Two Problems with Distributed Systems:

Data Access Control and Memory Sharing
Ludwik Czaja

! University of Economics and Computer Science Vistula in Warsaw
2 Institute of Informatics, The University of Warsaw

Iczaja@mimuw.edu.pl

Extended abstract

Distributed computer system is a set of autamusrcomputers connected by a network of
transmission channels and equipped with a disetaystem software. This is a work
environment for a class of tasks of common objectikie network is a communication
infrastructure only. Main features of distributgdtems dealt with here are:

» absence of common clock for all computers — nbaltime provided by external service

» absence of physical memory common to each computessage exchange by the
network

A schematic structure of distributed system wittrdbuted shared memory (DSM) is
illustrated in Fig. 1 ([Cz 2012)).

computer number 1 ‘ ‘computer number n

DISTRIBUTED SHARED MEMORY

'y k) T2 i Tun

ST LROR STLOw

physical memory physical memory

memory manager memory manager

ssessnes

/‘

software and software and

applicative applicative

programs programs
Fig.1

Assumptions and denotations:

» the computers work in parallel and are numbered.1n2

* reading and writing is governed by the memory manafjeach computer;

» each message is accompanied by a glttmastamp — a pair of computer number and
compensatetbcal timestamp;

» there is one critical section assuring mutuallylesize usage of a resource by the
computers;

* no hardware or software failure happens duringgoering the mutual exclusion
mechanism;

« computer numberkeeps a vectorr; = [ri1,l2,...,in] Of variables allocated in its
physical memory; it stores a global timestamp an¢bmponent; when requesting for
the critical section;

« computer numbaerstores irrjj a copy of a global timestamp stored by the compute
numberj in rj when it requested for the critical section;

« initially all variablesrj containe ;
* by min(r;) the least value of the components;iis denoted;

Protocol of the mutually exclusive usage of a resour ce by computer number i

Fig. 2 shows a transition graph of the protocokldasn global timestamps.

1, .= global _timestamp;
send 7 to all 7, for j =1 ;

Pl el waituntil 7, = min(r),
test 7, = min(r;) MWHILL 2, S L)

ves

[
certain computer ~ \ZE
15 1n eritical section

5=
=g
8o
=
52
S

=
=
(0]
=
B
=

—
s
har]
7]
=
o
=
=

Frpodmr o0

send o to all L

Fig.2
* background of states:

W — white: execution of local (not critical) section

B — blue (light gray): request for critical section

Y — yellow (dark gray): refusal of critical sectiGmaiting state)
R —red (black): execution of critical section

P — pink (grid): release critical section

set of states of computer numie§ ={W, B, Y, R, P}
state of computer numberQ, € S
transit Q;— Q’; : given by the transition graph of the protocol

set of global statesS = S§; x S, x...x S, satisfying: if R, Q, ...,Q] €S then
-0,j: (7] 0Q=ROQ =R)

state of the whole systemQ =[Q1, @, ...,Q] €S
initial state: Wi, Wo,... W] with rj =00 in each local staté/
transit Q=3 Q' thereexistQeS and Q' €5

with @ — Qi and if -Q—Q’; then Q=Q

Example

[W1, W6, W5, W] = [B1,B2,Bs, Wa] = [Y1,Y2,Rs,Ba] 2 [Y1,Y2,Rs,Ya] 3 [R1,Y2,P5,Ys] 2
[R1,Y2,W5,Ys] 3 [P1,R,W5,Ya] = [Wh, R, W5, Ya] 2[Wi,Po,Wa,Re] = [Wi,Wo,W5,Ps] =
[W1, W6, Wa, Wi

Attendant circumstances of the DSM usage:

- time consumptive transmission with data marshgilinmarshalling;

- necessity of time compensation (various frequarf@omputer clocks);

- overlapping (concurrent) memory accesses;

- possible data replication (cache);

They bring on the following consequences and problemsto be tackled:

a message directed to a group of receivers isatelivat different moments; hence
memory locations alloted to this message may hifldrdnt content at a time;

reading a memory location may fetch content difiefeom that assigned to this location
by its latest (?) (by global time) actualizatiorrifug);

suspension of the system activity for a periodrof memory access would solve the
above problems, thus to achiedegta consistenclut is unacceptable by reason of
dramaic decrease of system performance; lockiregoéss operations - too restrictive!

need of a compromise between data consistencgfégrtiveness;

weakening of data consistency — when this doesintate requirements of system’s
main objectives; example: frequent stocked gootlsadization (written) of chain-stores

network may be seen (read) different in differesurttries; data consistency maintenance
— unnecessary effort!

» degrees of resignation from consistency to enhaffeetiveness — bring on the so-called
models of consistency;

» consistency models are usually explained inforynalhot always univocally; precise
understanding them by users of DSM is one of digaathges of DSM; hence need of their
formal description;

» but formal description of consistency models ningsbased on a formal model of
computing thus: (1) on actiomsd_stategas primary units of computing (2) on
interleaving or non-interleaving (,true concurrefjanodel of computing;

» common descriptions of consistency models in DSMiadctions reaénd_writefrom/to
memory (fetch and update) as primary units anadyimélly, non-interleaving computing
model;

» but read/write actions are too coatsdormally express memory consistency in the
interleaving model along with retaining efficiengsovided by true concurrency model,

» partial order of read/write not always is lineabls i.e. their arrangement in sequence
with retaining result of concurrent computation abways possible;

Example of non-linearizability

Notation: w(z,a); , r(za); - operations of writing and reading valmeo/from variable
(memory cell)z by computej. Initially x =0, y = 0. Scenario of not linearizable computing:

process 1: ———] w(x,3), - rly,0),

global time

process 2: —| w(y,2), | et @___,

position ofr/w in processes position ofr/w ensuing from

relative to global time: values read by processes:

W(x,3)1 < r(y,0h (1) ry.0n < wy,2p (3)

W(y,2)2 < 1(X,0) 2) r(x,02 < W(x,3n (4)

< - global time precedence, SO s - flow ofriee result

r(y,0)1 <w(y,2)y < r(x,0) < w(x,3); <r(y,0n
r(x,0 < w(x,31 < r(y,01 < w(y,2) <r(x,0)
contradictions!

Remarks, consequences:

e actionsw(x,3)y, r(y,0)1, w(y,2), r(x,0), cannot be interleaved in one sequence so that to
retain result of the concurrent computation;

scheduling protocol for linearization of accesgeSM not always possible: serial
equivalence to each computing scenario impossible;

» difficulty with formal description of consistenegsues within the ,true concurrency”
model; expressions like ,seen by processes”, edcinduitive;

* instead of time-extensive actions read/writeuketake atomic (timeless) events of their
beginnings and endsy(z,a); , w(z.a);, 7(z0);, r(za);; finer granularityallows for
applying interleaving model.

* assumption: a process completes reading and gaticell with the same value as
commenced; another process may change this valwede these events.

Strict consistency

Informally: a value read from any cell (variabigither the initial value or the one written
to it prior to the reading, and between these dmersno writing to this cell occured. Note:
~prior” is undefined since there is no global systelock. Unrealistic model!

Denotations:

V - set of variables used in programs with DSM

D - set of values the variables may assume

R - set of events of the form7(za) and r(za)

W - set of events of the fornt (za) and w(za)

R* - set of all finite sequences of elements fid@m

W* - set of all finite sequences of elements fidm

IL = R*# W* - union of all interleavings of sequences frdth i W*

Let: Q=qu0p...che IL and g =r(x,8; € R (i = 1,2,...n). Qis strictly consistentiff:
- eitherq; is the first such event in the interleaviQg

- orthere existsk = w(x,8g € W wherek<i and there is na@ = w(x,b), € W such that
k<I<i with b Za.

DSM isstrictly consisteniff every interleaving generated by the DSM pratisds strictly
consistent.

Example of not strictly consistent interleavingu(x,0), w(X,2)3 r(x,01 r(x,1),
Memory coherence [D-S-B 1988]

S={Py, P,,..., R} -system of sequential programs running in comguteambered
1,2,...N with DSM;

V;— set of variables of prograR allocated in the local memory of computer number |
D; — set of values the variables may assume;

0. V; — Dj - function being a state of the local memory ahputerP;;

N
V= UI// - set of variables of theteynS;
J=1

N
D= UD/- - set of values the vialés may assume;
J=1
N
DSM is coherent if the union of functions: O = UG/ is a function
J=1

o0: V— D (global state of DSM), thatis: ¥=y then o(x) = o(y) for x,y OV
Example: o0;={(a,0), 0,1)} o02={(al), 0,1)}, o.00,={(a0), @1), ©O1)}
Not coherent memory of the syste®@= { Py, P,}.

Sequential consistency [La 1979]

Informally: (1) partial order of read/write opamats always linearizable; (2) order of events
in each interleaving is identical with order ofitheccurrences during execution in every
individual program; (3) all locations of the sanaiable in DSM contain identical value
.Seen” by every computer after its actualizatiorefnory coherence).

Let Q be a subsequence of an interleavl@g= 0:10....ch€ IL resulted from removal of
events different from events issued by progfRam

Q is sequentially consistenf for every j=1,2,..N, events irQ; occur in the order
determined by programmer of the progrgm

DSM issequentially consistetiff every interleaving generated by the DSM praisds
sequentially consistent and DSM is coherent.

Causal consistency [H-A 1990]

Informally: causal consistency requires that eveny causally dependent write actions, be
,seen” (readout) in every process in the same ofldat is, eventg;, g O W, whereq, is a
cause of effeat;, are ,seen” by eventg, qOR in the same process, thgnmust preceds,.

Let RW=ROW and «~» ORW x RW denote a causality relation defined by meant®f t
following primary relations:

(1) P processq iffp =q or poccurs beforg in the same process;

(2) Preadingq iff evengOR terminates reading a certain valmef a variablex

assignedxdy writing operation terminating with eveptIW ;

(38) Pwiting 4 iff evenpdR terminates reading a certain valmef a variablex

needed for computing a valyge= f(a) assigned afterwards to

a variabjeby writing operation terminating with evegtW ;

(4) eventy andqin (2) and (3) may occur in the same or differpnbcesses; they are

calleccauseandeffectrespectively.
Causality relation» is the least relation in the $&¥V satisfying:
(i) if Pprocessq orPreading or Pwritng 0 thep q

@i) If p»q and g~r thenp-wr

Eventsp, q are in the relation afauseandeffectif p - g.

Eventsp, g areindependenfconcurrent) if neitheip ~ q nor q- p, write thenq ||p

Interleaving Q=q:102...che IL is causally consistentvrt. relationw if for any two
elementsq;, g, O W with g+q; the following holds:

If there are elementg, g O R both belonging to the same process and such that
[reading (and pj reading (then Pk processq

But if for someq;, g O W with g+(; reverse successiorp; processOy déithenQ is
causally inconsistent

DSM iscausally consistentf every interleaving generated by the DSM praisds causally
consistent.

Causal consistency and inconsistency may be repegsby diagrams in Fig. 3:

qu\/\/\/\/\/\/\P C]] qJ,JV\/\/\/\/\/\P q,f
) uQ oq)
process process
4 k q;
Causal consistency Fig.3Causal inconsistency

PRAM (Pipelined Random Access Memory) consistency [Lip-Sa 1988]

Informally: weaker than causal consistency modedome values are written by the same
processn a certain order and read (“seen”) by anothec@ss, then the reading must take
place in the same order as writing

Formal definition is similar to causal consistencgusal dependenag-; should be
replaced with [3 processj; only.

Thus PRAM consistency and inconsistency may bessgmted by diagrams in Fig. 4.

: 0ce 7. . rocess .
q’ process C]J CJI 2 q]
= =y S =
process ? process 2
Lrocess
di—4q; qr q;

PRAM consistency Big. PRAM inconsistency

Weak consistency [D-S-B 1986]

While aforesaid models of data consistency enstoess to DSM by respective protocols
supporting a chosen model without user’s interventefficiency of the system may
sometimes justify such intervention — for the ptéransparency, one of the desirable
features of distributed systems. The weak consigterodel provides users with the so-called
synchronization variables, counterparts of semagshor centralized systems. Access to them
takes place as in the case of sequential consistendel — in any process they occur in the
order specified by the program evoking this proc&ke users are provided with means to
create critical sections applying e.g. protocaistiated in Fig. 2. During execution of such
critical section no other process may access datagied by this critical section until their
actualization is finished. No data access is peeochiintil all previous accesses to
synchronization variables are completed.

Conclusion

The sample of five mentioned models of datanfemory) consistency is probably the most
common in applications. But a formalization andlgsia of quite long list of these and other
models might propose a challenging research témart from the discussed above, a list (not
exhaustive) of consistency models contain the ¥ahg: entry, release, scope, process, cache,
fork, eventual, session, read-your-write, monotoeid, monotonic-write. Every one is a sort
of a “contract” between the memory management éysbgm and usage of DSM, stating that
if the contracted rules are observed then the mgmitirbehave in accordance with the rules
accepted by the user.

References

[Cz 2012] Czaja L.Exclusive Access to Resources in Distributed Shistedory
Architecture Fundamenta Informaticae, Volume 119, Numbers 3342 s. 265-280

[D-S-B 1986] Dubois M., Scheurich C., Briggs F.Memory Access Buffering in
MultiprocessorsProc. 13th Ann. Int'l Symp. On Computer Architeet, ACM 1986, pp.
434-442

[D-S-B 1988] Dubois M., Scheurich C., Briggs F.8ynchronization, Coherence and Event
Ordering in MultiprocessordEEE Trans. Computer, 1988, 21, 2, pp. 9-21

[La 1979]Lamport L.,How to Make a Multiprocessor Computer That Corngé&ikecutes
Multiprocess ProgramdEEE Trans. On Computers, 1979 C-28, s. 690-691

