
Exploiting Order Dependencies on Primary
Keys for Optimization

Michał Chromiak?, Piotr Wiśniewski?, Krzysztof Stencel ??

Institute of Informatics
Maria Curie Skłodowska University

Lublin, Poland?

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Toruń, Poland?

Institute of Informatics
University of Warsaw

Warsaw, Poland??

Abstract. Functional dependencies have been used in query optimisa-
tion for decades. Moreover, if two domains have a natural ordering of
their elements, a functional dependency of them can potentially preserve
these orderings, i.e. be a monotonic function. This monotonicity can be
exploited by query optimizers. Recently, such monotonic functional de-
pendencies have been termed order dependencies.
In this paper we propose a query rewriting method based on order depen-
dencies on primary keys. If an attribute used in the WHERE clause has an
order dependency on the primary key, such a selection can be replaced by
the corresponding condition on the primary key. We have implemented
this optimisation method in the integration framework called the cuboid.
It automates the integration of disparate databases according to the CQS
model. Cuboids facilitate injecting dependencies and utilizing them in
query optimization.

1 Introduction

Optimisation methods that exploit functional dependencies have already been
know for decades. Most of these methods base on the injectivity of the de-
pendency function or its lack. Other properties of this functions are disused.
However, if the domain of such a function is ordered and the function itself can
preserve this order (i.e. be monotonic). This possibility have been discovered by
Jarek Gryz [1–4]. He noted that date columns usually monotonic functions of
artificial primary keys. The article [1] proposes a simple method based on this
observation. The resulting speedup of query execution ranged from 20% to 50%.

? email: mchromiak@umcs.pl
? email: pikonrad@mat.uni.torun.pl

?? email: stencel@mimuw.edu.pl

2

Following papers [2–4] abstract so-called order dependencies and present their
proof theory similar to Armstrong’s axioms.

Optimisation methods invented by Jarek Gryz and his team are implemented
inside IBM DB2 in one of its experimental branches. It allows hoping that soon
these methods will be available to the user community. However, users of other
DBMSs cannot access them. Therefore, in this paper we struggle to implement
similar optimisation mechanisms outside of a specific database system. Our ex-
perience [5–9] proves that a middleware is a perfect place to do this. It allows
e.g. avoiding a dependency of a particular database vendor. In this paper, we
use a cuboid as such a middleware. [10, 11]

The paper is organized as follows. Section section 2 presents a motivating
example that shows optimisation potential values vested in order dependencies.
Section section 3 describes the proposed query rewriting algorithm and justifies
its semantic correctness. Section section 4 reminds the properties of the cuboid
and portrays its potential usage to inject optimisations routines. Section section 5
shows experimental evaluation of the proposed optimisation method. Section
section 6 concludes.

Acknowledgment

We would like to thank Jarek Gryz for his inspiring keynote talk on Order
Dependencies at the conference BDAS 2014 in Ustroń.

Contribution

The contribution of this paper consists of (1) a query rewriting algorithm that
employs order dependencies and (2) an idea to use the cuboid as a layer to inject
optimisation algorithms and (3) its positive verification.

Fig. 1. An example schema of a sales database

facts

f_id
date
c_id
p_id
aggrv
aggrq

customers

c_id
cname
caddress

products

p_id
pname

1

n

1

n

2 Motivating Example

Assume a simple data warehouse of the schema presented on Figure fig. 1. Con-
sider the query for the sales in a selected period show on Listing 1.1. If the
column date has no index, this query will require a full scan of the fact table.

3

Listing 1.1. A query for sales in the indicated period

1SELECT cname , sum(aggrv) , SUM(aggrq)
2FROM f a c t s JOIN customers USING (c i d)
3WHERE date between ’ 2008−12−13 ’ AND ’ 2008−12−15 ’
4GROUP BY c id , cname

The column f id of the table facts is its primary key. Therefore, all other
columns of this tables are functionally dependent on it. The column date is this
a function d : INT 7→ DATES . The implementation of such an artificial key is
usually based on a sequence generator. Moreover, it is easy to assure that facts
on sales from a particular day are recorded after all sales from the previous day.
Therefore, we can assume that that d : INT 7→ DATES is non-decreasing. If we
assume that:

xmin = min{x; d(x) = ’2008-12-13’}
xmax = max{x; d(x) = ’2008-12-15’}

the query from Listing listing 1.1 is equivalent to the query shown on Listing
listing 1.2. We have rewritten the condition of the WHERE clause.

Listing 1.2. A rewritten query for sales in the indicated period

1SELECT cname , sum(aggrv) , SUM(aggrq)
2FROM f a c t s JOIN customers USING (c i d)
3WHERE f i d between xmin AND xmax
4GROUP BY c id , cname

The query of Listing 1.2 will be executed using the range index on the primary
key provided it is enough selective. Thus, its running time will be significantly
shorter than that of the query from Listing listing 1.1. Moreover, the monotonic-
ity of the function d allows efficient computing of xmin and xmax using the binary
search. The experiments we have conducted prove that the overhead caused by
this binary search is notably smaller that the time saved by executing the opti-
mized version of the example query. This observations have led us to a rewrite
algorithms that implements the idea presented above.

3 Query rewriting algorithm

3.1 Order Dependencies

Assume a table T with its primary key P and remaining attributes {A1, . . . , An}.
Since P is the primary key of T there exists functions f1, . . . , fn such that each
tuple (p, a1, ..., an) of the table T cane be expressed as (p, f1(p), . . . , fn(p)). The
existence of the functions f1, . . . , fn validate the functional dependencies of the
column A1, . . . , An on the primary key P .

Assume that the domains of the columns P and Ai for a given i ∈ {1, 2, . . . , n}
are linearly ordered sets. The functional dependency between P and Ai will
be called an order Dependencies, if the function fi is monotonic. Moreover, an

4

important property of fi is whether is increasing, non-decreasing, non-increasing
or decreasing.

Such dependencies are initially called monotonic dependencies [1]. Then,
their inventors coin the name order dependencies. The motivating example from
Section 2 is based on such a dependency between the primary key f id and the
column date.

3.2 Query rewriting

The goal of the algorithm is to replace range conditions on non-indexed columns
to corresponding range search on usually indexed primary key. The algorithm is
aware of the schema, functional and order dependencies. Its version presented is
this paper is able to rewrite SPJ queries (select-project-joins) and grouping-and-
aggregate queries. The input of the algorithm is a query of the form portrayed
on Listing1.3:

Listing 1.3. Initial form of the query to be possibly rewritten

1SELECT . . .
2FROM T JOIN T1 ON (T. f1k = T1 . pk)
3JOIN T2 ON (T. f2k = T2 . pk)
4. . . .
5WHERE T. Ai BETWEEN a1 AND a2
6GROUP BY

We also allow WHERE clauses with equality and inequality. We than convert
them to atomic formulae based on BETWEEN using the same value or the data
type margin (“infinity”) values. The condition WHERE T.Ai = a is the converted
to WHERE T.Ai a BETWEEN a.

In the first step we identify the fact table. We analyze the conditions in the
JOIN ... ON clauses. The fact table connects other tables by foreign keys while
its primary key is not connected by any other foreign key. In a query of the form
shown on Listing 1.3 the fact table is denoted by T . If a query contains a string
of dependencies foreign-primary key (e.g. in a snowflake schema), the algorithm
will also do. However, if it encounters a cycle, it will stop processing and return
the original query.

The second step of the algorithm consists in checking whether (1) the WHERE
clause references a column of the identified fact table and (2) this column has
an order dependency of the primary key.

In the third step, if the function fi is non-decreasing, we will search for values
pmin and pmax such that:

pmin = min{p; fi(p) = a1}, pmax = max{p; fi(p) = a2} (1)

Analogously, if this function in non-increasing, the algorithm will compute
values pmin and pmax such that:

pmin = min{p; fi(p) = a2}, pmax = max{p; fi(p) = a1} (2)

5

Eventually, the algorithm concludes replacing the WHERE with:

WHERE T.P BETWEEN pmin AND pmax

Since the function fi is monotonic, the computation of pmin and pmax can
be computed efficiently, e.g. using the binary search.

3.3 Remarks on the Implementation

The algorithm is implemented in a middleware, i.e. outside of the database
system. The computation of pmin and pmax that satisfy conditions (1) and (2)
can be done in at least two ways. Both are based on the binary search.

Firstly, we can send a series of queries in the course of the binary search.
Its advantage is its inherent simplicity and the lack of any additional database
object required. However, it causes numerous communication round trips with
the database systems.

Secondly, we can install appropriate stored procedures on the database side.
We have decided to implement the binary search exactly this way. When the op-
timizer on the middleware side is informed on the order dependency between the
primary key and the column date, it will generate and install two stored func-
tions. One of them shown on Listing 1.4 finds minimal f id for a given date. An
analogous function get max fid by date(DATE) that computes maximal f id is
also needed.

Listing 1.4. A function that finds the minimal f id for a given date

1CREATE OR REPLACE FUNCTION ge t min f i nd by da t e (
2DF DATE
3) RETURNS integer AS $$
4DECLARE
5F INTEGER;
6Z INTEGER;
7S INTEGER;
8D DATE;
9BEGIN
10SELECT MAX (f i d) INTO Z FROM f a c t s ;
11S=1;
12WHILE S<Z LOOP
13S=S ∗2 ;
14END LOOP;
15F=S ;
16WHILE S>1 LOOP
17S=S /2 ;
18SELECT date into D from f a c t s where f i d = F − S ;
19IF D>= DF THEN
20F=F − S ;
21END IF ;

6

22

23END LOOP;
24RETURN F;
25END;
26$$ LANGUAGE p l p g s q l

For the sake of readability we removed error handling code from the function
get min... These errors may be caused by gaps in the numbering stored in the
column f id.

Using this function (and its twin get max...) the optimizer will first issue
queries for corresponding margin values of f id. Then, it will put the collected
parameters as values of bind variables in the modified query.

4 Cuboid as the linkup data structure

Cuboid is a form of central, master metadata repository. It is responsible for
storing contributory meta information about constituent data sources. Each in-
tegrated data source must first be a subject of a registration procedure (see
fig. 2). To register a data source at the Cuboid each data source needs a dedi-

Fig. 2. General architecture for data access

FACTS

CuboidCuboid

MEDIATOR

META
DATA

Contributory
View

1. 2.

3.

ContributoryView

4.

ADAPTERADAPTER

REST
Call

RS

SQL

JSON
RS

iDAO5.
6.

7.

8.

9.

cated mediator to extract from the data source its most informative metadata
about schemas, entities and their detailed description. Among those metadata
mediator also places adequate queries. Those queries are native queries consid-
ering particular data source. Each query is responsible for storing information

7

about particular part of the schema. The decision about which part of the data
is going to be covered with the queries’ result sets is for the first time made at
mediator configuration, prior to its registration in Cuboid. Thus, during medi-
ator initialization (ie. metadata collecting from data source) mediator is aware
of the data sets that needs to be covered with queries. The metadata collected
from data source can further be modified during the mediator to Cuboid chatter.
At the Cuboid, the metadata, in form of a contributory view provided during
mediator registration, is stored and used for building of the global view. The
global view is configured and build by designer at the Cubiod site. Prepared
global view is then made available to the Adapter instance in form of interopera-
ble Data Access Objects (iDAO). Those objects are designed to cover each data
source contact details and its requested metadata with native queries.
Each time client requests from Adapter one of global views1, Adapter reaches
for requested global view from Cuboid and unmarshalls out of it native queries,
together with contact details to the data source of their origin. Using the con-
tact details Adapter sends native queries to original data sources and receives
requested result sets. This is happening at the lowest level - ie. JDBC. Now the
result sets are being composed together based on global view. When the global
view is ready in materialized form, it shall be made available to the client in
unified way - ie. in form of REST API.
The entire process involves complex metamodel for collecting and transforming
contributory and global metadata. This information has been discussed with de-
tails and examples in [11, 10].
The discussed optimization method in form of Order Dependencies (OD) can be
easily applied with use of Cuboid architecture. Without need to interfere with
database optimization engines we will be able to rewrite queries stored at the
site of Cuboid.

4.1 Unified data access interface

As depict in fig. 2, client calls for the optimized resource are supposed to be
commenced using REST API. The construct of the client REST API includes
non optimized and optimized version of the query.

While requesting client will use the REST API to define whether the query
response ie. result set, is going to be processed using non optimized version
of the query or optimized. We have prepared four implementations for data
access layers. Two of them - using JdbcTemplate and SimpleJdbcCall- are Spring
Framework based and third is pure JDBC. The final method gets the pmin and
pmax hard coded. This is to compare the time of pmin and pmax retrieval and
overhead that is brought by each of the three remaining methods.

The REST API is designed as follows. To retrieve unoptimized query answer
the request URL should look like this:
http://localhost:8080/DIAS/rest/dbs/facts/2008-01-01:2008-01-02

1 The Cuboid can store many arbitrarily customized global views depending on de-
signer requirements.

8

Now, to request for an optimized query depending on query commuting mecha-
nism the URL would change to:
http://localhost:8080/DIAS/rest/dbs/facts/2008-01-01:2008-01-02/opti/X
Where X stands for the query commit method number. The X values has been
assigned as follows:

1. Spring simpleJdbcCall (stored functions)
2. Spring JDBCTemplate call statement (stored functions)
3. pure JDBC connection (stored functions)
4. Spring JdbcTemplate with (sub-queries rewrite)
5. hard coded pmin, pmax values

This way we can get the necessary optimization method in simple and straight-
forward manner. We will present the results in following section.

5 Experiments

Let us first describe the testing environment. The tests has been performed using
the following hardware:

CPU Intel Core i7-3612QM CPU @ 2.10 GHz x 8
RAM 15,6 GiB
Disk SAMSUNG SSD PM830 2.5” 7mm 512GB
OS Ubuntu 14.04 LTS
Kernel 3.13.0-30-generic
Arch. x86 64 GNU/Linux

Table 1: Hardware configuration used for tests.

The procedure was to measure response times for the REST client calls to
optimized and unoptimized queries. This means a testing REST client called
REST API that has used underneath optimized or non-optimized query for result
set retrieval.

The tests has been performed using a the following software:

Java java version 1.7 60
Java(TM) SE Runtime Environment (build 1.7.0 60-b19)
Java HotSpot(TM) 64-Bit Server VM (build 24.60-b09, mixed mode)

REST Testing Client ApacheBench, Version 2.3
Http Server Apache Tomcat/6.0.29

Table 2: Software used in testing process.

The test cases assumed two optimization methods. One was to rewrite query
with substitution of WHERE clause with two stored function results. For com-
parison reasons, the second case (fifth method) assumed replacing the stored

9

functions with simple sub queries to achieve the same goal as in the firs case.
Namely:

Listing 1.5. Simple rewrite with sub-queries

1SELECT f i d , sum(aggrv) ,
2FROM f a c t s
3WHERE f d a t e BETWEEN (select min(f i d) from f a c t s
4where f d a t e >= x)
5AND (select max(f i d) from f a c t s
6where f d a t e <= y)
7GROUP BY c i d ;

All tested use cases were conducted against the same request parameters and
source data. The queried data range was between 2008-01-01 and 2008-01-02.
The result size was 31,546 MB. Each method has been tested 50 times.

Measuring database response times for pmin and pmax was based on Java’s
currentTimeMilis() method from java.lang.System 2.

The test results has been placed in table 3.

Activity Call Method

Document

Length [MB]
31.546

Method Name simpleJdbcCall JdbcTemplate JDBC Subquery Hard Coded non-opti

Stored Functions /

Subqueries [ms]

pmin pmax pmin pmax pmin pmax pmin pmax
0

13 14 7 6 5 6 7524 15493

Avg.Time per request

[ms]
44.010 29.762 27.196 23038.530 16.431 87681.945

Table 3: Test results for 50 request trial.

The results has clearly shown that rewriting the WHERE clause boosts the
target query almost 4 times. This is while only modifying the WHERE clause with
subqueries enabling primary key in role of index. This gives us the idea of how
order dependency based query can be effective. Both of the queries do operate
on f date column that has not even been indexed. The result would be greatly
better if only we would place an index on f date column. The hard coded column
values for pmin and pmax are presented to compare the time performance of the
query itself without rewriting process.
Three remaining JDBC-based use cases for (pmin,pmax) retrieval, are at worst
three times slower than the hard coded (pmin,pmax) pair.

2 The detailed discussion for choosing this method has been conducted in [12]

10

In general we have gained a speed boost form 87.681 seconds to only 0.027
seconds, which reduced the time of result retrieval for approx. 99,96%. Such
gain for the discussed use case, is achieved with best - pure JDBC - method,
comparing to non optimized query.

6 Conclusions

In this paper we have analyzed so called order dependencies and their optimi-
sation potential when applied at the middleware level. An order dependency is
a functional dependency such that its induced function is monotonic with re-
spect to linear orderings of domains. We have proposed an optimisation method
that exploits order dependencies on primary keys. We have prepared its proof-
of-concept implementation on the middleware level (the cuboid). Middleware
has amounted to a feasible place for such optimisations and made such a so-
lution vendor neutral. We have also performed experimental evaluation of this
implementation and got promising results.

References

1. Szlichta, J., Godfrey, P., Gryz, J., Ma, W., Pawluk, P., Zuzarte, C.: Queries on
dates: fast yet not blind. In Ailamaki, A., Amer-Yahia, S., Patel, J.M., Risch, T.,
Senellart, P., Stoyanovich, J., eds.: EDBT, ACM (2011) 497–502

2. Szlichta, J., Godfrey, P., Gryz, J.: Fundamentals of order dependencies. PVLDB
5 (2012) 1220–1231

3. Szlichta, J., Godfrey, P., Gryz, J., Zuzarte, C.: Expressiveness and complexity of
order dependencies. PVLDB 6 (2013) 1858–1869

4. Szlichta, J., Godfrey, P., Gryz, J., Ma, W., Qiu, W., Zuzarte, C.: Business-
intelligence queries with order dependencies in db2. In Amer-Yahia, S.,
Christophides, V., Kementsietsidis, A., Garofalakis, M.N., Idreos, S., Leroy, V.,
eds.: EDBT, OpenProceedings.org (2014) 750–761

5. Gawarkiewicz, M., Wiśniewski, P.: Partial aggregation using Hibernate. In Kim,
T.H., Adeli, H., Slezak, D., Sandnes, F.E., Song, X., Chung, K.I., Arnett, K.P.,
eds.: FGIT. Volume 7105 of Lecture Notes in Computer Science., Springer (2011)
90–99

6. Wiśniewski, P., Szumowska, A., Burzańska, M., Boniewicz, A.: Hibernate the
recursive queries - defining the recursive queries using Hibernate ORM. In Eder,
J., Bieliková, M., Tjoa, A.M., eds.: ADBIS (2). Volume 789 of CEUR Workshop
Proceedings., CEUR-WS.org (2011) 190–199

7. Gawarkiewicz, M., Wiśniewski, P., Stencel, K.: Enhanced segment trees in object-
relational mapping. In: Proceedings of the 6th Balkan Conference in Informatics.
BCI ’13, New York, NY, USA, ACM (2013) 122–128

8. Wiśniewski, P., Stencel, K.: Query rewriting based on meta-granular aggregation.
In Szczuka, M., Czaja, L., Kacprzak, M., eds.: Proceedings of the 22nd Interna-
tional Workshop on Concurrency, Specification and Programming (CS&P 2013),
Białystok, Białystok University of Technology (2013) 457–468

11

9. Boniewicz, A., Wisniewski, P., Stencel, K.: On materializing paths for faster recur-
sive querying. In Catania, B., Cerquitelli, T., Chiusano, S., Guerrini, G., Kämpf,
M., Kemper, A., Novikov, B., Palpanas, T., Pokorný, J., Vakali, A., eds.: AD-
BIS (2). Volume 241 of Advances in Intelligent Systems and Computing., Springer
(2013) 105–112

10. Chromiak, M., Stencel, K.: The linkup data structure for heterogeneous data
integration platform. In Kim, T.H., Lee, Y.H., Fang, W.C., eds.: FGIT. Volume
7709 of Lecture Notes in Computer Science., Springer (2012) 263–274

11. Chromiak, M., Stencel, K.: A data model for heterogeneous data integration ar-
chitecture. In Kozielski, S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B.,
Kostrzewa, D., eds.: BDAS. Volume 424 of Communications in Computer and In-
formation Science., Springer (2014) 547–556

12. Chromiak, M., Lojewski, Z.: Stream security particularities in java. Ann. UMCS,
Inf. 8 (2008) 5–13

