
Methods of translation of Petri nets to NuSMV language

Marcin Szpyrka, Agnieszka Biernacka, and Jerzy Biernacki

AGH University of Science and Technology
Department of Applied Computer Science

Al. Mickiewicza 30, 30-059 Kraków, Poland
mszpyrka@agh.edu.pl, agnieszkazelezik@gmail.com,

jerzyjanbiernacki@gmail.com

Abstract. The paper deals with the problem of translation of reachability graphs
for place-transition and coloured Petri nets into the NuSMV language. The trans-
lation algorithms presented in the paper have been implemented as a part of the
PetriNet2NuSMV tool so the translation is made automatically. The PetriNet2Nu-
SMV tool works with reachability graphs generated by the TINA and CPN Tools
software. Thus, it provides the possibility of formal verification of Petri nets de-
signed with these environments using model checking techniques and a main-
stream model checker for LTL and CTL temporal logics.

Keywords: place-transition nets, coloured Petri nets, NuSMV, translation, model
checking, PetriNet2NuSMV translator

1 Introduction

The most widely used software verification techniques are peer reviewing and testing.
In case of concurrent systems, these techniques can cover only a limited portion of
possible behaviours. Formal methods can be used to establish a concurrent system cor-
rectness with mathematical rigour. Model checking [2], [4] is one of the most promising
techniques for automatic software analysis and Petri nets [8], [11], [14], [15] are one of
the most widespread formalisms used in software engineering. Unfortunately, software
tools for Petri nets are rarely equipped with model checking algorithms. The presented
approach combines two popular Petri nets modelling environments (TINA [3] and CPN
Tools [9]) with a mainstream model checker for temporal logic (NuSMV [5], [4]).

There are some similar tools described in the literature such as PEP [13] and Model-
Checking Kit [12]. Among other features they allow to verify Petri net models using
CMU SMV tool. Nevertheless, development of these tools was stopped in 2004. Petri
net model checking is also possible in LoLA [17] and PROD [1] software tools that pro-
vide LTL and CTL formulae verification. Alas, none of these tools supports NuSMV
model checker or popular coloured Petri nets. The only existing solution for model
checking of CP-nets is CPN Tools library. It allows to verify formulae expressed in
the ASK-CTL temporal logic which is an extension of the CTL logic. One of incon-
veniences of this solution is that knowledge of ML functional language is required.
Another disadvantage is the lack of support for formulae written in the LTL logic.

The aim of this work was to create a tool for translation of reachability graphs of
both place-transition and coloured Petri nets into a description of the system in the

2 M. Szpyrka et al.

NuSMV language. As a result, the tool provides for the automatic model checking of
nets created in the TINA and CPN Tools environments. The presented solution is the
only one that allows verification of formulae in both LTL and CTL temporal logics for
coloured Petri nets as well as for PT-nets.

The paper is organised as follows. Section 2 provides a short introduction to the
NuSNV language and tool. Section 3 deals with reachability/coverability graphs for
place-transition nets and the algorithm of transformation of such graphs into the NuSMV
language. The algorithm of transformation of reachability graphs for coloured Petri nets
into the NuSMV language is presented in Section 4. Section 5 provides some test results
for the presented algorithms. A short summary is given in the final section.

2 NuSMV

NuSMV [4] is one of the most popular model checkers for temporal logic. Given a
finite state model and a formula, NuSMV can be used to check automatically whether
or not the model satisfies the formula. Formulae can be treated as a specification of
requirements for a given model and can be expressed using LTL [6] or CTL [6], [7]
temporal logics.

In the NuSMV approach, the verified system is modelled as a finite state transition
system [5]. Such a system is described as a tuple TS = (S, I,→, L), where S is a finite
set of states, I ⊆ S is the set of initial states, →⊆ S × S is the transition relation,
specifying the possible transitions from state to state, and L is the labelling function
that labels states with atomic propositions that hold for the given state. Such a tuple is
also called Kripke structure [10].

MODULE main
VAR
s : {s0, s1, s2};
a : boolean;
b : 0 .. 2;

ASSIGN
init(s) := {s0, s2};

next(s) := case
s = s0 : s1;
s = s1 : {s1, s2};
s = s2 : s2;

esac;

a := case
s = s0 : TRUE;
s = s2 : TRUE;
TRUE : FALSE;

esac;

b := case
s = s0 : 1;
s = s1 : 2;
TRUE : 0;

esac;

} set of states}
atomic propositions given implicitly

} initial states

 transition relation

labelling function

Fig. 1. Finite state transition system written with the NuSMV language

Methods of translation of Petri nets to NuSMV language 3

NuSMV is equipped with a dedicated modelling language (the SMV language),
which is used to define finite state transition systems [5]. An example of such a model
is given in Fig. 1. A NuSMV model consists of two sections: VAR and ASSIGN. The
VAR section contains definitions of variables, including set of states and atomic propo-
sitions variables. The ASSIGN section is composed of three main parts. The first one
is the initialisation of the state variable. The second part is responsible for defining
transitions between the states. The last part assigns values to the atomic propositions
for specific states. The set of atomic propositions is given implicitly using variables
and their domains. For example, the following expressions can be considered as atomic
propositions: a (i.e. a = TRUE), !a, b = 0, b > 1 etc.

A finite state transition systems is stored as a text file. NuSMV statements LTLSPEC
and CTLSPEC can be used to include LTL and CTL formulae respectively into the file.
In case of the LTL logic, the temporal operators G (globally), F (finally), X (next),
U (until) can be used. Moreover, the propositional logic operators are represented by:
! (not), & (and), | (or), xor (exclusive or), -> (implies) and <-> (equivalence). In case
of CTL following temporal logic operators can be used: EG (exists globally), EX (exists
next state), EF (exists finally), AG (forall globally), AX (forall next state), AF (forall
finally), E[U] (exists until), A[U] (forall until). Satisfaction of each specified formula
is verified with the NuSMV tool automatically. If a modelled system does not satisfy a
given formula, a proper counterexample is presented. It is finally worth mentioning that
NuSMV can verify systems of high complexity, i.e. containing more than 1020 states.
These features make NuSMV useful and convenient tool for finite automata verification.

3 Place-transition nets

Place-transition nets (PT-nets) [11] are the most popular class of Petri nets. A PT-net
is defined as a tuple N = (P, T,A,W,M0), where P and T are non-empty finite sets
of places and transitions (P ∩ T = ∅), A ⊆ (P × T) ∪ (T × P) is a set of arcs (flow
relation), W : A→ N \ {0} is a weight function (N = {0, 1, 2, . . . }), and M0 : P → N
is the initial marking.

A state of a PT-net is called marking and is a distribution of tokens among places
of the net. Tokens are indistinguishable one from another so a marking of a place is
represented by the number of tokens stored in the place. If P = {p1, . . . , pn}, then
a marking M is represented by the vector M = (M(p1), . . . ,M(pn)). A firing of a
transition may change the current marking. A transition t is enabled if each input place
p of t contains at least W (p, t) tokens, where W (p, t) is the weight of the arc from p to
t. A firing of an enabled transition t removes W (p, t) tokens from each input place p of
t, and adds W (t, p) tokens to each output place p of t. We write M t−→ M ′ to indicate
that a firing of a transition t transforms M to M ′.

A sequence of firings results in a sequence of markings. A marking M ′ is said to
be reachable from a marking M if there exists a sequence of firings that transforms
M to M ′, i.e. there exist markings M1, . . . ,Mn and transitions t1, . . . , tn such that
M

t1−→M1
t2−→ . . .

tn−→Mn = M ′. The firing sequence t1, . . . , tn is said to be feasible
from the marking M . The set of all markings reachable from a marking M is denoted
byR(M) and the set of all firing sequences feasible from M is denoted by L(M).

4 M. Szpyrka et al.

A reachability graph of a PT-net N = (P, T,A,W,M0) is the directed graph G =
(V,A), such that the set of nodes V = R(M0), and the set of arcs A = {(M, t,M ′) ∈
V × T × V : M

t−→ M ′}. The arcs are labelled with transition names and there may
exist more than one arc between the same pair of nodes. An example of a PT-net and its
reachability graph are shown in Fig. 2.

2

p0 p1

p2

t0

t1 t2

t3

2

2

(2, 0, 0)M0

(1, 1, 0)M1

(0, 0, 2)M2

(0, 2, 0)M3

(1, 0, 1)M4

(0, 1, 1)M5

t0

t1

t0

t2

t3

t2

t0

t3

t2

t3

Fig. 2. A PT-net and its reachability graph

Let us consider the PT-net from Fig. 2 but with W (t1, p2) = 3, W (p2, t3) =
W (t3, p0) = 2. In such a case the number of tokens in places of the net can grow
infinitely, so the reachability graph is infinite. Then, the coverability graph [11] can be
used to represent the PT-net reachable markings. To keep the graph finite, the infinity
symbol is used to represent the unbounded number of tokens. The coverability graph
for the considered net is given in Fig. 3.

(2, 0, 0)M0

(1, 1, 0)M1
(0, 0, 3)M2

(0, 2, 0)M3 (1, 0, 1)M4 (2, 0,∞)M5

(0, 1, 1)M6
(∞,∞,∞)M7

(0, 0,∞)M8

(∞, 0,∞)M9(0, 0, 2)M10

t0 t1

t0 t2 t3

t2 t0 t0t1

t3

t2 t3 t0

t3

t1, t3

t0, t1, t2, t3

Fig. 3. A coverability graph

Methods of translation of Petri nets to NuSMV language 5

The approach presented in the paper uses TINA [3] modelling environment for the
design and generation of reachability/coverability graphs for PT-nets. The graphs can
be stored using a few different formats. The PetriNet2NuSMV tool uses the kts (Kripke
transition system) format. To generate a coverability graph for a PT-net choose Tools→
reachability analysis and choose options coverability graph and kts (ktz). Then, the gen-
erated graph can be stored in a file and finally read by the PetriNet2NuSMV translator.
A part of the kts file for the reachability graph from Fig. 2 is given below.

state 0
props p0*2
trans t0/1 t1/2

Kts files contain sections starting with the word state and the order number of
the state it represents. There is one section for each node of the reachability graph. The
second line of each section contains information about the state marking. In the given
example, line props p0*2 indicates that there are two tokens in place p2 (M(p2) =
2) and other places are empty. The third line of a section describes the active transitions
in the given state. For example, line trans t0/1 t1/2 means that there are two
active transitions in the state – t0 and t1. The former leads to state s1, and the latter
to state s2. The letter w denotes the infinity. If a coverability graph does not contain the
infinity symbol, then the coverability and reachability graphs are identical.

The PetriNet2NuSMV tool parses an input kts file and generates the system model
in the SMV language. To this end the tool uses the designed translation algorithm. The
algorithm is presented in Figure 4. A fragment of the SMV file generated for reachabil-
ity graph from Fig. 2 is given below.

Listing 1.1. A fragment of SMV file generated for reachability graph from Fig. 2.
MODULE main
VAR
s: {s0, s1, s2, s3, s4, s5};
p0 : 0..1000;
p1 : 0..1000;
p2 : 0..1000;

ASSIGN
init(s) := s0;
next(s) := case
s = s0 : {s1, s2};
s = s1 : {s3, s4};
s = s2 : s4;
s = s3 : s5;
s = s4 : {s0, s5};
s = s5 : {s1, s2};

esac;
p0 := case
s = s0 : 2;
s = s1 : 1;
s = s4 : 1;
TRUE : 0;

esac;
...

6 M. Szpyrka et al.

1: add MODULE main statement
2: add VAR keyword
3: for all Mi ∈ R(M0) do
4: add si to the set of states s . s : {s0, s1, ...};
5: end for
6: for all pi ∈ P do
7: if ∀Mj∈R(M0)Mj(pi) 6 1 then
8: add Boolean variable pi . pi : boolean;
9: else

10: add bounded Integer variable pi
. pi : 0..k; where ∀pi∈P,Mj∈R(M0)Mj(pi) 6 k

11: end if
12: end for
13: add ASSIGN keyword
14: init s variable . init(s) = s0;
15: open transition relation switch statement . next(s) := case
16: for all si ∈ s do
17: add case s = si
18: for all sj ∈ s do
19: if ∃t∈TMi

t−→Mj then
20: add sj to si successors list
21: end if
22: end for . s = si : {sj1, sj2, ...};
23: end for
24: close transition relation switch statement . esac;
25: for all pi ∈ P do
26: open labelling function switch statement . pi := case
27: for all sj ∈ s do
28: if Mj(pi) > 0 then
29: assign m to case s = sj, where m = Mj(pi) . s = sj : m;
30: end if
31: end for
32: if pi is of Boolean type then
33: set default value to FALSE . TRUE: FALSE;
34: else
35: set default value to 0 . TRUE: 0;
36: end if
37: close labelling function switch statement . esac;
38: end for

Fig. 4. PT-net to NuSMV translation algorithm

Listing 1.2. Examples of LTL and CTL formulae for the model from Listing 1.1.

CTLSPEC AG EF (p0 = 2 & p1 = 0 & p2 = 0)
LTLSPEC G (p0 <= 2 & p1 <= 2 & p2 <= 2)
LTLSPEC G (p0 + p1 + p2 = 2)
LTLSPEC G (p0 = 2 -> X (p0 != 2))
CTLSPEC AG (p1 = 2 -> AX (EF (p1 = 2)))

Methods of translation of Petri nets to NuSMV language 7

Examples of LTL and CTL formulae for the model from Listing 1.1 are shown
in Listing 1.2. For example, the first one denotes that the corresponding PT-net is re-
versible, the second one denotes that the net is 2-bounded, the third denotes that the net
is conservative etc. It is easy to check that all these formulae hold for the model. It is
not so obvious if a reachability graph contains thousands of nodes and arcs.

4 Coloured Petri nets

Coloured Petri nets (CP-nets) combines the capabilities of PT nets with the capabilities
of a high-level programming language [8]. CP-nets provide graphical notation typical
for Petri nets, but net elements are described using CPN ML programming language,
which is based on the functional programming language Standard ML [16].

A non-hierarchical CP-net is a nine-tuple N = (P, T,A,Σ, V, C,G,E, I), where
P , T and A have meaning as for PT-nets, Σ is a finite set of non-empty colour sets
(types of tokens), V is a finite set of variables of types from Σ, C : P → Σ is a colour
set function that assigns to each place the type of its tokens; G is a guard function that
assigns a guard (Boolean condition) to each transition (the default value is true); E
is an arc expression function that assigns to each arc an expression that evaluates to a
multi-set of tokens of the type assigned to the arc place node; and I is an initialization
function that assigns to each place an expression that evaluates to a multi-set of tokens
of the type assigned to the place.

A marking of a place p ∈ P of a CP-net is multi-set of tokens of type C(p) ∈
Σ [8]. The initial marking is obtained by evaluating the initialization expressions. Due
to the fact that arc expressions and guards may contain variables, it is necessary to
assign (bind) some values to the variables to check if a transition is enabled. Let Var(t)
denote the set of variables occurring in arc expressions on the arcs connected to the
transition and in the transition guard. A binding b of a transition t is a function that
maps each variable v ∈ Var(t) into a value of its type. A transition t is enabled if it is
possible to construct such binding b that the guard G(t) evaluates to true and each of
the arc expressions evaluates to tokens, which are present on the corresponding input
places. A pair (t, b) is called binding element. A firing of an enabled transition t removes
E(p, t)〈b〉 tokens from each input place p of t, and addsE(t, p)〈b〉 tokens to each output
place p of t, where E(a)〈b〉 denotes the result of evaluating the arc expression E(a) of
an arc a in the binding b.

Sets R(M) and L(M) are defined as for PT-nets, but binding elements are taken
into consideration instead of transitions. A reachability graph of a CP-net has a node
for each reachable marking and an arc for each occurring binding element. An example
of a CP-net is presented in Fig. 5. Its reachability graph is shown in Fig. 6.

For an effective modelling CP-nets enable to distribute parts of the net across multi-
ple subnets called modules. The result of such an approach is a hierarchical CP-net [8].
A description of hierarchical CP-nets is out of the scope of the paper. From the pre-
sented algorithm point of view, it does not matter whether a reachability graph was
generated for a hierarchical or non-hierarchical CP-net.

The most popular software for CP-nets modelling and reachability graphs genera-
tion is CPN Tools [9] and therefore, it was used in the approach presented in the paper.

8 M. Szpyrka et al.

p0

I

1`2++3`7

p3

E

2`a++1`b

p1

IIE

p2

IIEE

t0

[x <> y]

t1

[p <> q]

t2

1`x++1`y

p

(x,y,p)

q

(x,y,p)

(x,y,p,q)

(x,y,p,q)

1`x++1`y

1`p++1`q

colset E = with a | b;
colset I = int with 1..9;
colset IIE = product I*I*E;
colset IIEE = product I*I*E*E;
var x, y : I;
var p, q : E;

Fig. 5. An example of CP-net model.

({2, 7, 7, 7}, ∅, ∅, {a, a, b})M0({7, 7}, {(2, 7, a)}, ∅, {a, b})M1

({7, 7}, {(7, 2, a)}, ∅, {a, b})M2

({7, 7}, {(2, 7, b)}, ∅, {a, a})M3

({7, 7}, {(7, 2, b)}, ∅, {a, a})M4
({7, 7}, ∅, {(2, 7, a, b)}, {a})M5

({7, 7}, ∅, {(7, 2, a, b)}, {a})M6
({7, 7}, ∅, {(2, 7, b, a)}, {a})M7

({7, 7}, ∅, {(7, 2, b, a)}, {a})M8

t0, [7/x, 2/y, b/p]

t2, [7/x, 2/y, a/p, b/q]

t0, [2/x, 7/y, b/p]t0, [2/x, 7/y, a/p]

t1, [2/x, 7/y, a/p, b/q]
t2, [2/x, 7/y, a/p, b/q]

t1, [7/x, 2/y, b/p, a/q]

t2, [7/x, 2/y, b/p, a/q]

t1, [7/x, 2/y, b/p, a/q]
t2, [7/x, 2/y, b/p, a/q]

t0, [7/x, 2/y, a/p]

t1, [7/x, 2/y, a/p, b/q]

Fig. 6. Reachability graph for the CP-net from Fig. 5.

It is a powerful and efficient tool for editing, simulation and analysis of coloured Petri
nets. CPN Tools provides for the automatic reachability graph generation by taking ad-
vantage of its state space toolbox. In order to do this, few steps are required. The first
step is to make use of Calculate state space feature followed by Calculate SCC graph
operation. To actually generate nodes and arcs of a reachability graph, Display partial
state space feature must be called on auxiliary text element containing short ML code:
EvalAllArcs(fn arc => arc). Nodes in the list option must be unchecked for
this feature to work properly. Generated graph is saved with the model in a cpn file.
Parsing process of a cpn file is relatively simple due to its XML structure. After parsing
of a cpn file, PetriNet2NuSMV tool generates SMV output. The translation algorithm
for CP-nets is presented in Figure 7. Illustrative parts of the generated SMV file for the
reachability graph from Fig. 6 are presented in Listing 1.3.

Methods of translation of Petri nets to NuSMV language 9

1: add MODULE main statement
2: add VAR keyword
3: for all Mi ∈ R(M0) do
4: add si to the set of states s . s : {s0, s1, ...};
5: end for
6: L = ∅ . the set of defined variables’ labels
7: for all pi ∈ P do
8: for all colour cj ∈Mk(pi), where Mk ∈ R(M0) do
9: create marking label ltemp by concatenating pi and cj

10: if @l∈Ll = ltemp then
11: add bounded Integer variable l_temp

. l_temp : 0..k; where ∀pi∈P,Mj∈R(M0) |Mj(pi)| 6 k
12: add l_temp to L
13: end if
14: end for
15: end for
16: add ASSIGN keyword
17: init s variable . init(s) = s0;
18: open transition relation switch statement . next(s) := case
19: for all si ∈ s do
20: add case s = si
21: for all sj ∈ s do
22: if ∃t∈T : Mi

t−→Mj then
23: add sj to si successors list
24: end if
25: end for . s = si : {sj1, sj2, ...};
26: end for
27: close transition relation switch statement . esac;
28: for all li ∈ L do
29: open labelling function switch statement . li := case
30: for all sj ∈ s do
31: c = |{x ∈Mj(place(li) : x = colour(li)}|
32: if c > 0 then
33: assign c to case s = sj . s = sj : c;
34: end if
35: end for
36: set default value to 0 . TRUE: 0;
37: close labelling function switch statement . esac;
38: end for

Fig. 7. CP-net to NuSMV translation algorithm

Listing 1.3. Selected fragments of SMV file generated for reachability graph from Fig. 6.

MODULE main
VAR
s: {s1, s2, s3, s4, s5, s6, s7, s8, s9};
p0_7 : 0..3;
...

10 M. Szpyrka et al.

ASSIGN
init(s) := s1;
next(s) := case
s = s1 : {s5, s4, s3, s2};
s = s2 : s6;
...

esac;
p0_7 := case
s = s5 : 2;
s = s1 : 3;
s = s6 : 2;
...
TRUE : 0;

esac;

In order to make this notation clear, the meaning of labels will be shortly explained.
The value of p0_7 variable denotes the number of tokens of value 7 in place p0. Bear-
ing this in mind, s = s5 : 2 denotes: There are 2 tokens of value 7 in place p_0 in
state s5.

5 Usability studies

Along with the presented algorithm, fully functional tool called PetriNet2NuSMV has
been developed. In accordance with original ideas this tool allows to translate both kts
and cpn files into smv files. As a result, users can easily validate the modelled system
using LTL and CTL temporal logic formulae.

Fig. 8. A PetriNet2NuSMV tool screenshot.

Methods of translation of Petri nets to NuSMV language 11

In order to facilitate the usage of the tool it was developed with simple graphical
user interface (see Fig. 8). It allows to configure the parser, load an input file and save
the generated output to the smv file. The application is written in Java using Swing
library so it can serve both Linux and Windows users.

Table 1. Translation results for illustrative systems modelled with Tina and CPN Tools.

Modelled system Petri net type Reachability graph Translation
nodes count time [ms]

Dining philosophers problem Place/transition Petri net 11 13
Producer-consumer problem Coloured Petri net 12 134
Combinational logic Place/transition Petri net 87 51
Simple protocol Coloured Petri net 2012 20174

A summary of translation results for illustrative systems modelled in Tina and CPN
Tools is presented in Table 1. The table contains translation times for four Petri net
models with varying complexity and size of their reachability graphs. The measured
times proved to be entirely satisfactory. NuSMV code is generated visibly faster for
PT-nets. Nonetheless, even complex graph of CP-net model consisting of more than
2000 nodes and 20 000 arcs is translated in approximately 20 seconds. Considering the
large size of the CPN Tools file that needs to be parsed, which is more then 20 MB, the
result can be considered as adequate. Manual approach to NuSMV code creation for the
mentioned Petri net model is practically impossible.

6 Summary

Algorithm for translation of reachability graphs for place-transition and coloured Petri
nets into the NuSMV language has been presented in the paper. Both of these algorithms
have been implemented as the core of PetriNet2NuSMV software. The tool has been
tested against reachability graphs of different sizes and complexity and proved to be
quite swift and efficient. PetriNet2NuSMV enables users to translate reachability graphs
generated with TINA and CPN Tools environments into a NuSMV model automatically.
Thus, a Petri model can be verified using model checking techniques without necessity
of learning any additional language for the specification of requirements. Moreover, the
presented algorithms for low and high level Petri nets can be adapt to other classes of
Petri nets.

References

1. PROD tool home page (2007), http://www.tcs.hut.fi/Software/prod/
2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, London, UK (2008)
3. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA – construction of abstract state

spaces for Petri nets and time Petri nets. International Journal of Production Research 42(14),
2741–2756 (2004)

12 M. Szpyrka et al.

4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani,
R., Tacchella, A.: NuSMV version 2: An opensource tool for symbolic model checking.
In: Proceedings of International Conference on Computer-Aided Verification (CAV 2002).
LNCS, vol. 2404. Springer-Verlag, Copenhagen, Denmark (2002)

5. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic model checker.
International Journal on Software Tools for Technology Transfer 2(4), 410–425 (2000)

6. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge, Mas-
sachusetts (1999)

7. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B, pp. 995–1072. Elsevier Science (1990)

8. Jensen, K., Kristensen, L.: Coloured Petri nets. Modelling and Validation of Concurrent Sys-
tems. Springer, Heidelberg (2009)

9. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri nets and CPN Tools for modelling and
validation of concurrent systems. International Journal on Software Tools for Technology
Transfer 9(3–4), 213–254 (2007)

10. Kripke, S.: A semantical analysis of modal logic I: normal modal propositional calculi.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9, 67–96 (1963), an-
nounced in Journal of Symbolic Logic, 24, 1959, p. 323

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),
541–580 (1989)

12. Schröter, C., Schwoon, S., Esparza, J.: The model-checking kit. In: Applications and Theory
of Petri Nets 2003, Lecture Notes in Computer Science, vol. 2679, pp. 463–472. Springer
(2003)

13. Stehno, C.: PEP Version 2.0. In: Tool demonstration ICATPN 2001 (2001)
14. Szpyrka, M.: Analysis of RTCP-nets with reachability graphs. Fundamenta Informaticae

74(2–3), 375–390 (2006)
15. Szpyrka, M.: Analysis of VME-Bus communication protocol – RTCP-net approach. Real-

Time Systems 35(1), 91–108 (2007)
16. Ullman, J.: Elements of ML programming (ML97 ed.). Prentice-Hall, Inc., Upper Saddle

River, NJ, USA (1998)
17. Wolf, K.: Generating Petri net state spaces. In: Petri Nets and Other Models of Concurrency

– ICATPN 2007, Lecture Notes in Computer Science, vol. 4546, pp. 29–42. Springer (2007)

