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Abstract. The Semantic Web is bound to be untrustworthy and inconsistent. In 
this paper, we present an initial approach for obtaining useful information in such 
an environment. In particular, we replace the question of whether an assertion is 
entailed by the entire Semantic Web with two other queries. The first asks if a 
statement is entailed if a set of documents is trusted. The second asks for the 
document sets that entail a specific statement. We propose a mechanism which 
leverages research on assumption-based truth maintenance systems to efficiently 
compute and represent the contexts of the statements and manage inconsistency. 
For these queries, our approach provides significant improvement over the naïve 
solution to the problem. 

1 Introduction 

Since the Semantic Web is intended to mirror the World Wide Web, it will be produced 
by numerous information providers with different levels of credibility, and will be used 
by information consumers who have different opinions on who or what is trustworthy. 
Some researchers have investigated methods for computing who a user should trust in 
such environments. In this work, we take a different approach: we investigate how to 
build a Semantic Web search engine that can tell the user what sources support each 
answer to a query so that the user could decide if they trust those sources. In addition, 
we aim at a system capable of efficiently answering queries once the user has decided 
what sources they trust and when they change their mind. 

We will assume a document collection D consisting of N OWL Lite [3] documents, 
labeled as D1 to DN. We also assume that this collection can be harvested from the 
Internet at a rate such that the information maintained by a webcrawler is current 
enough to be of value. Note, our focus on a centralized search-engine approach is based 
on its success in the contemporary Web and on the fact that much research needs to be 
done before distributed queries can reach a comparable response time. Finally, we will 
assume that users are primarily interested in extensional queries, and will focus on 
queries about the instances of a class. We denote by a:C an assertion that individual a is 
an instance of class C. 

Before we can formally define our problem, we must introduce two definitions. 
First, a set of documents D entails a statemHQW� �LII�  is entailed by the union of the 
imports closure [4] of every document in D. As such, it is possible that a pair of 
documents might entail something that is not entailed by either document alone. Sec-



ond, a set Dsub � D is a minimal consistent suEVHW�RI�'�WKDW�HQWDLOV� �LII�Dsub is consis-
tent, and Dsub HQWDLOV� �DQG�WKHUH�LV�QR�subset of it WKDW�HQWDLOV� � 1RWH��IRU�D�JLYHQ� ��
there may be multiple such sets. 

Based on this, we propose two kinds of queries to be answered by the system: 
x Q1: Given a trusted subset Dsub (of size M)1, is Dsub consistent and does it entail an 

assertion a:C? 
x Q2: What are the minimal consistent subsets of D that entail an assertion a:C? 

We also take into account inconsistency in the queries. In classical logic, everything 
can be deduced from an inconsistent knowledge base. However, in many Semantic 
Web applications, this is not desirable and it is crucial to be able to identify inconsistent 
document sets in order to avoid inappropriate use of the semantic data. By these que-
ries, we suggest that inconsistency can be managed, not by changing the underlying 
logic, but by changing the kind of queries we pose to the Semantic Web. 

The rest of the paper is organized as follows. Section 2 looks at the naïve approach to 
answer the above two queries. Section 3 describes in detail an improved approach. 
Section 4 discusses related work. Section 5 concludes. 

2 A Naïve Approach 

1) Answering Q1 
To answer Q1, we first combine the documents in Dsub. This involves loading them 

into a single knowledge base. Then if the knowledge base is found inconsistent, the 
answer to Q1 is false; otherwise, we query about a:C on the knowledge base. The result 
is then the answer to Q1. Such a query can be executed using a description logic rea-
soner that supports realization such as Racer [6]. 
2) Answering Q2 

To answer Q2, we repeat Q1 against each applicable subset of D. We enumerate the 
subsets of D in increasing order of their sizes. In order to ensure that only minimal 
consistent subsets are returned, we keep track of those subsets that either answer yes to 
Q1 or are inconsistent so that we could skip all the supersets of them later on. This 
works because OWL is monotonic. The answer to Q2 will then be the document sets 
which have answered positively to Q1 during the test. 

Next we analyze the complexity of this approach. To facilitate the analysis, we as-
sume that the average size of the documents in D is SD, and so is the average size of the 
documents in Dsub. 
1) Answering Q1 

It is known that reasoning on a language like OWL Lite, which maps to SHIQ(D+), 
is expensive with worst case NexpTime complexity. Therefore, we could expect that the 
dominant factor of the complexity of answering Q1 is the time spent on reasoning in-
cluding consistency check and instance query. We denote it by Tinf(M*SD). For sim-
plification, in the subsequent discussion, we will not make distinction between different 
sorts of reasoning processes, instead, we generally refer to their time complexity as 

                                                           
1 This set might be explicitly specified by the user or be determined by some certification au-

thority that the user has specified. 



Tinf(s) wherein s is the size of the knowledge base measured by the total size of the 
documents loaded into it. 
2) Answering Q2 

Suppose k is the total number of subsets that have been tested with Q1, then the best 
case occurs when every document in D either entails the target assertion or is incon-
sistent. In that case, k equals to N and the time complexity is N*TQ1(SD), wherein TQ1(s) 
stands for the time complexity of answering Q1 on a document set of size s. On the 
contrary, the worst case happens when none of the subsets could be skipped by the 
strategy and we are forced to do the query on all of them. In that case, k is as large as 
2N-1, and the time complexity is O(2N)* TQ1(N*SD). 

This approach has several drawbacks. First, it is incapable of reusing the results of 
expensive inference from the preceding queries. For instance, if a Q1 query is repeated, 
we have to carry out the same process all over again. Answering Q2 is similar in this 
aspect. Second, the scalability of this approach is a problem especially for answering 
Q2. Again, the complexity cannot be amortized over multiple queries. 

3 An Improved Approach 

3.1 Assumption-Based Truth Maintenance System 

Our approach builds on the concept of assumption-based truth maintenance system 
(ATMS) [1]. Like the conventional justification-based truth maintenance system 
(JTMS) [2], ATMS makes a clear division between the problem solver and the TMS, as 
shown in Fig. 1. The TMS functions as a cache for all the inference made by the 
problem solver. Thus inferences, once made, need not be repeated, and contradictions, 
once discovered, are avoided in the future. Unlike JTMS which is based on manipu-
lating justifications, ATMS is, in addition, based on manipulating assumption sets. In 
an ATMS, every datum is labeled with the sets of assumptions, a.k.a. environments, 
under which they hold. These assumption sets are computed by the ATMS from the 
problem solver supplied justifications. Consequently, ATMS makes it possible to di-
rectly refer to a context, defined as a given environment plus all the data derivable from 
it. Thus context switching, which is very expensive in JTMS, is free in ATMS. 
Therefore, ATMS can work more efficiently than JTMS for problem solving by ex-
ploring multiple contexts simultaneously. 

 
Fig. 1. ATMS Components 

3.2 Document Preprocessing 

Generally speaking, our approach aims at improving the scalability and efficiency by 
reusing the results of document processing, especially reasoning. This is realized by 
adding to the document processing a new functionality of figuring out and recording the 
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context of each encountered statement. Here we define: a “context” of a statement is a 
minimal consistent document set that entails the statement. This definition is sufficient 
because OWL is monotonic: if a statement is entailed by a set of documents, it is also 
entailed by any superset of that set; likewise, if a document set is inconsistent, each of 
its supersets will be inconsistent too. 

We adopt ATMS to streamline the management of such contexts. In an ordinary 
ATMS, each node is associated with a proposition and a justification is a record of 
logical inference made between those propositions. In our approach, we use ATMS in 
an unconventional way. We use the ATMS nodes to represent two types of objects. We 
use an assumption node to represent a single document from D. We call the node a 
document node. And we use a derived node to represent a set of documents, in other 
words, the combination of these documents. We call the node a combination node. 
Following the notation in [1], we use� d to denote a document node representing 
document d, and v a combination node representing document set v. A justification 

d1,…, dn=> v is then interpreted as: the conjunction of the statements entailed by 
documents d1,…,dn implies the statements entailed by the document set represented by 
v. Moreover, a justification d1,…, dn=>  conveys the information that document set 
{d1,…,dn} is inconsistent. It can be interpreted in a similar way when the antecedents of 
the justification contain combination nodes. Fig. 2 is an example ATMS for four 
documents, among which {D1, D2}, {D1, D3} and {D3, D4} are inconsistent. We will 
introduce the algorithm for constructing such ATMS at the end of the section. 

 
Fig. 2. An example ATMS network 

There are several reasons for us to associate an ATMS node with a document or a 
document set as opposed to a statement. First is the scalability consideration. The scale 
of data makes it impossible to represent each statement individually and to provide a 
specified justification for it. Second, we assume that documents are all or nothing, i.e., 
we trust either the whole content of a document or none of it. One other minor reason is 
that since our description logic reasoners are black boxes, we cannot easily determine 
exact justifications at the level of a statement. We instead must determine them at the 
document level. As a result, an ATMS node in our system essentially points to a set of 
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statements and it serves as the media of the context of those statements: the environ-
ment of such a node is just a minimal consistent document set which entails the 
statements associated with the node. 

Now what we need to do is to store the statements together with their contexts. To 
make our system more scalable, we do not store the deductive closure of the knowledge 
base. We observe that once subsumption has been computed, a simple semantic net-
work is sufficient for answering queries about the instances of classes. Therefore, we 
only store the subsumption relations which are not redundant (for example, C1�C3 is 
redundant given C1�C2 and C2�C3) and the most specific classes of each instance. 
However, to answer the queries presented in Section 1, we also need context informa-
tion. As a result, what is stored can be seen as a semantic network whose links are 
“annotated” by the contexts, as depicted by Fig. 3. As we will show in next section, this 
allows us to replace the expensive description logic reasoning with a much simpler 
semantic network inference-like procedure during query answering. In this way, we 
find a balance between doing some precomputation at loading time in order to save 
query time while controlling storage requirements. 

 
Fig. 3. An “Annotated” Semantic Network 

Also for scalability, we store the “annotated” semantic network in a relational da-
tabase. We use two kinds of tables. The first is a set of class instance tables, where there 
is one for each class. Each tuple of the table contains an individual of the class and a 
supporting node. By supporting nodes, we mean those nodes whose environment can 
entail that the corresponding individual is an instance of the class. Recall that a node’s 
environment is a set of documents. Since the same concept assertion may hold in dif-
ferent document sets, an individual may have multiple supporting nodes with respect to 
a specific class. The second kind of table is a class taxonomy table, which records the 
class subsumption. Each tuple in the table consists of a superclass, its subclass, and a 
supporting node for the subsumption relation. Again, a subsumption may be supported 
by multiple nodes. Table 1 and Table 2 show what these tables look like for the 
semantic network displayed in Fig. 3. 

Table 1. Class Instance Tables    Table 2. Class Taxonomy Table 
Class C2                     Class C3            (*combination node of D1 and D4) 
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a2 D4  a3 D3  C1 C3 D2 

Now we give the algorithm for processing a document (PROCESS-DOC). Due to 
space constraints, we intersperse the description within the pseudo code. The basic idea 
is, when a document is newly added, we apply inference on it and store the statements 
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entailed by it. Then we combine it with each of applicable subsets of the preceding 
documents and store the entailed statements by the combination. 

1 procedure PROCESS-DOC(Dk) 
2 {Assuming documents D1,…,Dk-1 have already been processed} 
3 begin 
4   LOAD(Dk); /*load the document into a knowledge base*/ 
5   ADD-DOC(Dk); 
6   if Dk is consistent then 
7     for each non-empty subset s of {D1,…,Dk-1} do2 
8       if ATMS: CHECK-NOGOOD(s)=false3 then COMBINE-DOCS(s, Dk); 
9 end 
10 procedure ADD-DOC(Dk) 
11 begin 
12   ATMS: ADD-ASSUMPTION(Dk); /*add an assumption node for Dk*/ 
13   DO-INFERENCE(Dk); /*apply DL inference on Dk*/ 
14   if Dk is inconsistent then ATMS:NOTIFY-JUSTIFICATION(“ Dk => ”�; 
15   else STORE-STATEMENTS(Dk, Dk); 
16 end 
17 procedure COMBINE-DOCS(set, Dk) 
18 begin 
19   set_node := the representative node of set; 
20   Vnew := LOAD(set U {Dk}); /*load Dk and all documents in set 

into a knowledge base, Vnew being the combination*/ 
21   DO-INFERENCE(Vnew); /*apply DL inference on Vnew*/ 
22   if Vnew is inconsistent then 
23     ATMS: NOTIFY-JUSTIFICATION(“set_node, Dk  => ”�; 
24   else begin 
25     ATMS: ADD-NODE(Vnew); /*add a new node representing Vnew*/ 
26     ATMS: NOTIFY-JUSTIFICATION(“VHWBQRGH�� Dk  !� vnew”�; 
27     STORE-STATEMENTS(Vnew, vnew); 
28   end 
29 end 
30 procedure STORE-STATEMENTS(d, node) 
31 {node is the ATMS node representing document set d;} 
32 begin 
33   for each non-redundant concept axiom C1 � C2 in d do 
34     ADD-TO-TAXONOMY-TABLE4(C1 � C2, node); 
35   for each concept assertion a:C in d wherein C is the most    
     specific class of a do 
36     ADD-TO-INSTANCE-TABLE5(a:C, node); 
37 end 

                                                           
2 We ignore it for brevity, but owl:imports can be taken into account for document combina-
tion. For instance, if one document imports another, we can skip the combination of both of 
them. 
3 One important functionality of ATMS is to record the assumption sets that have caused con-

tradictions in a so-called nogood list. For instance, if we notify the ATMS that Dk is incon-
sistent, it will record {Dk} as a nogood environment. 

4,5Both procedures guarantee that a statement will ultimately be stored only with the nodes rep-
resenting its contexts, i.e., the minimal consistent document sets that entail the statement. 



3.3 Query Answering 

Based on the above preprocessing, we can make the query answering more lightweight 
by reducing them to simple operations involving multiple table lookups. The algo-
rithms are listed below. TEST-INSTANCE answers Q1 with individual a, class C, and 
a set of documents set. If set is inconsistent, we return false to the query (Line 4). 
Otherwise, we search for a in C’s table (Line 5, TEST-INSTANCE1). If we find a tuple 
of a such as its supporting node has an environment which is subset of set, we answer 
yes to the query (Line 24). If we could not directly find a matching tuple in the instance 
table, we will resort to the class taxonomy table (Lines 6-16). We search for the sub-
classes of C in set, and repeat the test with those subclasses (Line 12). 

1 procedure TEST-INSTANCE(a, C, set) return true or false 
2 begin 
3   {a: an individual; C: a class; set: a subset of D;} 
4   if ATMS: CHECK-NOGOOD(set)=true then return false; 
5   if TEST-INSTANCE1(a, C, set)=true then return true; 
6   else begin 
7     search the class taxonomy table for C; 
8     for each found tuple t do begin 
9       n := t.SupportingNode; 
10       env := ATMS: GET-ENVIRONMENT(n); 

11       if env � set then 
12         if TEST-INSTANCE(a, t.SubClass, set)=true then 
13     return true; 
14     end 
15     return false; 
16   end 
17 end 
18 procedure TEST-INSTANCE1(a, C, set) return true or false 
19 begin 
20   search the instance table of C for a; 
21   for each found tuple t do begin 
22     n := t.SupportingNode; 
23     env := GET-ENVIRONMENT(n); 

24     if env � set then return true; 
25   end 
26   return false; 
27 end 

QUERY-INSTANCE answers Q2, also by consulting the information in the tables. 
But unlike TEST-INSTANCE, when two elements, one from the taxonomy table and 
the other from an instance table, are used simultaneously to derive an answer, the al-
gorithm adds the union of the environments of their support nodes to the result (Line 
20). In addition, it guarantees that what are finally returned are only those minimal 
environments, i.e., document sets. This is covered by INSERT-CONTEXT and 
INSERT-CONTEXTS in Lines 4, 9 and 20. 

1 procedure QUERY-INSTANCE(a, C) return a document set 
2 {a: an individual; C: a class; results := {};} 
3 begin 
4   INSERT-CONTEXTS(results, QUERY-INSTANCE1(a, C, {}); 



5   search the class taxonomy table for C; 
6   for each found tuple t do begin 
7     n := t.SupportingNode; 
8     env := GET-ENVIRONMENT(n); 
9     INSERT-CONTEXTS(results,QUERY-INSTANCE(a,t.SubClass,env)); 
10   end 
11   return results; 
12 end 
13 procedure QUERY-INSTANCE1(a, C, set) return a document set 
14 {a: an individual; C: a class; results := {};} 
15 begin 
16   search the instance table of C for a; 
17   for each found tuple t do begin 
18     n := t.SupportingNode; 
19     env := GET-ENVIRONMENT(n); 
20     INSERT-CONTEXT(results, set U env); 
21   end 
22   return results; 
23 end 

3.4 Complexity Analysis 

Now we analyze the computational complexity of our approach. As with the naïve 
approach, we focus on the most significant operations. 

1) Answering Q1 
Our approach has reduced query answering to table searching and eliminated the 

need of doing inference. How many database operations are required depends on how 
many document sets the statements considered in the process have as their contexts. In 
the best case, the number is at constant level. In the worst case, however, the number is 
O(2N), e.g., when the statement in the query is entailed by the maximum number of 
subsets of D such that no set contains another. Nevertheless, we could expect that in a 
real application, most of the statements will only have a handful of, if not one, docu-
ment sets in D as their contexts. Therefore, the time complexity will be very close to the 
best case. 
2) Answering Q2 

As shown in QUERY-INSTANCE, answering Q2 has been realized in similar al-
gorithm to that of Q1, except that the algorithm has to examine all possible contexts of 
a statement since no candidate is specified as in Q1. But this does not increase the order 
of complexity. In other words, we have achieved a complexity of Q2 similar to 1). This 
is a significant improvement compared to the naïve approach. 
3) Document preprocessing 

Our approach reduces query time by doing extra work when loading documents. 
There are three major kinds of work: ATMS related operations, database operations, 
and inference. The most significant task is inference. ADD-DOC does inference on 
documents while COMBINE-DOCS does inference on document sets. Therefore 
roughly, the time complexity of both procedures are Tinf(N*SD). Since we try to com-
bine a newly added document with every subset constituted by its preceding document, 
there are potentially O(2N) such subsets, which means COMBINE-DOCS has to be 



invoked for O(2N) times in the worst case. This results in a worst case complexity of 
O(2N) *Tinf(N*SD). 

However, this complexity can be alleviated in the case when a document set is 
identified inconsistent at some time and a significant number of combinations involv-
ing that set are avoided later on. The example in Fig. 2 demonstrates this. It is similar in 
the case when some documents import others. In addition, considering the improve-
ment on query efficiency, we could argue that the complexity of the document proc-
essing in advance could be amortized over a large number of queries, since queries are 
significantly faster here than in the naïve approach. 

4 Related Work 

Trust systems for the Semantic Web as in [7, 8, 9, 10] are developed to compute 
whether to trust a Semantic Web resource depending on certain factors such as its 
source. Clearly our work is not about such kind of trust system. Our system deals with 
the untrustworthy Semantic Web from a perspective of extensional queries�and leaves 
the determination of who to trust in the hands of the user.�However, it is possible to 
integrate our system with other trust systems. For example, another system could de-
termine the trusted set for Q1, or the results of our Q2 could be used as input into a 
system trying to determine some form of community based trust. 

Sesame is another Semantic Web system that makes use of a truth maintenance 
system. In particular, it uses a simplified JTMS to track all the deductive dependencies 
between statements and to determine which other statements have to be removed as a 
consequence of a single deletion�[5]. Since we are essentially dealing with multiple 
contexts, the ATMS is much more suitable for us. In addition, their work tries to find 
out the dependency between statements while ours deals with the justification on 
statements at document level. 

Finally, much work has been done in the logic community to study paraconsistent 
logics that allow reasoning with inconsistent information. Examples of such logical 
systems include bilattice-based logics [11, 12] and annotated logics [13, 14, 15]. As 
noted at the beginning of the paper, our work does not aim at developing the underlying 
logic to handle inconsistency. Instead, we proposed to manage inconsistency by 
changing the kind of queries we pose to the Semantic Web. 

5 Conclusions and Future Work 

In this paper, we considered the issue of how to obtain useful information on the in-
herently untrustworthy and inconsistent Semantic Web. We proposed an approach to 
build a system that could answer two kinds of queries. One asks if a statement is en-
tailed by a trusted set of documents and that set is consistent. The other asks for the 
minimal consistent document sets that entail a specific statement as a way to help the 
user to decide if they trust those sources. We employ an assumption-based truth main-
tenance system (ATMS) to efficiently represent document sets as the contexts of the 
statements entailed by them. Also we leverage the mechanism of ATMS for in-



consistency management. Based on that, we introduced a mechanism which preproc-
esses the documents and caches the complex inference together with statement context 
information, and answer the queries based on these. We showed how our approach 
greatly improves the efficiency with respect to the proposed queries. Another charac-
teristic of our approach is that it seamlessly integrates the task of query answering and 
inconsistency management in one framework. In this paper, we have concentrated on 
the queries about concept assertions. However, the approach presented here can be 
easily extended to support role assertions, for example. 

For future work, we will look into ways to further improve the scalability of our 
approach, especially to reduce the average cost in the preprocessing. One of our plans is 
to devise a mechanism that discovers in advance if nothing new can be entailed by a 
combination of documents and thus allows us to omit the combination. Also we intend 
to transfer the current approach into a distributed one, possibly based on the work on 
distributed ATMS like [16]. 

References 

1. Kleer, J. de. An assumption-based TMS. Artificial Intelligence, 28(2), 1986. 
2. Doyle, J. A truth maintenance system. Artificial Intelligence 12(1979). 
3. Bechhofer, S. et al. OWL Web Ontology Language Reference.  
   http://www.w3.org/TR/owl-ref/ 
4. Patel-Schneider, P.F. ed. OWL Web Ontology Language Semantics and Abstract Syntax. 
   http://www.w3.org/TR/owl-semantics/ 
5. Broekstra, J. and  Kampman, A. Inferencing and Truth Maintenance in RDF Schema: ex-

ploring a naive practical approach. In Workshop on Practical and Scalable Semantic Systems 
(PSSS). 2003. 

6. Haarslev, V. and Moller, R. Racer: A Core Inference Engine for the Semantic Web. In Work-
shop on Evaluation on Ontology-based Tools, ISWC2003. 

7. Golbeck, J., Parsia, B., and Hendler, J.Trust networks on the semantic web. In Proc. of Co-
operative Intelligent Agents. 2003. 

8. Klyne, G. Framework for Security and Trust Standards. In SWAD-Europe. 2002. 
9. Richardson, M., Agrawal, R., and Domingos, P. Trust Management for the Semantic Web. In 

Proc. of ISWC2003. 
10. Gil, Y. and Ratnakar V. Trusting Information Sources One Citizen at a Time. In Proc. of 

ISWC2002. 
11. Ginsberg, M.L. Multivalued logics: A uniform approach to inference in artificial intelligence. 

Computer Intelligence, 4(1988).  
12. Fitting, M.C. Logic Programming on a Topological Bilattice. Fundamenta Informaticae, 

11(1988). 
13. Subrahmanian, V.S. On the Semantics of Quantitative Logic Programs . In IEEE Symposium 

on Logic Programming. 1987.  
14. Blair, H.A. and Subrahmanian, V.S. Paraconsistent Logic Programming. Theoretical Com-

puter Science, 68(1989). 
15. Kifer, M. and Lozinskii, E.L. A logic for reasoning with inconsistency. Journal of Automated 

Reasoning, 9(2), 1992. 
16. Malheiro, B., Jennings, N., and Oliveira, E. Belief Revision in Multi-Agent Systems. In Proc. 

of the 11th European Conference on Artificial Intelligence (ECAI’94). 1994. 


