

Towards Monitoring Cloud Services Using
Models@run.time

Priscila Cedillo, Javier Gonzalez-Huerta, Silvia Abrahao, Emilio Insfran

ISSI Research Group, Department of Information Systems and Computation
Universitat Politècnica de València,

Camino de Vera, s/n, 46022, Valencia, Spain
{icedillo, jagonzalez, sabrahao, einsfran}@dsic.upv.es

Abstract. Cloud computing represents a new trend to provide software ser-
vices. In order to deliver these services there are certain quality levels that
should be considered. The provided services need to comply with a set of con-
tract terms and non-functional requirements specified by a service level agree-
ment (SLA). In addition, to support the fulfillment of the SLA a monitoring
process should be defined. This allows service providers to determine the actual
quality level of services in the cloud. In this paper, we define a monitoring pro-
cess for the usage of models at runtime, specifying low- and high-level non-
functional requirements contained in a SLA. Models at runtime provide flexibil-
ity to the monitoring infrastructure due to their reflection mechanisms; the mod-
ification of non-functional requirements may dynamically change the monitor-
ing computation, avoiding the need to adjust the monitoring infrastructure. In
our approach, models at runtime are part of a monitoring middleware that inter-
acts with cloud services; it retrieves data in the model at runtime, analyzes the
information, and provides a report detailing the issues of non-compliance of
non-functional requirements.

Keywords: Cloud Computing, SaaS, Models@run.time, SLA, Monitoring,
Model Driven Engineering.

1 Introduction

The evolution of cloud computing technologies is promoting the development of new
techniques to provide high-quality services. Cloud computing infrastructures, with
software as a service model, provide capability to consumers to use software and
services hosted in the cloud platform. Due to the nature of the cloud, the ways in
which services are built and deployed have changed. As a result, it is necessary to
fulfill non-functional requirements including the most specific characteristics of the
cloud (e. g. scalability and elasticity).

Service Level Agreements (SLAs) emerge as a key aspect to ensure the expected
quality level of the services between the consumer and the provider. ITIL defines a
SLA as a formal, negotiated document in quantitative terms (and perhaps qualitative
terms), detailing the service that will be offered to a customer [1]. Any metrics in-

cluded in a SLA should be capable of being measured on a regular basis and the SLA
should record them [1]. Problems arise from the current practice in SLA specification
for IT services because SLAs are mostly based on templates, mainly filled with natu-
ral language descriptions that make it difficult to automate SLA compliance verifica-
tion [2]. In order to support the SLA fulfillment and timely reaction to failures, ad-
vanced SLA strategies are necessary. These techniques include appropriate resource-
monitoring concepts. The Quality-of-Service (QoS) attributes, which are generally
part of an SLA, change constantly in order to fulfill the agreement. As a result, these
attributes need to be closely monitored [3].

Traditional monitoring technologies are restricted to static and homogenous envi-
ronments and, therefore, cannot be appropriately applied to cloud environments [4].
In traditional software development, many assumptions in the context of an applica-
tion are described at design time; however, in cloud computing, those assumptions are
not possible [5]. Moreover, several non-functional assurance criteria may be more
easily guaranteed at runtime than at design time. For example, it is easier to assess
latency when it is possible to measure and continually monitor delay times in the
running system [6]. Cloud computing brings new issues, challenges and needs in per-
formance testing, evaluation and scalability measurements due to the special features
of cloud computing, such as latency, elasticity and scalability [7]. The information of
the system in execution feeds the models at runtime, which support reasoning, adapta-
tion or monitoring of the system. To realize such a connection between the running
system and the models at runtime, the system needs a self-representation of its quality
view, which is used to map the raw data with the high-level requirements specified in
the SLA.

Based on the utilization of models, a runtime model is defined as an abstraction of
a running system which is being manipulated at runtime for a specific purpose [8].
Another definition of a model at runtime is a causally connected self-representation of
the associated system that emphasizes the structure, behavior and goals of the system
from a problem space perspective [9].

As far as we know, there is a lack of studies which uses models at runtime in cloud
computing environments. Models at runtime are useful to support cloud services mon-
itoring because developers do not need to implement new requirements that should be
included for monitoring in the infrastructure; they only need to include them in the
model. Moreover, cloud computing environments bring new issues and present par-
ticular characteristics that differentiate the ways in which we should measure their
quality [10].

This paper presents an approach to monitor non-functional requirements of cloud
services specified in the SLA using models at runtime, through a middleware that
interacts with services or applications in the cloud. This middleware retrieves infor-
mation from the running system and feeds the model at runtime, analyzing this infor-
mation, and providing a report with issues that violate the SLA.

This approach is useful to measure higher-level attributes. It is important to con-
sider that models at runtime give flexibility when the evaluator needs to change moni-
toring criteria or wants to change the parameters to be monitored; this is because the

monitoring system does not need to be adjusted in this case and only the attributes to
be monitored over the model should be changed.

This work is structured as follows: In Section 2, we present related work address-
ing models at runtime and how they are used to monitor applications, SLA manage-
ment, and quality requirement representations in SLAs. In Section 3, we present the
monitoring process. In Section 4, we explain how the process works by means of an
example. Finally, in Section 5, we present our conclusions and discuss future work.

2 Related Work

We classify related work into models at runtime and the way in which they are used
to monitor applications. Since there is a lack of work focusing on monitoring using
models at runtime in the cloud and web services, we look at other environments in
which models at runtime are used in monitoring and which can represent a valid ref-
erence for this work [5,9,11,12,13,14,15]. Finally, we discuss the SLA management
and quality requirements representations in the cloud [4,16,17,18,19,20].

Baresi and Ghezzi [5] advocate that future software engineering research should
focus on providing intelligent support to software at runtime, breaking today’s rigid
boundary between development-time and runtime. Szvetits et al. [11] build a classifi-
cation and conduct a survey in terms of objectives, techniques, architectures and kinds
of models using models at runtime. They observe the objectives pursued when using a
system that utilizes models at runtime and conclude that one of the most important
objectives is system monitoring. Bencomo et al. [12] show that models at runtime are
an important research topic for enterprise and cloud, and included a session about this
topic in the 8th International Workshop on Models@runtime. Bertolino et al. [13]
propose a property-driven approach to runtime monitoring that is based on a meta-
model and a generic configurable monitoring infrastructure; however, they do not pay
attention to the particular characteristics of cloud computing (e.g. elasticity, scalabil-
ity, etc). In [14], the authors develop the GLIMPSE monitoring infrastructure in the
context of the European Project CONNECT that can support runtime performance
analysis. Blair et al. [9] define models at runtime as being similar to a causally con-
nected self-representation of the associated system that emphasizes the structure, be-
havior and goals of the system from a problem space perspective. Their vision of
models at runtime is to raise the level of runtime model abstraction to that of require-
ments, and Bencomo et al. [15] use requirement reflection in self-adaptive systems by
making requirements first-class runtime entities, thus endowing software systems
with the ability to reason with, understand, explain and modify requirements at
runtime.

Emeakaroha et al. [4] present a framework entitled LoM2HiS for the mapping of
low-level resource metrics to high-level SLA parameters. Its architecture includes a
runtime monitor that continuously monitors the customer’s application status and
performance; then in [16] they propose an application monitoring architecture entitled
CASViD, which stands for Cloud Application SLA Violation Detection architecture.
Correia et al. [17] propose a domain specific language (SLA Language for specifica-

tion and Monitoring – SLALOM) for SOA, in order to bridge the gap between the
customer perspective (business oriented) and the service provider (implementation
oriented, which becomes more evident in a SLA monitoring process). Myerson [18]
discusses some best practices and how SLAs for cloud computing can be standard-
ized. Comuzzi et al. [19] focus on contractual mechanisms of SLAs. They conducted
a qualitative study interviewing industry experts to understand the extent to which
SLA specifications in traditional environments can be applied to cloud computing.
Muller et al. [20] present a design and implementation of SALMonADA, a service-
based system to monitor and analyze SLAs to provide an explanation of violations. In
SLA management and quality requirements representations, researchers do not use
models at runtime thus making it difficult to monitor additional quality attributes
when necessary or when SLAs change.

In conclusion, there is a lack of research that uses models at runtime with monitor-
ing infrastructures to provide flexibility and independence to the monitoring process.
Therefore, in this work, we present a monitoring infrastructure of cloud services that
uses models at runtime to improve the fulfillment of SLAs.

3 Monitoring Process

The proposed monitoring process consists of three tasks, each of which is subdivided
into particular activities. The process is based on the autonomic control loop tech-
nique. The idea of autonomic control loop is to measure system parameters, analyze
them, plan corrective actions if necessary, and execute these actions in order to im-
prove the system. One benefit of such an autonomic control loop is the reduced need
for manual human intervention that often lead to low abstraction, maintenance, and
reusability issues [11]. In this paper, we explain the process up until the Analyze Re-
sults task, which provides a report of SLA non-compliances, and in future research we
will connect the monitoring middleware with a reconfiguration middleware in order to
accomplish the autonomic control loop. The tasks which comprise our approach are
presented in Fig. 1; the monitoring process begins with the Monitoring Configuration
task. The output of this task is the model at runtime which will be used for the moni-
toring middleware in the Measurement Process task.

Fig. 1. Cloud Monitoring Process

The Measurement Process task captures low-level data from the running services
using reflection techniques, and feeds the model at runtime with useful and filtered
information, which is used by the Analyze Results task.

Monitoring	

Configuration

Measurement	

Process Analyze	
 Results

SLA Aditional	

Monitoring	

Requirements

in

Monitoring	

Model@runtime

out

Low	
 Level	
 Data
Raw	
 data

in In

Model	
 with	
 data	

(High	
 Level)

out

SLA

in in

Fulfillment	

Report

out

Artifacts

The Analyze Results task uses the data generated by the Measurement Process,
compares it with the non-functional requirements specified in the SLA, and creates a
Fulfillment Report that describes the non-compliances. The following sub-sections
describe systematically each task and subtask of the monitoring process.

3.1 Monitoring Configuration

The Monitoring Configuration is responsible for the preparation of the model at
runtime. It generates the code through a transformation. This code will be used by the
monitoring middleware in order to operate with the data retrieved from the cloud.

Establish Monitoring Quality Requirements is the first task of this process. This
task receives three artifacts as input: (1) the SLA with non-functional requirements,
(2) additional monitoring requirements, and (3) the artifacts which will be analyzed
by the monitoring process (e.g., services, applications). The output of this task is the
Monitoring Requirement Specification. This contains characteristics and attributes
that will be monitored. The Quality Attributes Selection uses as a guide a SaaS Quali-
ty Model to select the attributes specified in the Monitoring Requirements Specifica-
tion. The Measures Selection task also uses a SaaS Quality Model and, depending on
the user’s perspective, selects the appropriate metrics to be applied. It is important to
include the criticality related to the attributes, in order to take into account priority
when taking corrective actions. Fig. 2. Monitoring Configurationshows the Monitor-
ing Configuration task.

Fig. 2. Monitoring Configuration

The next step is the Monitoring Model Generation. The output of this task is a
model at runtime that is the input of the Model2Text Transformation task. It generates
the Monitoring Code with the model at runtime, which is used by the middleware in
the Monitoring Process.

Fig. 3 shows the meta-model used by the Monitoring Model Generation task. Due
to space constraints, we highlight only the most important meta-classes in the quality
model at runtime:

─ RawReport: contains the idCustomer, the idService, the monitoredExchangeId,
the date and the timestamp of the data collected.

Monitoring	

Configurator	
 SaaS

Establish	
 Monitoring	

Quality	
 Requirements

Quality	
 Attributes	

Selection

Monitoring	
 Model	

Generation

Model2Text
Transformation

in

SaaS	
 Quality	

Model

guides

Selected	

Attributes

in

Service	
 Level	

Agreenment

Aditional	

Monitoring	

Requirements

Monitoring	

Requirements	

Specification

out in

Measures	
 Selection

guides

Selected	

Metrics

out

in

in

out

Monitoring	

Code

out

Monitoring	

Model@Runtime	

outin

Artifacts

─ SaaSQualityModel: contains the quality model reference, which provides all the
attributes and metrics that can be applied in the monitoring middleware. Only a
subset of the SaaSQualityModel attributes will be monitored.

─ MeasurableConcept: can be a characteristic, sub-characteristic, or attribute that
will be included in the monitoring process. Note that only the attributes can be
measured and there is an OCL that specifies this constraint.

─ Metric: is a measure of an attribute. A metric can be direct, indirect or an indicator
and can have zero or many ways to be measured using “operationalizations”, de-
pending on the attribute or the user perspective.

─ Operationalization: is the way in which a metric is calculated. It can be a Meas-
urementMethod, a CalculatingFunction, a Variable, or a Constant.

Fig. 3. Meta-model at runtime for the monitoring process

Lehmann et al. [21] argue that the meta-models of runtime must provide modeling
constructs enabling the definition of: i) a prescriptive part of the model, specifying
how the system should be: in this case, the prescriptive part can be related to the
thresholds of the proposal meta-model; ii) a descriptive part of the model specifying
how the system is. This is related to real values, which are retrieved from the services
in the cloud in addition to the monitoring information contained in the Raw Report;
iii) valid model modifications of the descriptive parts, executable at runtime. In this
case, it may be necessary to retrieve new data about the state of the services, by add-
ing new non-functional requirements to the monitoring process; iv) valid model modi-
fications of the prescriptive parts, executable at runtime. This is the addition of new
non-functional requirements and their thresholds in the model; v) causal connection:
this is in the form of an information flow between the model and the services.

 In order to achieve the descriptive and prescriptive model modifications, the de-
velopment of a reconfiguration middleware is proposed as future research.

< < enumeration> >
Perspective

CloudProvider
ServiceProvider
Consumer
OverCloud

SaaSQualityModel
name	
 :	
 EString

MeasurableConcept
LevelQ	
 :	
 Level
Name	
 :	
 EString
Nature	
 :	
 QPropertyNature

< < enumeration> >
Level

Characteristic
SubCharacteristic
Attribute

< < enumeration> >
DimensionType
Time
Percentage
Real

Constant
Value	
 :	
 EString

Variable

Unit
Name	
 :	
 EString
Dimension	
 :	
 DimensionType

Scale
value	
 :	
 ELong

ScaleType
Scale	
 :	
 Scale

DirectMetric

IndirectMetric

Indicator

CalculatingFunction

MeasurementMethod

MeasurementInstrument

AnalysisModel

DecisionCriterion

EvaluationPerspective
EPerspective	
 : Perspective

Operationalization

Metric

Threshold
Name	
 :	
 EString
Action	
 :	
 EString
hardConstrain	
 :	
 EBoolean

< < enumeration> >
AlarmLevel

High
Normal
Low

RawReport
idCustomer	
 :	
 EString
idService	
 :	
 EString
monitoredExchangedId	
 :	
 EString
date	
 :	
 EDate
timeStamp	
 :	
 ELong

Impact
CriticalLevel	
 :	
 AlarmLevel

LowLevelValue
Name	
 :	
 EString
Equivalence	
 :	
 EString
Type	
 :	
 DimensionType

ModC

0..*
HasRelation

0..*

CMod

0..*

Typeisin

0..*

usesMI

0..*

uses
0..*

uses0..*

iscalc
0..*iscalculated

0..*

transform 0..*

metricscale

0..1

Measuredby
0..1

Expreses

0..*

isappliedfor

0..*

ThresholdDesicion

0..1

DecisionThreshold

0..1

seePersp
0..*

is_in

0..1

scalemetric
0..*

hasscaletype

0..1

calculates

0..*

calculate

0..*

isusedby

0..*

isusedby

0..*

isused 0..1

istransfor

0..*

IsRelation0..*Measure
0..1

Belongs1

Contains0..*

canUse

0..1

isIn

0..*has
0..1

has

0..*

isIn
0..*

3.2 Measurement Process

The Measurement Process is included in a middleware that retrieves raw data from
the services and applications and provides monitoring information to users and cloud
providers. It uses the model at runtime defined in the previous section and uses a
Measurements Engine to measure the attributes. The communication between services
and the middleware is implemented using proxy elements or reflection techniques that
allow the bidirectional communication between the monitoring infrastructure and the
cloud services. The Analysis Engine receives information from the Measurements
Engine and compares it with the SLA and non-functional requirements. The middle-
ware provides results which can be used to take actions in order to improve the quali-
ty of the cloud and support SLA fulfillment. It is important to note that all of these
processes represent overload to the cloud and should be correctly planned to avoid
slowness. A middleware architecture enables communication and provides additional
functionality such as improving control, monitoring and logging[11].

Fig. 4. Monitoring Architecture

3.3 Results Analysis

The Analysis Engine is part of the middleware and compares the values obtained by
the monitoring process with the non-functional requirements, analyzing the results
and reporting the analysis. Results obtained by the monitoring system may be used to
plan a strategy to change the infrastructure using reconfiguration architectures that
use, for example, an expert system or a knowledge base, adapting the system by itself
and supporting the fulfillment of non-functional requirements, closing the autonomic
control loop. However this is reserved for future research.

4 Example

In this section, the monitoring process is illustrated through an example that imple-
ments all the steps involved in our strategy.

The monitoring process can be applied to any cloud platform. For this example,
Azure platform is used [22]. This is a services platform hosted by Microsoft data cen-
ters, which provides a platform as a service and a set of developer services; Azure

Models@run.time

Service	
 Level	
 Agreement

ApplicationsEnterprise Users SMBs

Analysis Engine Results

CLOUD	
 CONSUMERS

MIDDLEWARE

CLOUD	
 SERVICES	
 AND	

APPLICATIONS

Aditional	
 Requirements

Users

Measurement EngineRaw Data

also enables the building, deploying and managing of services, which can be devel-
oped in any language, tool or framework and integrate public cloud applications using
existing IT environments. Moreover, Azure has a library called Diagnostics that al-
lows retrieval of diagnostic data from the cloud infrastructure.

This example uses Azure to provide an online auction site with services. In these
kinds of applications users demand characteristics very related with cloud environ-
ments, and it is necessary to monitor them; for example availability, and another char-
acteristics such as scalability and elasticity, which are very important and specific for
cloud scenarios. The availability requirement will be focused on in this auction site.

4.1 Monitoring Configuration

Establish Monitoring Quality Requirements is the first task in the Monitoring Config-
uration. For this example, we consider that the SLA includes availability as a non-
functional requirement. The server provider commits that the bid service will be
available 99.50% or more of the time in a given calendar month. If the service offered
fails to meet this commitment, the server provider will apply a service credit to the
customer account. Additional monitoring requirements will be not considered, and the
artifact to be monitored is the bid service. For both, the Quality Attributes Selection
and Measures Selection, we can use quality models specific for cloud computing ser-
vices [10] or third part studies that define attributes and metrics for specific attributes
[23]. The availability is studied in [10] and this attribute is measured by the Robust-
ness of Service (ROS) metric. The ROS metric is computed by [10] as (1):

 𝑅𝑂𝑆 = (!"!#$!%$& !"# !"#$%!"& !""!)
(!"!#$!"#$!"# !"#$%&'() !""!)

 (1)

The range is 0...1 and the higher value, the higher availability the SaaS has [10].
Once this information is obtained, the Monitoring Model Generation and Model to

Text Generation tasks are performed in order to generate the model at runtime for the
Measurement Process. In our example, the availability is categorized as critical be-
cause in the auction domain, availability is essential as it represents money.

4.2 Measurement Process

The Measurement Process is the central part of the middleware and uses the model at
runtime generated by the previous step. This process calculates the ROS value, which
is the metric selected in the previous task, taking into account the values collected
from the bid service by the Diagnostics Tool in the Azure Platform, which is an im-
plementation of the proxy mechanism described in Section 3.2. It is possible to apply
the proposed process to any attribute by selecting the appropriate metric. Sometimes it
may be necessary to use past information, in metrics that use intervals, it is possible to
access the past instances of the model at runtime, (e.g. measuring the scalability).

4.3 Results Analysis

The Analysis Engine compares the non-functional requirements specified in the SLA

with real values resulting from the Measurement Process. For this example, the ser-
vice provider offers in the bid service 99.5% of availability and so by comparing the
result with the SLA, we can conclude if the service fulfills the agreement. If the avail-
ability of the service described in the SLA is fulfilled, a periodical or on demand re-
port can be generated. However, if the availability requirement is not fulfilled, the
monitoring middleware sends an alarm signal. A report with non-compliances is gen-
erated, detailing alarms being triggered and the criticality of the monitored attribute.

5 Conclusions and Future Work

In this paper, we have introduced a monitoring process using models at runtime, in
which it is possible to specify non-functional requirements described by a SLA, as
well as other non-functional requirements of interest to server providers. We have
described the meta-model of the model at runtime which will be used in the process
and have discussed the important parts of the model at runtime which are integrated
into the monitoring process. This approach is useful in measuring higher-level attrib-
utes specified by SLAs, and it provides flexibility when the evaluator needs to change
or add non-functional requirements since changes will be done in the model at
runtime and the monitoring infrastructure will not need to be affected.

As future work, we plan to implement this middleware, defining all input and out-
put artifacts involved in the process (e.g., SLAs, models at runtime, etc.) and investi-
gate in practice how the models at runtime will behave when non-functional require-
ments are modified. Finally, our objective is to provide guidelines to support the defi-
nition of the model at runtime from SLAs and to determine what actions can be per-
formed when violations of the SLA clauses arises. Through this line of research, we
will explore what dynamic architecture reconfigurations are possible in order to im-
prove the overall quality of the cloud application, and in this way, to complete the
autonomic control loop for the self-adaptation of high-quality services in the cloud.

6 Acknowledgments

This research is supported by the Value@Cloud project (TIN2013-46300-R), the
ValI+D program (ACIF/2011/235) from the Generalitat Valenciana; the Scholarship
Program Senescyt-Ecuador; and University of Cuenca, Ecuador.

References

1. Information Technology Infrastructure Library (ITIL), http://www.itil-officialsite.com
2. Correia, A., e Abreu, F.: Model-Driven Service Level Management. Mechanisms for

Autonomous Management of Networks and Services. pp.85–88. Berlin Heidelberg (2010)
3. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services. J. Netw. Syst. Manag. 11, 57–81 (2003)
4. Emeakaroha, V.C., Brandic, I., Maurer, M., Dustdar, S.: Low level Metrics to High level

SLAs - LoM2HiS framework: Bridging the gap between monitored metrics and SLA

parameters in cloud environments. Int. Conf. on High Performance Computing and
Simulation (HPCS), pp. 48–54. Caen, France (2010)

5. Baresi, L., Ghezzi, C.: The Disappearing Boundary Between Development-time and Run-
time. Workshop on Future of Software Engineering Research FSE/SDP. pp. 17–22. ACM,
Santa Fe, New Mexico, USA (2010)

6. Cheng, B.C., Eder, K., Gogolla, M., Grunske, L., Litoiu, M., Müller, H., Pelliccione, P.,
Perini, A., Qureshi, N., Rumpe, B., Schneider, D., Trollmann, F., Villegas, N.: Using
Models at Runtime to Address Assurance for Self-Adaptive Systems,
http://dx.doi.org/10.1007/978-3-319-08915-7_4

7. Gao, J., Pattabhiraman, P., Bai, X., Tsai, W.T.: SaaS performance and scalability
evaluation in clouds. 6th Int. Symposium on Service Oriented System Engineering
(SOSE), pp. 61–71. Irvine, CA, USA (2011)

8. Bencomo, N., Blair, G., Götz, S., Morin, B., Rumpe, B.: Report on the 7th Int. Workshop
on Models@Runtime. SIGSOFT Softw. Eng. Notes. 38, 27–30. Innsbruck, Austria (2013).

9. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer (Long. Beach. Calif).
42, 22–27 (2009)

10. Lee, J.Y., Lee, J.W., Cheun, D.W., Kim, S.D.: A Quality Model for Evaluating Software-
as-a-Service in Cloud Computing. 7th ACIS Int. Conf. on Software Engineering Research,
Management and Applications. pp. 261–266, Haikou, China (2009)

11. Szvetits, M., Zdun, U.: Systematic literature review of the objectives, techniques, kinds,
and architectures of models at runtime. Softw. Syst. Model. 1–39 (2013)

12. Bencomo, N., France, R.B., Götz, S., Rumpe, B.: Summary of the 8th International
Workshop on Models @ Run.time. MoDELS@Runtime. , Miami, FL, USA (2013)

13. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a Model-Driven
Infrastructure for Runtime Monitoring. In: Troubitsyna, E. (ed.) Software Engineering for
Resilient Systems. pp. 130–144. Springer Berlin Heidelberg (2011)

14. Bertolino, A., Calabrò, A., Lonetti, F., Sabetta, A.: GLIMPSE: A Generic and Flexible
Monitoring Infrastructure. 13th European Workshop on Dependable Computing. pp. 73–
78, Pisa, Italy (2011)

15. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements reflection:
requirements as runtime entities. 32nd Int. Conf. on Soft. Eng. pp. 199–202, Cape Town,
South Africa (2010)

16. Emeakaroha, V.C., Ferreto, T.C., Netto, M.A.S., Brandic, I., De Rose, C.A.F.: CASViD:
Application Level Monitoring for SLA Violation Detection in Clouds. 36th Annual
Computer Software and Applications Conference. pp. 499–508, Izmir, Turkey (2012)

17. Correia, A., e Abreu, F.B., Amaral, V.: SLALOM: a Language for SLA specification and
monitoring. CoRR. abs/1109.6, (2011)

18. Myerson, J.: Best practices to develop SLAs for cloud computing,
http://ibm.com/developerWorks/

19. Comuzzi, M., Jacobs, G., Grefen, P.: Clearing the Sky - Understanding SLA Elements in
Cloud Computing, Eindhoven, Nederland (2013)

20. Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M., Ruiz-Cortes, A., Rodriguez, M.:
Comprehensive Explanation of SLA Violations at Runtime. Serv. Comput. IEEE Trans. 7,
168–183 (2014)

21. Lehmann, G., Blumendorf, M., Trollmann, F., Albayrak, S.: Meta-modeling Runtime
Models. Int. Conf. on Models in Software Engineering. pp. 209–223. Oslo, Norway (2010)

22. What Is Azure?, https://azure.microsoft.com/en-us/overview/what-is-azure/.
23. Xiong, K., Perros, H.: Service Performance and Analysis in Cloud Computing. IEEE

Congress on Services. pp. 693–700, LA, California, USA (2009)

