AR〉C)I and CI ⊆ ([AR]∃∃R.C)I .

The proof of this lemma is straightforward.

5.2 Our Algorithm

We will treat each TBox axiom C v D from T as a concept standing for a global
assumption. That is, C v D is logically equivalent to ¬C tD, and it is a global
assumption for an interpretation I if (¬C tD)I = ∆I .

Let X be a set of concepts. The saturation of X (w.r.t. A and T), denoted
by Satr(X), is defined to be the least extension of X such that:

1. for every R ∈ R, [AR]∃∃R.> ∈ Satr(X),
2. if ∀R.C ∈ Satr(X) then [AR]C ∈ Satr(X),
3. if [A]C ∈ Satr(X), 〈qA, B?, q〉 ∈ δA and B ∈ Satr(X) then [Aq]C ∈ Satr(X),
4. if [A]∃C ∈ Satr(X), 〈qA, B?, q〉 ∈ δA and B ∈ Satr(X) then [Aq]∃C ∈ Satr(X),
5. if ([A]C ∈ Satr(X) or [A]∃C ∈ Satr(X)) and qA ∈ FA then C ∈ Satr(X),
6. if B ∈ Satr(X) and ∃R.B occurs at the LHS of v in some clause of T then

[AR]∃〈AR〉B ∈ Satr(X).

For R ∈ R, there are two kinds of transfer of X through R:

Trans(X,R) = {[Aq]C | [A]C ∈ X and 〈qA, R, q〉 ∈ δA}
Trans∃(X,R) = Trans(X,R) ∪ {[Aq]∃C | [A]∃C ∈ X and 〈qA, R, q〉 ∈ δA}.

Our algorithm for checking whether KB = 〈R, T ,A〉 has a pseudo-model uses
the data structure G = 〈∆0, ∆,Label ,Next ,LeastSucc,Status〉, which is called a
Horn-CPDLreg graph, where:

– ∆0 : the set of all individual names occurring in A,
– ∆ : a set of objects including ∆0,

– Label : a function mapping each x ∈ ∆ to a set of concepts,
– Next : ∆× {∃R.>,∃R.A | R ∈ R, A ∈ C} → ∆ is a partial mapping,
– LeastSucc : ∆×R→ ∆ is a partial mapping,
– Status ∈ {unknown, unsat , sat}.

Define Edges = {〈x,R, y〉 | R(x, y) ∈ A or Next(x, ∃R.C) = y for some C or
LeastSucc(x,R) = y}. A tuple 〈x,R, y〉 ∈ Edges represents an edge 〈x, y〉 with
label R of the graph. If R(x, y) ∈ A or Next(x, ∃R.C) = y then we call 〈x,R, y〉
a firm edge, else if LeastSucc(x,R) = y then we call 〈x,R, y〉 a pseudo edge. The
notions of predecessor and successor are defined as usual. We say that x ∈ ∆ is
reachable from ∆0 if there exist x0, . . . , xk ∈ ∆ and elements R1, . . . , Rk of R
such that k ≥ 0, x0 ∈ ∆0, xk = x and 〈xi−1, Ri, xi〉 ∈ Edges for all 1 ≤ i ≤ k.

For x ∈ ∆, Label(x) is called the label of x. A fact Next(x, ∃R.C) = y means
that ∃R.C ∈ Label(x), C ∈ Label(y), and ∃R.C is “realized” at x by going to y.
When defined, Next(x, ∃R.>) denotes the “logically smallest firm R-successor
of x”, and LeastSucc(x,R) denotes the “logically smallest R-successor of x”. A
fact Status = unsat means the knowledge base does not have any pseudo-model.
A fact Status = unsat means the knowledge base has a pseudo-model.

Definition 5.2. Let G, x 6|=c [A]B stand for “it is not certain that G satisfies
[A]B at x”, where x ∈ ∆, A is a finite automaton over Σ and B ∈ C. We
define 6|=c to be the smallest relation such that G, x 6|=c [A]B holds if one of the
following holds (for some B′ or R when it is related):

– qA ∈ FA and B /∈ Label(x);
– 〈qA, (¬B′)?, q〉 ∈ δA, B′ /∈ Label(x) and G, x 6|=c [Aq]B;
– 〈qA, R, q〉 ∈ δA, ∃R.> /∈ Label(x) and LeastSucc(x,R) is not defined;
– 〈qA, R, q〉 ∈ δA, ∃R.> /∈ Label(x), LeastSucc(x,R) = y and G, y 6|=c [Aq]B;
– 〈qA, R, q〉 ∈ δA, ∃R.> ∈ Label(x) and Next(x,∃R.>) is not defined;
– 〈qA, R, q〉 ∈ δA, Next(x, ∃R.>) = y and G, y 6|=c [Aq]B.

We define that G, x 6|=c ∀R.A if G, x 6|=c [AR]A. C

Algorithm 1 attempts to construct a pseudo-model of KB by initializing a
Horn-CPDLreg graph and then expanding it by the rules in Table 1. The intended
pseudo-model extends A with disjoint trees rooted at the named individuals
occurring in A. The trees may be infinite. However, we represent such a semi-
forest as a graph with global caching: if two nodes that are not named individuals
occur in a tree or in different trees and have the same label, then they should
be merged.

Theorem 5.3. Algorithm 1 runs in polynomial time in the size of the ABox A
and correctly checks whether the clausal Horn-CPDLreg knowledge base KB has
a pseudo-model.

Corollary 5.4. The Horn-CPDLreg rule language has PTime data complexity
(when used with the constructive semantics).

See [27] for an explanation of Algorithm 1 and an illustrative example.

Function Find(X)

1 if there exists z ∈ ∆ \∆0 with Label(z) = X then
2 return z
3 else
4 add a new element z to ∆ with Label(z) := X;
5 return z

Procedure ExtendLabel(z,X)

1 if X ⊆ Label(z) then return;

2 if z ∈ ∆0 then
3 Label(z) := Label(z) ∪ Satr(X)
4 else
5 z∗ := Find(Label(z) ∪ Satr(X));
6 foreach y, R, C such that Next(y,∃R.C) = z do Next(y,∃R.C) := z∗;
7 foreach y and R such that LeastSucc(y,R) = z do LeastSucc(y,R) := z∗;

Function CheckPremise(x,C)

1 if C = > then return true
2 else let C = C1 u . . . u Ck;
3 foreach 1 ≤ i ≤ k do
4 if Ci = A and A /∈ Label(x) then return false
5 else if Ci = ∀∃R.A and (∃R.> /∈ Label(x) or Next(x,∃R.>) is not defined

or A /∈ Label(Next(x, ∃R.>))) then
6 return false
7 else if Ci = ∃R.A and 〈AR〉A /∈ Label(x) then return false
8 else if Ci = ∀R.A and G, x 6|=c ∀R.A then return false

9 return true

Algorithm 1: checking constructive satisfiability in Horn-CPDLreg

Input: a clausal Horn-CPDLreg knowledge base KB = 〈R, T ,A〉 and
the RIA-automaton-specification A of R.

Output: true if KB has a pseudo-model, or false otherwise.
Global data: a Horn-CPDLreg graph G and a TBox T ′.

1 let ∆0 be the set of all individuals occurring in A;
2 if ∆0 = ∅ then ∆0 := {τ};
3 ∆ := ∆0, T ′ := Satr(T), set Next and LeastSucc to the empty mappings;
4 foreach a ∈ ∆0 do
5 Label(a) := Satr({A | A(a) ∈ A}) ∪ T ′

6 while some rule in Table 1 can make changes do
7 choose such a rule and execute it; // any strategy can be used

8 if Status = unsat then return false

9 return true

(∀1) if r(a, b) ∈ A then
ExtendLabel(b,Trans∃(Label(a), r)), ExtendLabel(a,Trans∃(Label(b), r));

(∀2) if x is reachable from ∆0 and Next(x,∃R.C) = y then
Next(x,∃R.C) := Find(Label(y) ∪ Satr(Trans∃(Label(x), R)));

(∀3) if x is reachable from ∆0 and Next(x,∃R.C) = y then

ExtendLabel(x,Trans∃(Label(y), R));

(∀4) if x is reachable from ∆0 and LeastSucc(x,R) = y then
LeastSucc(x,R) := Find(Label(y) ∪ Satr(Trans(Label(x), R)));

(∀5) if x is reachable from ∆0 and LeastSucc(x,R) = y then

ExtendLabel(x,Trans(Label(y), R));

(∃) if x is reachable from ∆0, ∃R.C ∈ Label(x), R ∈ R and
Next(x,∃R.C) is not defined then

Next(x,∃R.C) := Find(Satr({C} ∪ Trans∃(Label(x), R)) ∪ T ′);
(LS) if x is reachable from ∆0, R ∈ R and LeastSucc(x,R) is not defined then

LeastSucc(x,R) := Find(Satr(Trans(Label(x), R)) ∪ T ′);
(v) if x is reachable from ∆0, (C v D) ∈ Label(x) and CheckPremise(x,C) then

ExtendLabel(x, {D});
(⊥) if ⊥ ∈ Label(x) or there exists {A,¬A} ⊆ Label(x) then Status := unsat ;

Table 1. Expansion rules for Horn-CPDLreg graphs.

6 Concluding Remarks

We have developed the rule language Horn-CPDLreg and proved that it has
PTime data complexity by providing an algorithm for checking whether a given
knowledge base in Horn-CPDLreg has a pseudo-model.

Horn-CPDLreg is more general than the Horn fragments introduced and stud-
ied in our (joint) works [21, 22, 24, 8, 32, 30, 11]. As it has PTime data complexity
and is more general than Horn-TeamLog [11], it is a useful rule language for
formalizing agents’ cooperation.

In contrast to all the well-known Horn fragments EL [1, 2], DL-Lite [5],
DLP [15], Horn-SHIQ [17], Horn-SROIQ [33] of DLs, Horn-CPDLreg allows
the concept constructors ∀∃R.C (for R ∈ R) and ∀R.C (for any role R) to
appear at the LHS of TBox axioms.

In comparison with Horn-DL [29, 28], apart from the concept constructor
∀∃R.C (for R ∈ R), Horn-CPDLreg also allows the concept constructor ∀R.C
(for any role R) to appear at the LHS of TBox axioms. However, Horn-CPDLreg

is not more general than Horn-DL because the latter additionally allows nom-
inals, quantified number restrictions, the ∃r.Self constructor, the universal role
as well as assertions of the form disjoint(s, s′), irreflexive(s), ¬s(a, b), a 6 .= b. As
future work, we will extend Horn-CPDLreg with these features to obtain a rule

language Horn-DL2 that is more general than Horn-DL, and hence also more
general than Horn-SHIQ and Horn-SROIQ.

Our approach and method for Horn-CPDLreg make important steps in devel-
oping richer and richer tractable rule languages in modal and description logics.

Acknowledgments. This work was supported by the Polish National Science
Centre (NCN) under Grant No. 2011/01/B/ST6/02769.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of
IJCAI’2005, pages 364–369. Morgan-Kaufmann Publishers, 2005.

2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In Proceedings
of the OWLED 2008 DC Workshop on OWL: Experiences and Directions, 2008.

3. S. Brandt. Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and - what else? In Proceedings of ECAI’2004, pages 298–302.
IOS Press, 2004.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. Artif. Intell., 195:335–360,
2013.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning, 39(3):385–429, 2007.

6. S. Demri. The complexity of regularity in grammar logics and related modal logics.
Journal of Logic and Computation, 11(6):933–960, 2001.

7. S. Demri and H. de Nivelle. Deciding regular grammar logics with converse through
first-order logic. Journal of Logic, Language and Information, 14(3):289–329, 2005.

8. B. Dunin-Kȩplicz, L.A. Nguyen, and A. Sza las. Tractable approximate knowl-
edge fusion using the Horn fragment of serial propositional dynamic logic. Int. J.
Approx. Reasoning, 51(3), 2010.

9. B. Dunin-Kȩplicz, L.A. Nguyen, and A. Sza las. Tractable approximate knowl-
edge fusion using the Horn fragment of serial propositional dynamic logic. Int. J.
Approx. Reasoning, 51(3):346–362, 2010.

10. B. Dunin-Kȩplicz, L.A. Nguyen, and A. Sza las. Converse-PDL with regular in-
clusion axioms: A framework for MAS logics. J. Applied Non-Classical Logics,
21(1):61–91, 2011.

11. B. Dunin-Kȩplicz, L.A. Nguyen, and A. Sza las. Horn-TeamLog: A Horn fragment
of TeamLog with PTime data complexity. In Proceedings of ICCCI’2013, volume
8083 of LNCS, pages 143–153. Springer, 2013.

12. B. Dunin-Kȩplicz and R. Verbrugge. Collective intentions. Fundam. Inform.,
51(3):271–295, 2002.

13. M. Dziubiński, R. Verbrugge, and B. Dunin-Kȩplicz. Complexity issues in multia-
gent logics. Fundam. Inform., 75(1-4):239–262, 2007.

14. R. Goré and L.A. Nguyen. A tableau system with automaton-labelled formulae for
regular grammar logics. In B. Beckert, editor, Proceedings of TABLEAUX 2005,
LNAI 3702, pages 138–152. Springer-Verlag, 2005.

15. B.N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:
combining logic programs with description logic. In Proceedings of WWW’2003,
pages 48–57, 2003.

16. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
17. U. Hustadt, B. Motik, and U. Sattler. Reasoning in description logics by a reduction

to disjunctive Datalog. J. Autom. Reasoning, 39(3):351–384, 2007.
18. A. Krisnadhi and C. Lutz. Data complexity in the EL family of description logics.

In Proceedings of LPAR’2007, volume 4790 of LNCS, pages 333–347. Springer,
2007.

19. M. Krötzsch, S. Rudolph, and P. Hitzler. Complexity boundaries for Horn descrip-
tion logics. In Proceedings of AAAI’2007, pages 452–457. AAAI Press, 2007.

20. M. Krötzsch, S. Rudolph, and P. Hitzler. Conjunctive queries for a tractable
fragment of OWL 1.1. In Proceedings of ISWC’2007 + ASWC’2007, LNCS 4825,
pages 310–323. Springer, 2007.

21. L.A. Nguyen. Constructing the least models for positive modal logic programs.
Fundamenta Informaticae, 42(1):29–60, 2000.

22. L.A. Nguyen. A bottom-up method for the deterministic Horn fragment of the
description logic ALC. In Proceedings of JELIA’2006, volume 4160 of LNAI, pages
346–358. Springer-Verlag, 2006.

23. L.A. Nguyen. On the deterministic Horn fragment of test-free PDL. In I. Hodkinson
and Y. Venema, editors, Advances in Modal Logic - Volume 6, pages 373–392.
King’s College Publications, 2006.

24. L.A. Nguyen. Constructing finite least Kripke models for positive logic programs
in serial regular grammar logics. Logic Journal of the IGPL, 16(2):175–193, 2008.

25. L.A. Nguyen. Horn knowledge bases in regular description logics with PTime data
complexity. Fundamenta Informaticae, 104(4):349–384, 2010.

26. L.A. Nguyen. Cut-free ExpTime tableaux for Converse-PDL extended with regular
inclusion axioms. In Proceedings of KES-AMSTA’2013, volume 252 of Frontiers in
Artificial Intelligence and Applications, pages 235–244. IOS Press, 2013.

27. L.A. Nguyen. A long version of the current paper. Available at http://www.mimuw.
edu.pl/~nguyen/HornCPDLreg-long.pdf, June 2014.

28. L.A. Nguyen, T.-B.-L. Nguyen, and A. Sza las. A long version of the paper [29].
Available at http://www.mimuw.edu.pl/~nguyen/horn_dl_long.pdf.

29. L.A. Nguyen, T.-B.-L. Nguyen, and A. Sza las. Horn-DL: An expressive Horn
description logic with PTime data complexity. In Proceedings of RR’2013, volume
7994 of LNCS, pages 259–264. Springer, 2013.

30. L.A. Nguyen, T.-B.-L. Nguyen, and A. Sza las. On Horn knowledge bases in regular
description logic with inverse. In Proceedings of KSE’2013, volume 244 of Advances
in Intelligent Systems and Computing, pages 37–49. Springer, 2013.

31. L.A. Nguyen and A. Sza las. ExpTime tableau decision procedures for regular
grammar logics with converse. Studia Logica, 98(3):387–428, 2011.

32. L.A. Nguyen and A. Sza las. On the Horn fragments of serial regular grammar logics
with converse. In Proceedings of KES-AMSTA’2013, volume 252 of Frontiers in
Artificial Intelligence and Applications, pages 225–234. IOS Press, 2013.

33. M. Ortiz, S. Rudolph, and M. Simkus. Query answering in the Horn fragments of
the description logics SHOIQ and SROIQ. In Proceedings of IJCAI 2011, pages
1039–1044, 2011.

34. R. Rosati. On conjunctive query answering in EL. In Proceedings of DL’2007,
pages 451–458.

