
Classifiers for Behavioral Patterns Identification
Induced from Huge Temporal Data

Jan G. Bazan1, Marcin Szpyrka2,1, Adam Szczur1, Łukasz Dydo1, and
Hubert Wojtowicz1

1 Interdisciplinary Centre for Computational Modelling
University of Rzeszów

Pigonia 1, 35 - 310 Rzeszów, Poland
{bazan,ldydo}@ur.edu.pl,

{adamszczur8,hubert.wojtowicz}@gmail.com
2 AGH University of Science and Technology

Department of Applied Computer Science
Mickiewicza 30, 30-059 Kraków, Poland

mszpyrka@agh.edu.pl

Abstract. A new method of constructing classifiers from huge volume of tem-
poral data is proposed in the paper. The novelty of introduced method lies in a
multi-stage approach to constructing hierarchical classifiers that combines pro-
cess mining, feature extraction based on temporal patterns and constructing clas-
sifiers based on a decision tree. Such an approach seems to be practical when deal-
ing with huge volume of temporal data. As a proof of concept a system has been
constructed for packet-based network traffic anomaly detection, where anomalies
are represented by spatio-temporal complex concepts and called by behavioral
patterns. Hierarchical classifiers constructed with the new approach turned out to
be better than ”flat” classifiers based directly on captured network traffic data.

Keywords: classifiers, huge temporal data, temporal patterns, state graphs, be-
havioral patterns, LTL temporal logic

1 Introduction

Classifiers (decision algorithms) constitute the kernel of decision systems that are ubiq-
uitous in many areas of IT systems like data mining, knowledge discovery, expert sys-
tems etc. [12], [15]. There are numerous approaches to constructing classifiers to be
found in literature. Due to the growth of volume of gathered data and complexity of
analyzed concepts new methods of data mining, process mining and classifiers con-
structing are needed to meet the challenge of nowadays applications. Particularly, data
more and more often concern complex processes which do not give in to classical mod-
eling methods. Examples of such data include medical and financial data, data from
vehicles monitoring, or data from telecommunication networks, e.g. information about
packages flow. Methods of exploring such data are the center of attention of many pow-
erful research centers in the world, and at the same time detection of models of complex
processes and their properties (patterns) from data is becoming more and more attrac-
tive for applications [1], [9], [14], [17].

2 J.G. Bazan et al.

Making progress in this field is extremely crucial, among other things, for the devel-
opment of intelligent systems processing huge volume of data. Therefore, developing
methods of detecting process models and their properties from data and proving their
effectiveness in different applications are of particular importance for further devel-
opment of decision supporting systems in many domains such as medicine, finance,
industry, transport, telecommunication, and others.

The paper deals with a problem of process mining and constructing classifiers from
huge volume of temporal data. The presented approach combines automatic methods of
detecting processes and their properties with domain knowledge obtained from experts.
Interaction with domain experts facilitates guiding the process of discovering patterns
and models of processes and makes the process computationally feasible. The novelty of
introduced method lies in a multi-stage approach to constructing hierarchical classifiers
that incorporates:

– a process mining – during the learning stage data are grouped and represented as a
state graph, which reduces the data size significantly;

– a features extraction based on temporal patterns – which takes the form of LTL
temporal logic formulas, may be defined by experts or discovered from the learning
data;

– a classifier construction – a classifier is constructed with temporal patterns identi-
fied from the learning data i.e. it is based on information about presence or absence
of individual behavioral patterns in the analyzed data.

The paper is organized as follows. Section 2 presents an overview of the considered
approach to classifiers construction. Classifiers based on decision trees are described
shortly in Section 3. Section 4 deals with a system for packet-based network traffic
anomaly detection implemented with the new approach introduced in the paper. A short
summary is given in the final section.

2 Constructing of hierarchical classifiers

The general scheme of constructing of hierarchical classifiers is given in Fig. 1. Let
A = {a1, . . . , ak} denote a set of attributes selected to describe important features
of the system under consideration. The starting point of the presented approach are
data describing values of the attributes in a sequence of time points t1, t2, These
learning data can be presented in a table as shown in Fig. 2. The data are considered
from two points of view. In the first stage the whole input data are used to construct
the so-called state graph. This is the process mining stage. In the consecutive stages,
we use the learning data sliced into pieces called time windows. In the network traffic
anomaly detection system presented in Section 4 a constant length of time windows
has been used. However, this limitation can be omitted and in general changeable time
window length can be used.

The process mining stage concerns building a state graph. However, before the
process mining is started, rows from the learning data table (called here time points)
are grouped with a metric that describes the similarity (distance) between time points.
In this paper we use a well-known in literature k-means method of clustering. The

Classifiers for Behavioral Patterns Identification . . . 3

t a1 a2 . . . ak
t1 v11 v12 . . . v1k
t2 v21 v22 . . . v2k
.
tn vn1 vn2 . . . vnk
.

learning data

s1

s2

s3

s4

s5

s6

s7

state graph

process discovery

experts knowledge

ϕ1 = G(s1 ⇒ Fs3)
ϕ2 = s1 ∧ X(s5 U s6)
. . .
ϕm = . . .

temporal patterns
(temporal logic formulas)

ϕ1 ϕ2 . . . ϕm d
1 0 . . . 0 p
1 1 . . . 0 q
.
0 0 . . . 0 r
.

decision table

s1

s2

s3

s5

time window path

sliced data (time windows)

Fig. 1. Scheme of constructing of hierarchical classifiers

t a1 a2 . . . ak

t1 v11 v12 . . . v1k
t2 v21 v22 . . . v2k
.

tp vp1 vp2 . . . vpk
tp+1 vp+1

1 vp+1
2 . . . vp+1

k

tp+2 vp+2
1 vp+2

2 . . . vp+2
k

.

t2p v2p1 v2p2 . . . v2pk
t2p+1 v2p+1

1 v2p+1
2 . . . v2p+1

k

.

 time window 1

 time window 2

Fig. 2. General scheme of input data

4 J.G. Bazan et al.

metric is based on time point attributes. Our method of process mining works on the
data after clustering, i.e., on the data that can be represented by a sequence of groups
(clusters). For such data we use the method from [2]. As a result, each group of time
points obtained from clustering process is represented as a node in the state graph. If
two consecutive time points belong to two different groups an arc is included into the
graph that connects corresponding nodes. Multiple arcs going from node si to sj are
represented by a single arc. A state graph is generated using all learning data. The size
of the graph is crucial for the next stage, so the metric function should be adjusted in
order to reduce the state graph size if it is too complex. This stage allows us to cope
with huge amount of time points and makes the approach scalable.

Temporal patterns take the form of temporal logic formulas. LTL [3], [11] logic has
been used for experiments described in the paper. Aside from the propositional logic
operators, the temporal operators G (globally), F (finally), X (next), U (until) can be
used in LTL. Temporal patterns represent some temporal dependencies between nodes
of the state graph e.g. presence or absence of some nodes (clusters) in a path, nodes
order in a path etc. In case of the network anomaly detection system temporal patterns
have been defined by experts using the generated state graph. A module for automatic
patterns extraction will be developed in the future. LetΦ = {ϕ1, . . . , ϕm} denote the set
of temporal patterns. They are treated as input attributes for the classification problem.
For a given time window a path is generated and for each behavior pattern it is checked
whether the corresponding LTL formula holds for the path or not. Thus for a given path
a sequence of m Boolean values is evaluated. Due to the fact that for learning data the
values of the decision attributes are known, each time window provides a row for high
level learning data described by conditional attributes ϕ1, . . . , ϕm and the decision
attribute d. The high level learning data are used for constructing the classifier.

3 Classifier based on a decision tree

The hierarchical classifier considered in the paper is based on the high level learning
data described in the previous section. We consider the classifier that is based on the
so-called decision tree of the local discretization (see, e.g., [7], [6], [16]). It is a binary
tree, created by multiple binary partitions of the set of objects into two groups (e.g.,
cases, states, processes, patients, observations, vehicles) with the value of a selected
attribute. During construction of the binary tree, the method of choosing an attribute
and its value (for numeric attributes often called cut), that we use in the partition, is a
key element of the discussed local discretization tree construction method and should
involve the analysis of decision attribute values for training objects. Thus, one of the
most important concepts presented in the strategy is a binary partition of the set of
objects based on the attribute and its value. Formally, a cut is a pair (a, v) that is
defined for a given decision table A = (U,A, d) in Pawlak’s sense (see, e.g., [18]),
where a ∈ A (A is a set of attributes or columns in the data set) and v is the value of the
attribute a that defines the partition of a set of attribute’s values into two subsets. For
numeric attributes, a cut (a, v) defines a partition of a set of objects into two subsets
– the first set is a set of objects for which the a attribute value is less than v, and the
second is a set of objects for which the a attribute value is greater than or equal to v.

Classifiers for Behavioral Patterns Identification . . . 5

Meanwhile, for symbolic attributes the first one is a set of objects for which the value
of the attribute a is equal to v, and the second set is a set of objects for which the a
attribute value is different from v. Moreover, any cut (a, v) defines two templates, where
by a template we understand a description of some set of objects. In case of numerical
attributes, the first template defined by a cut (a, v) is a formula T(a,v) = (a(u) < v)
and the second template defined by a cut (a, v) is a formula ¬T(a,v) = (a(u) ≥ v).
In case of symbolical attributes, the first template defined by a cut (a, v) is a formula
T(a,v) = (a(u) = v) and the second template defined by a cut (a, v) is a formula
¬T(a,v) = (a(u) 6= v).

As a measure of the binary partition quality the number of pairs of objects distin-
guishable by partition and having different values of the decision attribute can be used.
For example, if a partition (a, v) divides objects into two sets of sizes M and N , and
the first of these collections have M0 and M1 objects from the class C0 and C1 re-
spectively, and in the second one we have N0 and N1 objects from the decision class
C0 and C1, then the number of pairs of objects discerned by the partition is given by:
N1 ·M0+M1 ·N0. If we determine the value of this measure for all possible cuts, then
we can choose one of the cuts and divide the entire set of objects into two parts on its
basis. Of course, this approach can be easily generalized to the case of more than two
decision classes.

It should be noted that this measure of the quality of the binary partition of set of
objects can be calculated for the given cut in time O(n), where n is the number of
objects in the decision table (see, e.g., [6]). But determining the optimal cut requires
the calculation of quality measures for all potential cuts. For this purpose it is necessary
to check all potential cuts, including all conditional attributes in a specific order. This
can be done with various methods. One of such methods for numerical attributes firstly
sorts the objects of the given attribute for which we seek the optimal partition. This
allows us to determine the optimal cut. Sorting a collection of objects results in the fact
that the calculation of the optimal partition is done in time O(n · log n ·m), where n is
the number of objects, andm is the number of conditional attributes. This is the method
we have implemented in our own computational library RS-lib.

The quality of cuts may be computed for any subset of a given set of objects. In
the local strategy of discretization, after finding the best cut and dividing the objects set
into two subsets of objects (matching both templates mentioned above for a given cut),
this procedure is repeated for each object from the set separately until a stop condition
holds. At the beginning of the procedure we have the whole set of objects at the root of
the tree. Then, we recursively apply the same splitting procedure to the emerging parts
that we assign to tree nodes at higher and higher levels. Stop condition of partition is
designed so that the given part is not divided (becomes a leaf tree) if it contains only
objects from one decision class (optionally the objects from the given class constitute a
certain percentage, which is treated as a parameter of the method) or the considered cut
does not have any effect, i.e., there are no new pairs of objects from different decision
classes separated by the cut.

In this paper, we assume that the partition stops when all objects from the current set
of objects belong to the same decision class. Hence, the local strategy can be realized
by using decision tree (see Fig. 3).

6 J.G. Bazan et al.

u

a, c

Left Right

a(u) ≥ c a(u) < c

Fig. 3. Decision tree used in local discretization

Besides the number of pairs of objects distinguishable by partition, in our experi-
ments we also use two other measures of the quality of cuts well known in literature
that were used in other methods of decision trees construction. It is a measure called
a Gini index (used in the algorithm CART [10]) and a measure called an information
gain (entropy; used in the algorithm C4.5 [19]).

The decision tree computed during local discretization can be treated as a classifier
for the concept C represented by decision attribute from a given decision table A. Let
u be a new object and A(T) be a subtable containing all objects matching the template
T defined by the cut from the current node of a given decision tree (at the beginning of
algorithm run T is the template defined by the cut from the root). We classify object u
starting from the root of the tree as shown in the algorithm presented in Fig. 4.

1: Step 1
2: if u matches template T found for A then
3: go to subtree related to A(T)
4: else
5: go to subtree related to A(¬T)
6: end if
7: Step 2
8: if u is at the leaf of the tree then
9: go to Step 3

10: else
11: repeat 1–2 substituting A(T)) or A(¬T)) for A
12: end if
13: Step 3
14: Classify u using the decision value attached to the leaf

Fig. 4. Classification by decision tree (see [6])

Note that the above decision tree can be treated directly as a classifier, as test objects
can be classified by stating to which leaf of the tree they belong. This is possible be-
cause, thanks to the designated partitions, one can trace membership of an object in the
path from the root to the leaf, and then classify the object to the decision class whose
objects dominate in the leaf.

Classifiers for Behavioral Patterns Identification . . . 7

4 Usability studies

As a proof of concept for the approach considered in the paper a system for packet-
based network traffic anomaly detection has been constructed. Network anomaly de-
tection is becoming an essential area of research. The growing number of IP networks
threats and the growing volume of transmitted data require new methods of network
traffic data analysis [8], [13].

22 items

router

with

NAT

AD server
auxiliary server

watchdog

computer

INTERNET

...

Fig. 5. Network topology

For the purpose of this work, a part of the university network was selected to capture
data for analysis. The network topology is given in Fig. 5. The experiment environment
consists of 22 work stations with Windows 7 operating system, Active Directory server,
a watchdog computer (Windows 7) and auxiliary server with Windows Server 2008 R2
operating system. The NAT router has been used to separate the network from the whole
university network and to provide an access to the Internet. The router is equipped with
a mirror port used to send copies of all packets to the watchdog computer. The auxiliary
server provides FTP (port 21), RDP (port 3389) and MySQL (port 3306) services.

The Wireshark 1.10.7 software was used to monitor the network traffic. It provides
the possibility of real time observing of sending and receiving packets for the given
interface and to backup them to pcapng files. The network traffic was monitored from
May 26 to 28 using one of laboratories of the Interdisciplinary Centre for Computational
Modelling at University of Rzeszow. The typical network traffic generated by students
lessons was captured as the legitimate traffic. Further to that, each day we generated
four different network traffic anomalies including network scan, IP-spoofed scanning
and brute force. The result of network traffic capturing was three 24-hours data sets in
the form of pcapng files presented in Table 1.

8 J.G. Bazan et al.

Table 1. Profile of captured data

Date Number of packets Data size
26.05.2014 6265001 3GB
27.05.2014 1236346 1GB
28.05.2014 9488419 4.7GB

Captured data were converted into csv files. Received time points were described
with attributes presented in Table 2.

Table 2. Data attributes

Attribute name Description
id packet identifier
srcIP source IP
srcPort source port
destIP destination IP
destPort destination port
protocol protocol
length packet length (bytes)
time packet transmission time
relTime time from starting monitoring
info short information about packet (from Wireshark)
srcMAC source MAC address
dstMAC destination MAC address
deltaTime time difference between current and previous packet
ipFlags IP flags
ttl packet Time To Live
tcpFlags TCP flags
icmpType type of ICMP traffic
udpLength UDP packet length

The metric function defined for the data is based on ipFlags, length, ttl, tcpFlags,
icmpType and udpLength attributes. The distance between objects ai and aj is defined
as follows:

D(ai, aj) =
1

6
(dipFlags(ai, aj) + dlength(ai, aj) + dttl(ai, aj) +

+ dtcpFlags(ai, aj) + dicmpType(ai, aj) + dudpLength(ai, aj)), (1)

where D ∈ [0, 1] and

dp(ai, aj) =

{
0: p(ai) = p(aj),
1: p(ai) 6= p(aj),

(2)

dq(ai, aj) =

{
0: q(ai) ∈ Xj ∧ q(aj) ∈ Xj ,
1: q(ai) ∈ Xj ∧ q(aj) ∈ Xk ∧ j 6= j,

(3)

Classifiers for Behavioral Patterns Identification . . . 9

where equation (2) is used for attributes ipFlags, tcpFlags and icmpType, while equa-
tion (3) is used for attributes length, ttl and udpLength using ranges presented in Table 3.

Table 3. Attributes ranges

Xi length ttl udpLength

X1 0–19 null
X2 20–39 1–31 1–62
X3 40–79 32–47 63–125
X4 80–159 48–63 126–250
X5 160–319 64–71 251–500
X6 320–639 72–95 501–1000
X7 640–1279 96–111 1001–2000
X8 1280–2559 112-127 2001–4000
X9 2560–5119 128–143 4001–8000
X10 5120–4294967295 144–159 8000–65535
X11 160–191
X12 192–255

Cluster1
dec=[2_1 (357),

0 (43),
1_2 (27),

3_2 (3059),
4_1 (2)]

Cluster8
dec=[2_1 (441),

0 (148),
1_2 (29),

3_2 (3328),
4_1 (2)]

1654

Cluster7
dec=[0 (3408),

2_2 (33),
2_3 (81),
1_3 (57),
1_4 (23),
3_3 (58),
3_4 (23),

4_2 (2181),
4_3 (85)]

22

Cluster9
dec=[0 (2828)]

1

Cluster13
dec=[0 (241)]

1

Cluster0
dec=[0 (549)]

1

Cluster4
dec=[0 (1034),

1_1 (7),
3_1 (6)]

2

Cluster11
dec=[0 (816)]

1

Cluster10
dec=[0 (287),

4_2 (55),
4_3 (10)]

1

Cluster6
dec=[0 (421)]

1

Cluster19
dec=[0 (174)]

1

1652

37

Cluster16
dec=[2_2 (13),

2_3 (2),
0 (167),
1_3 (1),
1_4 (3),
3_4 (3),
4_2 (17),
4_3 (1)]

1

11

Cluster12
dec=[0 (311)]

1

3

6

5

Cluster17
dec=[0 (167),

4_3 (24)]

2

5

4

Cluster18
dec=[0 (204)]

2

Cluster2
dec=[0 (1092)]

32

Cluster15
dec=[0 (229)]

2 Cluster5
dec=[0 (1689)]

14

10

45

51

99

9

1

32

Cluster14
dec=[2_3 (20),

0 (125),
4_2 (32),
4_3 (46)]

78

77

40

36

153

23

76

36

Cluster3
dec=[0 (1571)]

538

524

92

511

5

9

75

10

3

3

4

19

7

6

7

4

3

19

3

2

1

4

70

37

54

18

148

7

237

172

13

14

131

5

16

7

3

4

1

5

6

4

50

4

4

1

55

7

2

1

16

3

3

1

1

4

66

1

8

7

17

1

2

8

1

3

4

26

18

118

4

6

5

67

83

2

5

14

2

5

3

4

2

10

78

9

1

2

2

4

29

7

1

2

8

2

2

1

3

3

32

23

217

55

18

43

1

180

3

9

81

2

12

8

6

2

2

5

34

16

187

11

54

84

3

110

2

8

20

4

7

7

1

1

1

3

37

9

3

3

4

24

5

3

16

2

4

8

5

2

1

3

16

110

6

17

1

4

6

11

8

11

1

7

13

28

23

10

7

2

20

14

117

18

7

23

3

65

20

3

2

9

1

2

2

4

79

2

2

5

2

4

3

4

2

2

2

53

5

11

2

2

3

9

15

3

8

16

1

12

2

3

563

2

10

4

7

3

4

10

3

17

11

2

6

563

1

3

3

3

5

1

1

7

1

1

1

11

40

15

2

123

2

5

1

3

1

5

3

8

2

3

21

21

1

5

499

1

4

1

2

8

1

22

34

Fig. 6. Part of the state graph

10 J.G. Bazan et al.

Fc0 F(c7⇔ Xc10) F(c17⇔ Xc7)

Fc2 F(c7⇔ Xc14) F(c17⇔ Xc10)

Fc3 F(c7⇔ Xc16) F(c17⇔ Xc14)

Fc4 F(c7⇔ Xc17) G(c1⇒ Xc8)

Fc5 F(c8⇔ Xc1) G(c7⇒ Xc16)

Fc6 F(c10⇔ Xc7) G(c7⇒ X(c14 ∨ c16))

Fc7 F(c10⇔ Xc14) G(c7⇒ X(c10 ∨ c14 ∨ c16 ∨ c17))

Fc9 F(c10⇔ Xc16) G(c8⇒ Xc1)

Fc11 F(c10⇔ Xc17) G(c10⇒ X(c7 ∨ c14 ∨ c16 ∨ c17))

Fc12 F(c14⇔ Xc7) G(c14⇒ Xc7)

Fc13 F(c14⇔ Xc10) G(c14⇒ X(c7 ∨ c10 ∨ c17))

Fc15 F(c14⇔ Xc17) G(c16⇒ Xc7)

Fc18 F(c16⇔ Xc7) G(c16⇒ X(c7 ∨ c14))

Fc19 F(c16⇔ Xc14) G(c16⇒ X(c7 ∨ c14 ∨ c17))

F(c1⇔ Xc8) F(c16⇔ Xc17) G(c17⇒ X(c7 ∨ c19 ∨ c14))

Fig. 7. Temporal patterns

Finally, we received the state graph with 20 nodes. The graph is stored in the dot
format and can be visualized automatically with xdot or similar software. Part of the
state graph for the considered system is presented in Fig. 6. Let ci denote the i-th node
(cluster) in the graph. Based on the expert knowledge the temporal patterns presented
in Fig. 7 were used in the system. After a few experiments the time windows length
equal to 15 was chosen. Data captured May 26 were used as the learning data, while
data captured May 27 were used to check the hierarchical classifier accuracy. The hier-
archical classifier was compared with a ”flat” classifier built for learning data without
using grouping, state graphs and temporal patterns. Both classifiers (hierarchical and
flat) are based on binary trees described in Section 3, but three measures of cut quality
were used: pair indiscernibility, entropy and Gini index (see Section 3). The decision
attribute takes one of five values 0–4, where 0 denotes the legitimate traffic, while val-
ues from 1 to 4 denote four types of network traffic anomalies. It is worth noticing
that each of these decision values represents certain spatio-temporal complex concept,
which describes the specific behavior of a network user in a certain period of time. This
behavior we call here as a behavioral pattern. Besides, the prediction of such a decision
value we call an identification of a behavioral pattern. Note that each behavioral pattern
can be represented as a subgraph of the state graph (see [4], [5]), but such an approach
is not used in this paper.

The results of experiments are given in Table 4, where class stands for the anomaly
type and cov for coverage.

Classifiers for Behavioral Patterns Identification . . . 11

Table 4. Results of experiments

Hierarchical classifier Flat classifier
Measure Class Accuracy Cov. Class Accuracy Cov.
Pair indisc. 0 0.956 1.0 0 0.973 1.0

1 0.0 1.0 1 0.0 1.0
2 0.005 1.0 2 0.011 1.0
3 0.972 1.0 3 0.972 1.0
4 0.989 1.0 4 0.985 1.0
overall 0.899 1.0 overall 0.755 1.0

Information 0 0.972 1.0 0 0.941 1.0
gain 1 0.0 1.0 1 0.067 1.0
(entropy) 2 0.011 1.0 2 0.017 1.0

3 0.972 1.0 3 0.204 1.0
4 0.986 1.0 4 0.100 1.0
overall 0.913 1.0 overall 0.613 1.0

Gini index 0 0.973 1.0 0 0.964 1.0
1 0.0 1.0 1 0.067 1.0
2 0.011 1.0 2 0.017 1.0
3 0.972 1.0 3 0.204 1.0
4 0.985 1.0 4 0.035 1.0
overall 0.913 1.0 overall 0.613 1.0

5 Conclusions

A new approach for constructing classifiers from huge volume of temporal data has
been presented in the paper. Hierarchical classifiers considered in the paper combine
process mining, extraction of attributes on the basis of temporal patterns and construct-
ing classifiers based on decision trees methods. A system for network traffic anomaly
detection has been constructed as a proof of concept. The hierarchical classifier con-
structed for the anomaly detection system turned out to be better than a classifier built
for learning data without using grouping, state graph and temporal patterns. Omitting
traffic anomalies classes 1 and 2, where both approaches failed to identify the anoma-
lies, for remaining classes our method was even 30% better. The approach can be used
in many domains such as medicine, finance, industry, transport, telecommunication, and
others. The network traffic was chosen due to the possibility of capturing huge volume
of learning data.

Acknowledgement

This work was partially supported by the Polish National Science Centre grant DEC-
2013/09/B/ ST6/01568 and by the Centre for Innovation and Transfer of Natural Sci-
ences and Engineering Knowledge of University of Rzeszów, Poland.

12 J.G. Bazan et al.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer Publishing Company, Incorporated (2011)

2. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In:
Proceedings of the 6th International Conference on Extending Database Technology: Ad-
vances in Database Technology (EDBT ’98). pp. 469–483 (1998)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, London, UK (2008)
4. Bazan, J.G.: Behavioral pattern identification through rough set modeling. Fundamenta In-

formaticae 72(1-3), 37–50 (2006)
5. Bazan, J.G.: Hierarchical classifiers for complex spatio-temporal concepts. Transactions on

Rough Sets 5390(IX), 474–750 (2008)
6. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: In: Polkowski, L., Lin,

T.Y., Tsumoto, S. (eds.) Rough Set Methods and Applications: New Developments in Knowl-
edge Discovery in Information Systems, Studies in Fuzziness and Soft Computing, vol. 56,
pp. 49–88. Springer-Verlag/Physica-Verlag, Heidelberg, Germany (2000)

7. Bazan, J., Bazan-Socha, S., Buregwa-Czuma, S., Pardel, P.W., Sokolowska, B.: Predicting
the presence of serious coronary artery disease based on 24 hour holter ecg monitoring. In:
Proceedings of the Federated Conference on Computer Science and Information Systems
(FedCSIS 2012), September 9-12, Wroclaw, Poland. pp. 279–286 (2012)

8. Bereziński, P., Szpyrka, M., Jasiul, B., Mazur, M.: Network anomaly detection using param-
eterized entropy. In: Proceedings of the 13th International Conference on Computer Informa-
tion Systems and Industrial Management Applications CISIM 2014. LNCS, Springer-Verlag
(2014)

9. Borrett, S., Bridewell, W., Langley, P., Arrigo, K.: A method for representing and developing
process models. Ecological Complexity 4(1–2), 1–12 (2007)

10. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.: Classification and Regression Trees.
Chapman And Hall/CRC Press, Boca Raton, FL (1984)

11. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge, Mas-
sachusetts (1999)

12. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining,
inference and prediction. Springer, 2 edn. (2008)

13. Jasiul, B., Śliwa, J., Gleba, K., Szpyrka, M.: Identification of malware activities with rules.
In: Proceedings of the Federated Conference on Computer Science and Information Systems.
Warsaw, Poland (2014)

14. Langley, P.: Cognitive architectures and general intelligent systems. AI Magazine 27, 33–44
(2006)

15. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook. Springer-
Verlag, Secaucus, NJ, USA (2005)

16. Nguyen, H.S.: Approximate boolean reasoning: Foundations and applications in data mining.
LNCS Transactions on Rough Sets V 4100, 334–506 (2006)

17. Pancerz, K., Suraj, Z.: Discovery of asynchronous concurrent models from experimental
tables. Fundamenta Informaticae 61(2), 97–116 (2003)

18. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)
19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San

Francisco, CA (1992)

