
A comparison of SAT-based and SMT-based
bounded model checking methods for ECTL*

Extended Abstract ? ??

Agnieszka M. Zbrzezny1 and Andrzej Zbrzezny1

IMCS, Jan Długosz University. Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland.
{agnieszka.zbrzezny,a.zbrzezny}@ajd.czest.pl

Abstract. In this paper we present a comparison of the SAT-based bounded
model checking (BMC) and SMT-based bounded model checking methods for
ECTL* properties of a parallel composition of transition systems. In the both
methods we use the parallel composition (of the transition systems) based on
the interleaved semantics. Moreover, the both methods use the same bounded se-
mantics of ECTL* formulae, the compatible encodings of the transition systems
and the compatible translations of ECTL* formulae. For the SAT-based BMC we
have used the PicoSAT solver and for the SAT-based BMC we have used the Z3
solver. We have implemented the both methods and made some preliminary ex-
perimental results which shows that generally the SAT-based method is superior
to the SMT-based method. However, in some cases the SMT-method overcomes
the SAT-based method.

1 Introduction

The problem of model checking [10] is to check automatically whether a structureM
defines a model for a modal (temporal, epistemic, etc.) formula α. The practical appli-
cability of model checking is strongly limited by the state explosion problem, which
means that the number of model states grows exponentially in the size of the system
representation. To avoid this problem a number of state reduction techniques and sym-
bolic model checking approaches have been developed, among others, [8, 9, 19, 20].

The SAT-based bounded model checking (BMC) is one of the symbolic model
checking technique designed for finding witnesses for existential properties or coun-
terexamples for universal properties. Its main idea is to consider a model reduced to
a specific depth. The first BMC method was proposed in [5], and it was designed for
linear time properties. Next in [21] the method has been extended to handle branching
time properties.

The SMT problem [7] is a generalisation of the SAT problem, where Boolean vari-
ables are replaced by predicates from various background theories, such as linear, real,
? Partly supported by National Science Centre under the grant No. 2011/01/B/ST6/05317.

?? The study is co-funded by the European Union, European Social Fund. Project PO KL “In-
formation technologies: Research and their interdisciplinary applications”, Agreement UDA-
POKL.04.01.01-00-051/10-00.

and integer arithmetic. SMT generalises SAT by adding equality reasoning, arithmetic,
fixed-size bit-vectors, arrays, quantifiers, and other useful first-order theories.

The SMT-based bounded model checking is quite new technique. It was using to
verifying Embedded ANSI-C Software [12], C++ Programs [22], Multi-threaded Soft-
ware [11], Fixed-Point Digital Controllers [3], timed automata [17], real-time systems
[24], LTL Specifications with Integer Constraints [2] and many others.

In order to use the bounded model checking method we need to define a translation
from a given temporal logic to the satisfiability modulo theories problem (in short: to
SMT). As far as we know, no such translation was given in the literature. However,
several translations to SAT from ECTL* and its sublogics were proposed. The first
translation from LTL to SAT was introduced in [4] and another ones in [18] and [6]. The
first translation from ECTL to SAT was introduced in [21] and then it was substantially
improved in [25]. The first correct translation from ECTL* to SAT was introduced in
[23] and then it was substantially improved in [26]. The translation from ECTL* to SMT
that we use in this paper strictly follows the translation from ECTL* to SAT introduced
in [26].

The rest of the paper is organised as follows. In the next section we give some re-
marks about the syntax and (both the bounded and unbounded) semantics of ECTL*. In
Section 3 we give some remarks about our translation from ECTL* to SMT. Preliminary
experimental results and some conclusions are presented in Section 4.

2 Syntax and Semantics of ECTL*

In this section we briefly recall the syntax and semantics of the logic ECTL*. The Ex-
istential Computation Tree Logic ECTL* is a restriction of a propositional branching-
time temporal logic CTL* introduced by Emerson and Halpern in [15] as a specification
language for finite-state systems. The restriction consists in using only existential path
quantifiers and allowing the negation to be applied to propositional variables only (in-
stead of to arbitrary formulae). For more thorough description one can see [1].

2.1 Syntax of ECTL*

The language of ECTL* consists of two types of formulae: state formulae (interpreted at
states) and path formulae (interpreted along paths). The syntax of ECTL* state formulae
over the set AP of atomic propositions is defined by the following grammar:

α ::= true | false | p | ¬p | α1 ∧ α2 | α1 ∨ α2 | Eϕ

where p ∈ AP , α1, α2 and α are state formulae, and ϕ is a path formula. The syntax of
ECTL* path formulae over the setAP of atomic propositions is defined by the following
grammar:

ϕ ::= α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1Uϕ2 | ϕ1Rϕ2

where α is a state formula and ϕ, ϕ1 and ϕ2 are path formulae. In practice, many inter-
esting temporal properties are formulated by using temporal operators F (eventually)
and G (always) defined as follows:

Fψ
df
= trueUψ Gψ

df
= falseRψ.

2.2 Semantics of ECTL*

The semantics of ECTL* formulae is determined with respect to a transition system
(also called a model).

Definition 1. A transition system is a tuple M = (S,Act,−→, s0, AP, L), where S
is a nonempty finite set of states, Act is a set of actions, s0 ∈ S is the initial state,
−→ ⊆ S × Act × S is a transition relation, AP is a set of atomic propositions,
and L : S → 2AP is a labelling function that assigns to each state a set of atomic
propositions that are assumed to be true at that state.

Definition 2. An ECTL* state formula α is valid inM, denoted byM |= α, iff s0 |= α,
i.e., α holds at the initial state ofM.

2.3 Bounded Semantics of ECTL*

The bounded semantics of ECTL* is defined in [26]. This is done in order to define the
bounded model checking problem for ECTL* and to translate it into the satisfiability
problem. For more thorough description one can see [26].

From now on we assume that models are finite, i.e. the sets S, Act and AP are
finite. To define the bounded semantics one needs to represent infinite paths in a model
in a special way. To this aim, the notions of k-paths and loops are defined.

Definition 3. Let M be a model, k ∈ N, and let l ∈ N such that 0 6 l 6 k. A k-
path is a pair (π, l), also denoted by πl, where π is a finite sequence π = (s0, . . . , sk)
of states such that sj−→sj+1 for each 0 6 j < k. A k-path πl is a loop if l < k and
π(k) = π(l).

If a k-path πl is a loop it represents the infinite path of the form uvω , where u =
(π(0), . . . , π(l)) and v = (π(l + 1), . . . , π(k)). We denote this unique path by %(πl).
Note that for each j ∈ N, %(πl)l+j = %(πl)

k+j .
Let s be a state and πl be a k-path. For a state formula α over AP , the notation

M, s |=k α means that α k-holds at the state s in the modelM. Similarly, for a path
formula ϕ over AP , the notation M, πml |=k ϕ, where 0 6 m 6 k, means that ϕ
k-holds along the suffix

(
π(m), . . . , π(k)

)
of πl.

Lemma 1. Let M be a model. For every ECTL* path formula ϕ, every k-path πl in
M, and every 0 6 m 6 k, ifM, πml |=k ϕ, then

1. if πl is not a loop, then for each path ρ ∈M such that ρ[..k] = π it holdsM, ρm |=
ϕ.

2. if πl is a loop, thenM, %(πl)
m |= ϕ,

Theorem 1. LetM be a model and α be an ECTL* state formula. ThenM, s0 |= α
iff for some k ∈ N,M, s0 |=k α.

3 Translation to SMT

We have implemented a translation to SMT strictly following the translation to SAT
given in [26]. In our translation to SMT states, loops and actions are represented by nat-
ural variables. SinceM is a parallel composition of a finite number n of finite transition
system, every state ofM can be encoded as a natural number vector of the length n.
Thus, each state ofM can be represented by a valuation of a vector (called a symbolic
state) of different individual variables called individual state variables. Moreover, every
action ofM can be represented by a valuation of an individual variable, and the des-
ignated positions l of the k-paths used in the translation can be also be represented by
valuations of individual variables. Furthermore, k-paths can be represented as vectors
of symbolic states.

The details of the translation to SMT will be provided in the full version of the
present paper.

3.1 Bounded Model Checking of ECTL* properties

Now let us recall the the BMC method of verifying a given ECTL* state formula α.
Let I(w0,0) be a be a quantifier-free first-order formula representing the initial state,
[M]

Fk(α)
k be a quantifier-free first-order formula representing transition relation and

〈α〉[0,0,Fk(α)]
k be a quantifier-free first-order formula that is the translation of the formula

α. In order to verify the formula α one has to check the satisfiability of the following
conjunction:

[M]αk := I(w0,0) ∧ [M]
Fk(α)
k ∧ 〈α〉[0,0,Fk(α)]

k

starting with k = 0. If for a given k the formula [M]αk is not satisfiable, then k is
increased and the resulting formula is to be checked by a SMT-solver again. The method
described relies on the following theorem.

Theorem 2. Let M be a model and α be an ECTL* state formula. Then for every
k ∈ N, M, s0 |=k α if, and only if, the quantifier-free first-order formula [M]αk is
satisfiable.

4 Experimental Results

In this section we present a comparison of a performance evaluation of two methods:
SMT-based BMC and SAT-based BMC for dining philosophers problem.

An evaluation of both BMC algorithms is given by means of the running time and
the memory used. In order to compare the translation to SMT with the translation to SAT
we have implemented both the algorithms as standalone programs written in the pro-
gramming language C++. In our SAT-BMC technique we use the state of the art SAT-
solver PicoSAT (http://fmv.jku.at/picosat/) and in SMT-BMC technique
we use the state of the art SMT-solver Z3 [13] (http://z3.codeplex.com/).

Our experiments were performed on a computer equipped with I7-3770 processor,
32 GB of RAM, and the operating system Arch Linux with the kernel 3.15.3. As the

benchmark we used the well-known dining philosophers problem [14, 16]. We have
modelled this problem by means of communicating finite automata. The system consists
of n automata each of which models a philosopher, together with n automata each of
which models a fork, together with one automaton which models the lackey. The latter
automaton is used to coordinate the philosophers’ access to the dining-room. In fact,
this automaton ensures that no deadlock is possible. The global system is obtained as
the parallel composition of the components, which are shown in Figure 1.

0 1 2

345

inj getj

get(j+1) mod n

put(j+1) mod nputj

outj

0 1

getj, get(j−1) mod n

putj, put(j−1) mod n

0 1 n-2 n-1

in0, . . . , inn−1

out0, . . . , outn−1

q q q in0, . . . , inn−1

out0, . . . , outn−1

Fig. 1. The automata for the j-th Philosopher, the j-th Fork and the Lackey

Let AP = {pij | 0 6 j < n, 0 6 i 6 5} and assume that the variable pij is true
only at the i-th state of the j-th philosopher. We have tested three ECTL* formulae over
AP in order to compare the experimental results for the translation to SAT with the
experimental results for the translation to SMT. All the tested formulae are valid in the
considered model for every n ≥ 2.

The first formula

ϕ1 =

n−1∧
j=0

E
(
F
(
p3j
))
.

expresses the following property: For each philosopher there exists a path on which this
philosopher eventually gets his left and right forks.

In Figures 2(a) and 2(b) we present a comparison of total time usage and total mem-
ory usage for the formulae ϕ1.

The second formula

ϕ2 = EGF

bn2 c∧
j=0

(
p32·j
)
.

expresses the following property: There exists a path on which always it is the case that
eventually every other philosopher is eating.

In Figures 3(a) and 3(b) we present a comparison of total time usage and total mem-
ory usage for the formulae ϕ2.

The third formula

ϕ3 = E

n−1∧
j=0

(
F
(
p3j
))
.

expresses the following property: There exists a path on which every philosopher even-
tually gets his left and right forks.

In Figures 4(a) and 4(b) we present a comparison of total time usage and total mem-
ory usage for the formulae ϕ3.

 0

 100

 200

 300

 400

 500

 600

 700

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T
im

e
 i
n

 s
e

c
.

Number of philosophers

Total time usage for a DP, formula 1

SAT
SMT

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

T
im

e
 i
n

 s
e

c
.

Number of philosophers

Memory usage for a DP, formula 1

SAT
SMT

(b)

Fig. 2. A comparison of total time usage and total memory usage for the formulae ϕ1.

Our preliminary experimental results suggest that generally the SAT-based method
is superior to the SMT-based method. However, in some cases the SMT-method over-
comes the SAT-based method. An observation of experimental results leads to the con-
clusion that the SAT-based BMC for ECTL* uses less time and memory comparing
to the SMT-based BMC for ECTL*. In particular, using the SAT-based BMC it was
possible to verify the formula ϕ1 for 100 philosophers, whereas using the SMT-based
BMC it was possible to verify the formula ϕ1 for 40 philosophers only. However, it was
possible to verify the formulae ϕ2 and ϕ3 for the same numbers of philosophers for the
both methods. Moreover, the experimental results for formulae ϕ2 and ϕ3 lead to the
conclusion that the SMT-based BMC method uses less time than the SAT-based BMC
method when the number of philosophers increases.

We should stress that the implementation of the SMT-based BMC we used for per-
forming the experiments is our first implementation that uses SMT solvers. Therefore,

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
 i
n
 s

e
c
.

Number of philosophers

Total time usage for a DP, formula 2

SAT
SMT

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
 i
n
 s

e
c
.

Number of philosophers

Memory usage for a DP, formula 2

SAT
SMT

(b)

Fig. 3. A comparison of total time usage and total memory usage for the formulae ϕ2.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

2 3 4 5 6

T
im

e
 i
n

 s
e

c
.

Number of philosophers

Total time usage for a DP, formula 3

SAT
SMT

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

2 3 4 5 6

T
im

e
 i
n

 s
e

c
.

Number of philosophers

Memory usage for a DP, formula 3

SAT
SMT

(b)

Fig. 4. A comparison of total time usage and total memory usage for the formulae ϕ3.

we hope to improve the implementation in the near future by taking many advantages
of possibilities (of SMT-solvers) that we did not use so far.

References

1. C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
2. Marcello M. Bersani, Luca Cavallaro, Achille Frigeri, Matteo Pradella, and Matteo Rossi.

SMT-based verification of LTL specification with integer constraints and its application to
runtime checking of service substitutability. In SEFM, pages 244–254, 2010.

3. Iury Bessa, Renato B. Abreu, Joao Edgar Chaves Filho, and Lucas Cordeiro. SMT-based
bounded model checking of fixed-point digital controllers. CoRR, abs/1403.5172, 2014.

4. A. Biere, A. Cimatti, E. Clarke, M.Fujita, and Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. In Proc. of the ACM/IEEE Design Automation Conference
(DAC’99), pages 317–320, 1999.

5. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In
Proc. of the 5th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’99), volume 1579 of LNCS, pages 193–207. Springer-Verlag, 1999.

6. A. Biere, K. Heljanko, T. A. Junttila, T. Latvala, and V. Schuppan. Linear encodings of
bounded LTL model checking. Logical Methods in Computer Science, 2(5), 2006.

7. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

8. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transaction
on Computers, 35(8):677–691, 1986.

9. E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state concurrent
systems using temporal logic specifications: A practical approach. ACM Transactions on
Programming Languages and Systems, 8(2):244–263, 1986.

10. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
11. Lucas Cordeiro and Bernd Fischer. Verifying multi-threaded software using SMT-based

context-bounded model checking. In ICSE, pages 331–340, 2011.
12. Lucas Cordeiro, Bernd Fischer, and João Marques-Silva. SMT-based bounded model check-

ing for embedded ANSI-C software. IEEE Trans. Software Eng., 38(4):957–974, 2012.
13. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS,

pages 337–340, 2008.
14. E.W. Dijkstra. Hierarchical ordering of sequential processes. Acta Inf., 1:115–138, 1971.
15. E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expressiveness in the

temporal logic of branching time. J. Comput. Syst. Sci., 30(1):1–24, 1985.
16. C.A.R. Hoare. Communicating sequential processes. Prentice Hall, 1985.
17. Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä. Beyond lassos: Complete SMT-

based bounded model checking for timed automata. In FMOODS/FORTE, pages 84–100,
2012.

18. T. Latvala, A. Biere, K. Heljanko, and T. A. Junttila. Simple bounded LTL model checking.
In A. J. Hu and A. K. Martin, editors, FMCAD, volume 3312 of Lecture Notes in Computer
Science, pages 186–200. Springer, 2004.

19. A. Lomuscio, W. Penczek, and Hongyang Qu. Partial order reduction for model checking
interleaved multi-agent systems. In Proceedings of the 9th International Conference on
Autonomous Agents and Multi-Agent systems (AAMAS’2010)., pages 659–666. IFAAMAS
Press, 2010.

20. K. McMillan. Symbolic model checking: An approach to the state explosion problem. Kluwer
Academic Publishers, 1993.

21. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal frag-
ment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

22. Mikhail Ramalho, Mauro Freitas, Felipe Sousa, Hendrio Marques, Lucas Cordeiro, and
Bernd Fischer. SMT-based bounded model checking of C++ programs. In ECBS, pages
147–156, 2013.

23. B. Woźna. ACTL∗ properties and bounded model checking. Fundamenta Informaticae,
63(1):65–87, 2004.

24. Liang Xu. SMT-based bounded model checking for real-time systems (short paper). In
QSIC, pages 120–125, 2008.

25. A. Zbrzezny. Improving the translation from ECTL to SAT. Fundamenta Informaticae,
85(1-4):513–531, 2008.

26. A. Zbrzezny. A new translation from ECTL∗ to SAT. Fundamenta Informaticae, 120(3-
4):377–397, 2012.

