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Abstract. We present our research on acquiring domain knowledge re-
lated to urban vehicular tra�c by means of interaction with experts.
Such knowledge is needed in knowledge discovery and data mining for ap-
proximation of complex vague concepts from the road tra�c. According
to perception based computing paradigm, this can be done by construc-
tion of hierarchical classi�ers supported with expert knowledge. We treat
tra�c, especially urban tra�c, as a complex process having hierarchical
structure. Complexity of this process makes tra�c data massive and com-
plex, what makes domain oriented hierarchical classi�ers indispensable
here. We propose a method of tra�c domain knowledge acquisition by
interaction with experts aimed at construction of such classi�ers.

Keywords: vehicular tra�c, interaction with experts, vague concepts,
knowledge discovery, perception based computing, hierarchical classi�ers.

1 Introduction

Vehicular tra�c is a vital phenomenon for the contemporary city. It has a
signi�cant impact on environment and life of many people. Understanding the
phenomenon and learning how to manage it are crucial tasks for functioning
and development of the contemporary city. One of the main issues here is to
learn from data knowledge about urban tra�c as a complex process. It involves
learning detection of tra�c jams and recognition of tra�c congestion levels. In
order to learn such knowledge we have to learn basic tra�c concepts such as
e.g. tra�c jam, tra�c congestion, tra�c jam formation. But here we face two
challenges. These concepts are complex vague concepts, thus they are hardly
mathematically de�ned. Instead of that we can learn them from experts, i.e.
acquiring from experts the relevant concepts and approximating them by urban
tra�c data, i.e. lower level data which describe urban tra�c. Thus some form
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of interaction with experts is needed. Elaborating an interaction method is the
�rst challenge faced in this paper. Urban tra�c data are good example of Big
Data, they are massive and qualitatively complex what makes their processing
computationally expensive. They become even more computationally expensive
in the task of adaptive, autonomous, on-line control which is one of the main
tasks in tra�c research. This tra�c control task gives the second challenge. We
do not face this challenge directly in our paper. We discuss it in the light of
perception based computing paradigm [33, 34] pointing out a possible solution:
construction of hierarchical classi�ers supported by domain knowledge [3].

In this research, we focus on a single basic tra�c concept - tra�c congestion

on a single crossroad - and we elaborate methods for approximating this concept
from sensory data. Our sensory data come from simulating tra�c using the
Tra�c Simulation Framework (TSF) software [10�12]. Data from the software
may slightly di�er from real-world tra�c data (which are very di�cult to obtain),
but are con�rmed to be quite realistic [13], enough to conduct our research.

The paper has the following organization. Section 2 describes past approaches
to tra�c modeling, recent approaches based on probabilistic cellular automata
and the model developed by P. Gora [10, 12] which was implemented in TSF
software and is used in our research. Section 3 outlines our approach for acqui-
sition of tra�c knowledge, motivates why we chose such approach and explains
how such knowledge may be applied to approximating complex, high-level traf-
�c concepts from sensory data, according to the perception based computing
paradigm. Section 4 presents the design of our experiment, the procedure of
dialogizing with domain experts and values of simulation parameters used in
our experiment. Section 5 describes the evaluation of data obtained in the ex-
periment and conclusions that we drawn based on analyzing acquired data and
feedback from experts. Section 6 concludes the paper.

2 Modeling urban vehicular tra�c

Despite many years of extensive research, it is still di�cult and challenging
task to model the urban tra�c with satisfactory accuracy, either using standard
mathematical tools or computer simulations. The proper model should take into
account many factors, such as: modeling drivers behavior, Origin-Destination
matrix, location and con�guration of tra�c signals, the weather, road works etc.
The situation is much simpler in case of a tra�c on highways, where the tra�c
is only in one or two directions, there are no tra�c lights, the number of possible
interactions between cars is relatively small.

There are three major classes of tra�c models: macroscopic, microscopic and
mesoscopic. Macroscopic tra�c models treat all cars aggregately and describe
relationships between tra�c congestion, tra�c density and average speed. Such
models are usually based on analogy to other, well-known physical phenomena,
such as �uid dynamics [19, 18] or kinetic gas theory [27]. Some models were able
to reproduce properties of tra�c on highways, e.g. the pioneering macroscopic
model, Lighthill-Whitham model [19], is able to reproduce shockwaves. Some



macroscopic models have been already applied in commercial products, such
as PTV VISUM [40], and are applied to planning public transport, construction
and development of roads, analyzing economic e�ciencies of transport solutions,
modeling travel demand etc.

The next class of models are microscopic models which model drive of ev-
ery single car. For instance, the Nagel-Schreckenberg model (Na-Sch model) is
based on a probabilistic cellular automaton and is able to explain and reproduce
spontaneous tra�c jam formation on highways [21, 32]. Space, time and speeds
are discrete in this model, the road is divided into cells, which may be empty or
occupied by at least one car. Transition rules, determining driver's behavior, are
de�ned by properly selected rules. The most fascinating thing about the model
is that it is based on a very simple, natural transition rules, and is able to repro-
duce tra�c on highways with very good accuracy [21]. The model was broadly
investigated and generalized, e.g. to simulate 2-lane tra�c [29] or simple cross-
roads [7]. Also, generalizations of the model were applied in real-world tra�c
simulations systems, e.g. in the system Autobahn [2], which simulates and pre-
dicts the tra�c in Germany, and in the software Tra�c Simulation Framework
(TSF), [10, 12], which we use in our research. Recently, there are developed much
more advanced microscopic models which take into account drivers behavior (e.g.
Intelligent Driver Model [36]).

There are also mesoscopic models which propagates �packets� of cars. Such
models also give good results in case of modeling large-scale urban tra�c [5].

2.1 Tra�c Simulation Framework model

The Na-Sch model was used by P. Gora to develop a new tra�c simulation
model, the TSF model [10, 12]. The model extends the standard Na-Sch model
and allows conducting simulations on a realistic road network, represented as
a directed graph. Cars drive through the road network on edges, which consist
of tapes (representing road lanes), divided into cells, as in the original model.
Some vertices contain tra�c lights, which are objects characterized by location,
duration of a red phase, duration of a green phase and o�set.

The model takes into account many factors, e.g. driver's pro�le, road's pro�le,
location and con�guration of tra�c signals, distributions of start and destina-
tion points. Currently driver's pro�le speci�es aggressiveness of driver, which
determines the maximal car's speed on a given road, but the pro�le could be
easily extended in the future (in fact, there already exist microscopic models
which include much more details with respect to driver's behavior, e.g. Intelli-
gent Driver Model [36]). Road's pro�le determines number of lanes and normal
distribution of maximal speed of drivers, which, together with a driver's pro�le,
determines the maximal speed of a car on a given road [10, 12]. Distributions
of start and destination points are de�ned on graph vertices and specify how
to choose these points for driver's route (distributions may be replaced by the
Origin-Destination matrix, if this is available). After specifying distributions of
start and destination points routes are calculated using the A* algorithm [6].



The move of every car is speci�ed by transition rules of a cellular automaton
being an extension of the standard Nagel-Schreckenberg model [21, 32, 10, 12].

2.2 Tra�c Simulator Framework implementation

The TSF model was implemented in Tra�c Simulation Framework, advanced
software for simulating and investigating vehicular tra�c in cities. TSF is being
developed in C# and runs using .NET Framework platform, it employs maps
from the OpenStreetMap project [22] and real tra�c data for Warsaw from Mu-
nicipal Administration of Urban Roads in Warsaw [42]. Currently TSF is able
to simulate realistic tra�c in Warsaw with more than 105 cars faster than real-
time1 and it was con�rmed by Warsaw citizens that the software can reproduce
tra�c jams in the same places as they occur in reality. TSF possesses a multi-
functional Graphical User Interface (GUI) and allows modifying map parameters
and simulation parameters from the GUI level. Currently it is possible to edit lo-
cations and con�gurations of tra�c signals, distributions of start and destination
points, parameters of di�erent types of road network segments (e.g. parameters
specifying normal distributions of the maximal speed on a given road segment).
Also, it is possible to generate large number of routes for cars, according to given
distributions of starting points and destination points.

TSF is still being developed, its functionality was described in details in pa-
pers [10, 12]. The software has been already used for generating data for the
IEEE ICDM 2010 contest on tra�c prediction [13, 37]. The contest was spon-
sored by TomTom, held under the patronage of IEEE, ICDM conference and
the President of Warsaw, Mrs. Hanna Gronkiewicz-Waltz. It was an important
data mining event, which attracted 575 participating teams, which submitted in
total almost 5000 solutions. Many of those solutions are interesting data mining
algorithms for predicting tra�c congestion, average speeds and tra�c jams oc-
currences. The best solutions were published in proceeding from the ICDM 2010
conference [9], some of them are also elaborated in the TunedIT blog [38]. Data
for the contest was released for the public use to enable post-challenge research,
resulting in few more interesting algorithms [30, 43].

Currently TSF is also used for designing evolutionary algorithms (e.g. genetic
algorithms [11]) for optimizing tra�c by con�guring tra�c lights. It is also used
by scientists from many countries in their research on tra�c modeling, analysis
and prediction, e.g. [28, 30, 43]. The recent application of the software is acqui-
sition of tra�c-related domain knowledge by interaction with experts, which is
a topic of the paper and is described in details in next sections.

3 Tra�c knowledge acquisition - Perception Based

Computing approach

This research is aimed at acquisition of tra�c domain knowledge by inter-
action with experts. Tra�c is a very complex phenomenon and many high level

1 Simulations run on ThinkPad T400, Intel Core 2 Duo T9600, 2.8 GHz, 4 GB RAM



concepts related to that phenomenon are complex and vague (e.g. large tra�c

congestion or formation of a tra�c jam). These concepts are hardly mathe-
matically de�ned and may also depend on many factors such as city, type of
a crossroad etc. In some cases there are engineering approaches which try to
de�ne such concepts precisely (e.g. levels of service aim to approximate traf-
�c congestion levels [15]), but in fact these are just approximations and many
spatio-temporal concepts related to urban tra�c dynamics are beyond the scope
of precise, mathematical de�nitions, because of their vagueness. However, hu-
man brain can recognize such concepts much better than machines. Drivers and
pedestrians participating in urban tra�c are able to recognize the tra�c situ-
ation quickly and e�ortlessly and can easily decide whether in a given tra�c
situation there is a tra�c jam or not. It should be highlighted that in most
cases, drivers and pedestrians are not transportation science experts or tra�c
engineers. Contrary, they can be viewed as experts - practitioners. They are
practitioners because they are tra�c agents, taking part and interacting each
other in urban tra�c. The way in which they make their decisions or results
of those decisions in�uence urban tra�c as a complex hierarchically structured
process. One of the main principles in perception based computing states that
perception is action oriented. In the case of algorithm evaluation it means that
algorithms should be tested on the basis of e�ciency of actions that are managed
or controlled by those algorithms.

The long-term goal of our research is an optimization of tra�c control.
Knowledge collected from experts during this research will be used for construc-
tion of classi�ers evaluating tra�c congestion and, among others, recognizing
appearance of tra�c jams. And �nally these classi�ers can be used for evalu-
ation of tra�c control optimization algorithms as one of the possible ways, in
addition to delay measuring. Therefore, the choice of drivers and pedestrians
as experts transferring knowledge about tra�c is not arbitrary since they are
agents interacting in the urban tra�c and both, they and their knowledge, are
elements of the urban tra�c complex system.

According to PBC approach, for concept learning hierarchical classi�ers will
be used. Hierarchical classi�ers, as other classi�ers, are decision algorithms that
map objects to decisions [1, 4], but they are doing that in a hierarchical way.
Objects could be described by low-level numerical or symbolical attributes. De-
cisions, in many cases, are vague, complex concepts, which are semantically
distant from original low-level data. Hierarchical classi�ers could be viewed as
tools that may be used to cover that distance by approximating complex, vague
concepts, using low-level data. In such classi�ers the classi�cation process goes
from input data to decisions through at least few hierarchy levels, from lower
data levels to higher, more abstract, complex concepts levels. Objects and/or
attributes on higher levels are constructed based on objects and/or attributes
from lower levels [33, 34]. This process may be supported by domain knowledge,
given e.g. in the form of ontologies. To cover the semantic distance, training
sets can be constructed with experts support. Decisions could be also complex,



temporal or spatio-temporal objects as automated planning of complex objects
behavior, e.g. safe driving through a crossroad or medical diagnosis, see [3].

As we mention above, in this research, expert knowledge is collected for
construction of classi�ers approximating the tra�c congestion concepts by means
of low-level tra�c data. Low-level data, such as number of cars, car's position,
current car's speed, are taken from TSF tra�c simulator created by P. Gora
[10, 12]. Data collected from simulations generally can be treated as results of
measurements returned by logical sensors (see [41]). In the case of hierarchical
classi�ers approximating tra�c concepts, such data create the �rst, sensory level
of hierarchical approximation. Objects and attributes from consecutive hierarchy
levels can be constructed on the basis of objects and attributes from lower levels
of hierarchy by means of information systems, decision tables and decision rules
taken from the rough set theory [23�25] as it was done in [3].

4 Experiment

In perception based computing one of the main factors in hierarchical infor-
mation processing is a way of granule setting or construction at every level of
the hierarchy, starting from basic granules. In our research, as a basic granule in
hierarchical organization of urban vehicular tra�c we picked up a single cross-
road. Thus the main aim of this research is to learn conceptual levels of tra�c
congestion and a concept of a tra�c jam on a single crossroad by means of a
dialog with experts.

First we prepared 51 tra�c simulations corresponding to di�erent tra�c sit-
uations close to the crossroad of streets �Banacha�, �Grójecka�, �Bitwy Warsza-
wskiej 1920 r.� using the Tra�c Simulation Framework. The area under inves-
tigation is presented in the Figure 1, it is a place where large tra�c congestion
occurs very often. Then we selected values of all important simulation parame-
ters based on our past research and experiments, see Table 1.

Table 1. Simulation parameters used in our experiments

Name of the

parameter

Description Value

NrOfCars Initial number of cars for a single tra�c situation 100, 1000
Step Duration of a single simulation step 1000 ms
TimeGap Time after which new cars start their ride 1 step
NewCars Number of cars starting ride after every TimeGap steps 5, 3, 1
Steps Duration of a single simulation 600 steps
Acceleration Acceleration of cars per simulation step 10 km/h
CrossroadPenalty Percentage of speed reduction before the crossroad 25%

TurningPenalty Percentage of speed reduction during turning 50%



Fig. 1. Crossroad of streets Banacha, Grójecka, Bitwy Warszawskiej 1920 r. presented
using TSF software.

Every simulation lasted 10 minutes, values of some parameters were common
for all situations, but situations di�ered in the following parameters:

1. initial number of cars,
2. number of new cars that start drive in each simulation step,
3. start and destination points distributions.

We prepared 5 di�erent distributions of starting points and 5 di�erent distri-
butions of destination points. Distributions of starting points were named �From
East�, �From West�, �From North�, �From South�, �Uniform�, distributions of
destination points were named �To East�, �To West�, �To North�, �To South�,
�Uniform�. It gives us 25 con�gurations of pairs: (start points distribution, desti-
nation points distribution). Names of distributions indicates where is the major
concentration of start or destination points, respectively. The detailed descrip-
tion of these distributions and procedures for editing start points and destination
points is described in the paper [10].

For every combination of pairs (start points distribution, destination points
distribution) we still have few degrees of freedom that can be manipulated in
order to produce di�erent simulation scenarios. Some of these degrees of freedom
correspond to parameters named in the �rst column of the table 1: NrOfCars,
NewCars, Acceleration, CrossroadPenalty, TurningPenalty. Other parame-
ters may be related to the initial con�guration of tra�c signals at the crossroad
or maximal speed permissible on a given street. For our current research we
needed only 51 simulation scenarios, so we decided to manipulate parameters
NrOfCars and NewCars. 5 di�erent start points distributions, 5 di�erent des-
tination points distributions and 3 di�erent values of the NewCars parameter
gives us 5× 5× 3 = 125 possible simulation scenarios, from which we chose 48,
assuming that NrOfCars = 100. In addition, for NrOfCars = 1000 we chose



Uniform distribution of start points and destination points and generated 3
more situations with 3 di�erent values of NewCars. It gives in total 51 tra�c
situations that were later simulated using the TSF software.

Every simulation was �recorded� - Tra�c Simulation Framework logged infor-
mation about positions and speeds of cars during the simulation and presented
the same tra�c situation to experts using Graphical User Interface of our soft-
ware. The following information was logged out to the output �le:

� Timestamp (simulation step),
� Car positions (link in the road network, position within the link, geographical
longitude and latitude),

� Current car's speed (in km/h).

Such information enabled reconstruction of the situation. We assumed that
duration of a single cycle of tra�c lights is constant and lasts 2 minutes for
every tra�c signal, so every 10-minutes long situation consisted of 5 parts, each
of which lasted 2 minutes and corresponded to one cycle of tra�c lights. Thus
we divided logs from our 10-minutes long simulations into 5 such parts (each
lasted 2 minutes), to which we refer simply as tra�c cases. Totally, it gave us
255 tra�c cases.

Each of 51 situations was evaluated by domain experts and their task was
to provide information about a tra�c state in the area close to the crossroad.
In our case (vehicular tra�c in cities) a domain expert may be any person who
has experience with the city tra�c, the most preferable should be drivers, which
use road networks in Warsaw often and have to cope with tra�c jams. 1 of 51
situations was analyzed by all experts, while every situation from the rest 50 was
analyzed by 3 experts, which gives 50 × 3 situation evaluations. Every expert
analyzed 3 situations: 1 common to all experts and 2 taken from the rest 50.
Therefore, we constructed 150 / 2 = 75 di�erent tests, one for each expert, so we
needed 75 experts. In every test each 10-minutes long situation was divided into
5 tra�c cases, so it was possible to show to domain experts 2-minutes long tra�c
cases separately. Thus, every test consisted of 15 tra�c cases. Additionally, for
each expert 2 tra�c cases from every situation were randomly selected to be
presented and labeled by an expert twice, to check consistency of experts (they
were not informed that some tra�c cases are repeated in a test). Therefore,
every test consisted of 21 tra�c cases, which were presented to the expert in a
random order as a short movie in the TSF's GUI.

After presentation of a particular movie, TSF displayed the question: What

was the tra�c congestion?. Experts answered the question with one of �ve pos-
sible answers: Small, Medium, Large, Tra�c jam, I don't know. The answer was
given by experts using the window presented in the Figure 2. If the experts se-
lected I don't know response in the �rst window, the system asked for selecting
the closest options by displaying the window presented in the Figure 3. In the
next step, the system asked experts for the response justi�cation, which they
provided in natural language using the text window with no limited number of
signs. After selecting the proper answer and submitting justi�cation, the next
movie was presented to the expert.



Fig. 2. Window shown to experts
after every movie

Fig. 3.Window for submitting two
closest options

5 Evaluation of decisions and properties extraction

Evaluation of expert decisions can be either expert-oriented or case-oriented.
In the expert-oriented evaluation we check a consistency of decisions made by a
given expert. In this case, the evaluated situation should be labeled by an expert
(before evaluation) at least twice for checking stability of the expert's decision
making. In order to do that, from every situation two phases were selected to
be labeled by an expert twice. In the case-oriented evaluation we will analyze
how a given case (phase or situation) is labeled by di�erent experts. For this
purpose, every phase was labeled by three di�erent experts. Their decisions will
be used either to determine the �nal aggregated decision, e.g. by voting, or to
�nd a uniformity of decisions about a given phase. It should be noted that our
approach is only one of possible approaches and that decision evaluation itself
is a novel and interesting issue and a topic for further research.

After providing tra�c congestion answer experts were asked to justify their
choice in natural language, e.g. one of experts answered that the congestion was
�Small-Medium� and gave explanation: �Small tra�c, but later density on the
main crossroad increased�.

We analyzed all such answers from experts in order to acquire important
properties that were used by experts to justify their answers. Those information
are our domain knowledge, which may be used to construct the ontology of tra�c
concepts and hierarchy of classi�ers approximating such concepts, according to
the perception based computing paradigm. Table 2 presents all acquired prop-
erties and their values. It is worth to emphasize that among properties we also
consider �street� (as a spatial property) and �time� (as a temporal property).

We analyzed collected data and obtained decisions regarding tra�c conges-
tion obtained from the experiment for each tra�c situation. We also extracted
properties used by experts to explain their choice and analyzed feedback from
experts. From experiment we got the following conclusions:

� There was too many test cases for one expert and the time of the experiment
was too long for experts.



Table 2. Acquired tra�c properties and their values

Property Values

Number of cars Small, Average, Large

Time of waiting on crossroad
Short, Medium, Long, Max 1 phase,
More than 1 phase

Length of a queue on crossroad Short, Medium, Long
Average speed of cars High, Average, Low
Jamming No jams, Small jam, Medium jam, Large jam
Jam dynamics Jam onset, Jam unload
Clusters Large clusters, Small clusters, No clusters
Street Banacha, Bitwy Warszawskiej 1920 r., Grójecka
Time Beginning, End, All the time

� More experts should be assigned to each situation (for now we had 3 experts
for 250 situations, only 5 cases were evaluated by all 75 experts).

� It would be better if experts were informed about the progress of the ex-
periment by displaying information �Situation nr k (from n)� before or after
every test case.

6 Conclusions and future work

In the paper we propose an interactive method for acquisition of vehicular
tra�c domain knowledge by dialog with experts. The direct aim of our research
is to prepare training urban data set for classi�ers. Training urban tra�c data set
is needed for construction of hierarchical classi�ers based on rough set methods
[3, 23, 31] for approximating the concept of a tra�c jam on a single crossroad.
Hierarchical classi�ers approximating tra�c concepts can be used to construct
methods for intelligent, adaptive urban tra�c control as well as to evaluate them.
Therefore construction of tra�c hierarchical classi�ers and designing intelligent,
adaptive control algorithms for urban tra�c are long-term goals of our research.
Analyzing results of the conducted experiment, we decided to design the second
experiment in order to acquire better structured data asking experts to describe
every simulated situation according to properties constructed in this research
and presented in Table 2. In the further steps these properties can be used as
intermediating level in the construction of hierarchical classi�ers. Our method
will be evaluated �rstly by evaluation of hierarchical classi�ers induced on the
basis of training sets constructed using our method. According to perception
based computing paradigm our method will be also evaluated in the process
of tra�c optimization: optimization algorithms constructed using our classi�ers
will be compared to other optimization algorithms which are not supported by
expert knowledge.
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