
�

 ������ ��	
	
1
 University of Economics and Computer Science Vistula in Warsaw  

2
 Institute of Informatics, The University of Warsaw 

lczaja@mimuw.edu.pl 

 ��
����� ���
���

    Distributed computer system is a set of autonomous computers connected by a network of 
transmission channels and equipped with a distributed system software. This is a work 
environment for a class of tasks of common objective; the network is a communication 
infrastructure only. Main features of distributed systems dealt with here are: 

•  absence of common clock for all computers – no global time provided by external service 

•  absence of physical memory common to each computer - message exchange by the 
network  

A schematic structure of distributed system with distributed shared memory (DSM) is 
illustrated in Fig. 1 ([Cz 2012]). 

 

 

 

 

 

 

 

 

Fig.1 

Assumptions and denotations: 

• the computers work in parallel and are numbered 1,2,...,n 

• reading and writing is governed by the memory manager of each computer;  
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• each message is accompanied by a global timestamp – a pair of computer number and 
compensated local timestamp;  

• there is one critical section assuring mutually exclusive usage of a resource by the 
computers;  

• no hardware or software failure happens during performing  the mutual exclusion 
mechanism;  

• computer number i keeps a vector   r i = [r i1,ri2,...,rin]   of variables r ij allocated in its 
physical memory; it stores a global timestamp in the component r ii when requesting for 
the critical section;  

• computer number i stores in r ij a copy of a global timestamp stored by the computer 
number j in r jj when it requested for the critical section;  

• initially all variables r ij contain ∞ ;  

• by  min(r i)  the least value of the components in r i is denoted; 

Protocol of the mutually exclusive usage of a resource by computer number i  

Fig. 2 shows a transition graph of the protocol based on global timestamps. 

 

 

 

 

 

 

 

 

 

Fig.2 

• background of states: 

W – white: execution of local (not critical) section                                                                             
B – blue (light gray): request for critical section                                                                                 
Y – yellow (dark gray):  refusal of critical section (waiting state)                                                      
R – red (black): execution of critical section                                                                                       
P – pink (grid): release critical section  
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•   set of states of computer number i:  Si ={ Wi , Bi , Yi , Ri , Pi} 

•   state of computer number i:  Qi ∈ Si  

•   transit   Qi  Q’ i  :   given by the transition graph of the protocol  

•   set of global states:  S  = S1 ×××× S2 ××××…×××× Sn  satisfying:  if  [Q1 , Q2 , …,Qn] ∈ S    then   
¬¬¬¬∃∃∃∃i,j : (i≠ j ∧∧∧∧ Qi = Ri ∧∧∧∧ Qj = Rj ) 

•   state of the whole system:   Q = [Q1 , Q2 , …,Qn] ∈ S    

•   initial state:   [W1 , W2 ,… ,Wn]   with   r ij = ∞  in each local state Wi  

•   transit   Q ⇉ Q’   there exist   Qi ∈ Si   and   Q’ i   ∈ Si   

        with  Qi  Q’ i    and  if   ¬¬¬¬Qj  Q’ j        then    Qj = Q’ j   

Example  

[W1,W2,W3,W4] ⇉ [B1,B2,B3,W4] ⇉ [Y1,Y2,R3,B4] ⇉ [Y1,Y2,R3,Y4] ⇉ [R1,Y2,P3,Y4] ⇉  

[R1,Y2,W3,Y4] ⇉ [P1,R2,W3,Y4] ⇉ [W1,R2,W3,Y4] ⇉[W1,P2,W3,R4] ⇉ [W1,W2,W3,P4] ⇉  

[W1,W2,W3,W4]  

Attendant circumstances of the DSM usage: 

- time consumptive transmission with data marshalling/unmarshalling; 

- necessity of time compensation (various frequency of computer clocks);  

- overlapping (concurrent) memory accesses;  

- possible data replication (cache);  

They bring on the following consequences and problems to be tackled: 

• a message directed to a group of receivers is delivered at different moments; hence 
memory locations alloted to this message may hold different content at a time; 

• reading a memory location may fetch content different from that assigned to this location 
by its latest (?) (by global time) actualization (writing); 

•  suspension of the system activity for a period of any memory access would solve the 
above problems, thus to achieve data consistency but is unacceptable by reason of 
dramaic decrease of system performance; locking of access operations - too restrictive! 

•  need of a compromise between data consistency and effectiveness;  

•  weakening of data consistency – when this does not violate requirements of system’s 
main objectives; example: frequent stocked goods actualization (written) of chain-stores 
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network may be seen (read) different in different countries; data consistency maintenance 
– unnecessary effort!  

• degrees of resignation from consistency to enhance effectiveness – bring on the so-called 
models of consistency; 

•  consistency models are usually explained informally – not always univocally; precise 
understanding them by users of DSM is one of disadvantages of DSM; hence need of their 
formal description; 

•  but formal description of consistency models must be based on a formal model of 
computing thus: (1) on actions and states as primary units of computing (2) on 
interleaving or non-interleaving („true concurrency”) model of computing; 

• common descriptions of consistency models in DSM admit actions read and write from/to 
memory (fetch and update) as primary units and, informally, non-interleaving computing 
model; 

• but read/write actions are too coarse to formally express memory consistency in the 
interleaving model along with retaining efficiency provided by true concurrency model; 

• partial order of read/write not always is linearizable, i.e. their arrangement in sequence 
with retaining result of concurrent computation not always possible; 

Example of non-linearizability  

Notation:  w(z,α)j , r(z,α)j  - operations of writing and reading value α to/from variable 
(memory cell) z by computer j. Initially  x = 0,  y = 0. Scenario of not linearizable computing: 

 

                                                                                                                                  global time  

 

position of r/w in processes  
relative to global time: 

position of r/w ensuing from  
values read by processes:  
 

w(x,3)1  ≺   r(y,0)1         (1) r(y,0)1  ≺   w(y,2)2        (3) 

w(y,2)2  ≺   r(x,0)2         (2) r(x,0)2  ≺   w(x,3)1        (4) 
 

≺ - global time precedence,                                                                  - flow of write result 

r(y,0)1  ≺ w(y,2)2  ≺  r(x,0)2  ≺  w(x,3)1  ≺ r(y,0)1  

r(x,0)2  ≺  w(x,3)1 ≺  r(y,0)1  ≺  w(y,2)2  ≺ r(x,0)2  

contradictions!  
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Remarks, consequences: 

•  actions w(x,3)1, r(y,0)1, w(y,2)2, r(x,0)2 cannot be interleaved in one sequence so that to 
retain result of the concurrent computation; 

•  scheduling protocol for linearization of accesses to  DSM not always possible: serial 
equivalence to each computing scenario impossible;  

•  difficulty with formal description of consistency issues within the „true concurrency” 
model; expressions like „seen by processes”, etc. are intuitive;  

•  instead of time-extensive actions read/write, let us take atomic (timeless) events of their 
beginnings and ends:  ��(z,α)j ,  w(z,α)j ,  ��(z,α)j ,  r(z,α)j ;  finer granularity allows for 
applying interleaving model. 

•  assumption: a process completes reading and writing a cell with the same value as 
commenced; another process may change this value between these events.  

 

Strict consistency  

Informally:  a value read from any cell (variable) is either the initial value or the one written 
to it prior to the reading, and between these operations no writing  to this cell occured. Note: 
„prior” is undefined since there is no global system clock. Unrealistic model! 

Denotations: 

V - set of variables used in programs with DSM 

D - set of values the variables may assume  

R - set of events of the form     ��(z,a)j    and   r(z,a)j   

W - set of events of the form   �� (z,a)j   and   w(z,a)j  

R* - set of all finite sequences of elements from R  

W* - set of all finite sequences of elements from W  

IL = R* # W* - union of all interleavings of sequences from  R* i W*  

Let: Q = q1q2…qn ∈ IL  and  qi = r(x,a)f  ∈ R  (i = 1,2,…,n). Q is strictly consistent  iff:  

-  either qi  is the first such event in the interleaving Q 

-  or there exists qk = w(x,a)g ∈ W  where  k < i  and there is no  ql = w(x,b)h ∈ W  such that  
k < l < i  with  b ≠ a. 

DSM is strictly consistent iff every interleaving generated by the DSM protocols is strictly 
consistent. 
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Example of not strictly consistent interleaving:   w(x,0)2  w(x,1)3  r(x,0)1  r(x,1)2  

Memory coherence [D-S-B 1988] 

S = { P1, P2,…, PN}   - system of  sequential programs running in computers numbered  
1,2,…,N  with DSM; 

Vj – set of variables of program Pj allocated in the local memory of computer number j; 

Dj  – set of values the variables may assume; 

σj:  Vj   Dj  - function being a state of the local memory of computer Pj; 

                            

                       - set of variables of the system S; 

 

                          - set of values the variables may assume; 

 

DSM is coherent if the union of functions:                               is a function     

 

σ:  V   D   (global state of DSM),  that is: if  x = y  then  σ(x) = σ(y) for  x, y ∈∈∈∈V  

Example:    σ1 = {(a,0), (b,1)}       σ2 = {(a,1), (b,1)},  σ1 ∪∪∪∪ σ2 = {(a,0), (a,1), (b,1)} 

Not coherent memory of the system   S = { P1, P2}. 

Sequential consistency [La 1979] 

Informally:  (1) partial order of read/write operations always linearizable;  (2) order of events 
in each interleaving is identical with order of their occurrences during execution in every 
individual program; (3) all locations of the same variable in DSM contain identical value 
„seen” by every computer after its actualization (memory coherence). 

Let Qj be a subsequence of an interleaving  Q = q1q2…qn ∈ IL  resulted from removal of 
events different from events issued by program Pj .   

Q  is sequentially consistent  if for every  j = 1,2,…,N,  events in Qj occur in the order 
determined by programmer of the program Pj .  

DSM is sequentially consistent iff every interleaving generated by the DSM protocols is 
sequentially consistent and DSM is coherent. 
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Causal consistency [H-A 1990] 

Informally: causal consistency requires that every two causally dependent write actions, be 
„seen” (readout) in every process in the same order. That is, events qi, qj ∈∈∈∈ W ,  where qi, is a 
cause of effect qj , are „seen” by events qk, ql∈∈∈∈R in the same process, then qk must precede ql. 

Let  RW =  R ∪∪∪∪ W  and   ⇝ ⊆⊆⊆⊆ RW × RW  denote a causality relation defined by means of the 
following primary relations: 

(1)                          iff   p = q  or  p occurs before q in the same process; 

(2)                          iff   event  q∈R  terminates reading a certain value α of a variable x 

                          assigned to x by writing operation terminating with event  p∈W ; 

(3)                          iff  event  p∈R  terminates reading a certain value α of a variable x 

                         needed for computing a value β = f(α)  assigned afterwards to 

                         a variable y by writing operation terminating with event  q∈W ; 

(4)   events p and q in (2) and (3) may occur in the same or different  processes; they are 

        called cause and effect respectively. 

Causality relation ⇝  is the least relation in the set RW satisfying: 

(i) if                         or                          or                          then   p ⇝ q  

(ii)  If   p ⇝ q   and    q ⇝ r    then   p ⇝ r    

Events  p, q  are in the relation of cause and effect if  p ⇝ q.  

Events  p, q  are independent (concurrent) if neither  p ⇝ q nor   q ⇝ p,  write then q || p  

Interleaving   Q = q1q2…qn ∈ IL   is  causally consistent  wrt. relation ⇝  if for any two 
elements  qi, qj ∈∈∈∈ W  with qi⇝qj  the following holds: 

If there are elements qk, ql ∈∈∈∈ R  both belonging to the same process and such that    

                            and                               then                               

But if for some qi, qj ∈∈∈∈ W  with qi⇝qj   reverse succession                           holds then Q is 
causally inconsistent.  

DSM is causally consistent iff every interleaving generated by the DSM protocols is causally 
consistent. 

 

 

qp process

qp reading

qp writing

qp process qp reading qp writing

kreadingi qp lreadingj qp lprocessk qp

kprocessl qp
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Causal consistency and inconsistency may be represented by diagrams in Fig. 3: 

 

 

 

 

                    Causal consistency        Fig.3       Causal inconsistency 

 

PRAM (Pipelined Random Access Memory) consistency [Lip-Sa 1988] 

Informally: weaker than causal consistency model: if some values are written by the same 
process in a certain order and read (“seen”) by another process, then the reading must take 
place in the same order as writing 

Formal definition is similar to causal consistency: causal dependence  qi⇝qj  should be 
replaced with                         only.   

Thus PRAM consistency and inconsistency may be represented by diagrams in Fig. 4.  

 

 

 

 

                       PRAM consistency        Fig.4            PRAM inconsistency 

 

Weak consistency [D-S-B 1986] 

While aforesaid models of data consistency ensure access to DSM by respective protocols 
supporting a chosen model without user’s intervention, efficiency of the system may 
sometimes justify such intervention – for the prize of transparency, one of the desirable 
features of distributed systems. The weak consistency model provides users with the so-called 
synchronization variables, counterparts of semaphores in centralized systems. Access to them 
takes place as in the case of sequential consistency model – in any process they occur in the 
order specified by the program evoking this process. The users are provided with means to 
create critical sections applying e.g. protocol illustrated in Fig. 2. During execution of such 
critical section no other process may access data protected by this critical section until their 
actualization is finished. No data access is permitted until all previous accesses to 
synchronization variables are completed.  

jprocessi qp
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Conclusion 

    The sample of five mentioned models of data (or memory) consistency is probably the most 
common in applications. But a formalization and analysis of quite long list of these and other 
models might propose a challenging research topic. Apart from the discussed above, a list (not 
exhaustive) of consistency models contain the following: entry, release, scope, process, cache, 
fork, eventual, session, read-your-write, monotonic-read, monotonic-write. Every one is a sort 
of a “contract” between the memory management (sub)system and usage of DSM, stating that 
if the contracted rules are observed then the memory will behave in accordance with the rules 
accepted by the user. 
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