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ABSTRACT
An effective technique for recommendation in social media
and other heterogeneous networks is the weighted hybrid
of low-dimensional components (WHyLDR). Recent stud-
ies have shown this technique is comparable to other in-
tegrative approaches while being considerably more flexi-
ble. One key issue for the implementation of a WHyLDR
system is the choice of components to generate. Research
has shown that the contribution of components based on
different network paths varies in unexpected and domain-
dependent ways. This work examines an information theo-
retic technique for estimating component performance. Us-
ing a real-world social media dataset, we show that this tech-
nique is useful both for optimization (estimating component
weights) and for determining which components to include
in a hybrid.

1. INTRODUCTION
Social media sites are an important element of today’s In-
ternet, drawing millions of users each day. The wealth of
information found in these sites makes recommender sys-
tems essential. Such sites often must integrate recommen-
dations of many types: recommending content, like-minded
users or appropriate tags to name just a few possibilities.
Our approach, called the Weighted Hybrid of Low-Dimen-
sional Recommenders (WHyLDR), is designed to support
the flexible creation and rapid deployment of a wide vari-
ety of recommenders in a heterogeneous environment. We
have demonstrated its effectiveness in prior work focusing
on social tagging systems [8, 7, 6, 3, 4].

A social media site can be viewed as a heterogeneous network
defined by a diversity of objects and relations. This diver-
sity gives rise to a wide variety of recommendation tasks.
For example, consider the popular social media site Yelp,
which allows users to review and rate restaurants and other
types of businesses.1 In Yelp, there are users, reviews, busi-
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nesses, and other related elements. One obvious recommen-
dation task within Yelp is to recommend new businesses
to users, but there are a variety of others. Recommend-
ing other users to befriend, recommending locations, and
recommending categories of businesses are all user-focused
recommendation tasks. A site like Yelp may also be in-
terested in recommending users to businesses for marketing
purposes. In addition, a user may wish to constrain the rec-
ommendations in various ways: looking for a recommended
business in a particular category or in a particular location,
for example.

Figure 1: Yelp network schema

As in other work with heterogeneous networks [10], the WHy-
LDR model views the network structure as a set of map-
pings, or projections from nodes to nodes: projA(n) →
{m0,m1, ...,mi} where A is a set of paths, n is a starting
node and thems are nodes reachable from n via some path in
A. Sets of paths that pass from one type of node to another
over specific categories of edges are known as meta-paths.

Meta-paths can also be envisioned as paths through a net-
work schema, an abstract view of a heterogeneous network
that shows the node types and the possible connections be-
tween them. Figure 1 shows the schema for part of the
Yelp social network. In this network, a path from any user
node to the businesses that individual has reviewed to the
categories associated with that business would be a UBC
metapath. Following such a path for any given user yields
a type of user profile – in this case, a user represented as
the categories of rated businesses. Using such profiles, we
can build standard collaborative filtering components to se-
lect neighbors of users and generate recommendations. Out
of a collection of such meta-paths, we can build an ensem-
ble of components, each capturing a different aspect of the
network.



While this model has proved successful in multiple social me-
dia settings, a key problem remains of how to control hybrid
size. The set of components, like the set of possible meta-
paths, is unbounded. We have found that in some settings
components built using longer paths can outperform those
using shorter paths. There is therefore no simple way to
choose a limited number of components and be sure of opti-
mal performance. In this paper, we examine an information
gain metric that can be used to estimate the potential con-
tribution of components. We show that this metric can be
used in two ways:

• to estimate the hybrid weights directly, and

• to filter components based on their expected contribu-
tion to the hybrid.

2. WEIGHTED HYBRID
A weighted hybrid recommender is a system comprised of
multiple recommendation components, each of which re-
turns a real-valued score for a combination of user and item.
The scores from all the components are combined in a weighted
sum [2]. More formally,

s(u, i) =
∑
j

αjsj(u, i)

where s(u, i) is the overall score computed for a user-item
combination, sj(u, i) is the score computed by the jth com-
ponent, and αj is the weight associated with the jth compo-
nent.

The weights are learned through an optimization procedure
as discussed below. The components are a function of the
recommendation task and the structure of the network.

WHyLDR components are built from two-dimensional ma-
trices familiar to researchers in collaborative recommenda-
tion [5]. A user-based matrix is one in which the rows are
users and the columns are the destination nodes for a given
meta-path. Users are compared on the basis of their profiles
and peer users form a neighborhood from which a target
user’s preferences for unknown items can be extrapolated.2

The experiments reported here are for the task of recom-
mending businesses to users. Four types of recommendation
components are included in our Yelp model:

• user-based KNN components constructed based on meta-
paths starting from a user node,

• item-based KNN components from meta-paths start-
ing from a business node,

• cosine components in which two separate matrices are
constructed (one for users and one for items) and then

2All of the optimizations that have been applied to collabo-
rative recommenders can therefore be applied to the individ-
ual WHyLDR components, for example, matrix factoriza-
tion. We plan to study the properties of such optimizations
on our hybrids in future work.

items and users are compared directly based on their
profiles (the rows in their respective matrices), and

• a non-personalized recommendation component based
solely on item popularity.

Table 1: Meta-paths for recommendation compo-
nents
Type Meta-paths
User-based UB, UBC, UBL, UBH, UBCB, UBLB, UBHB
Item-based BU, BL, BC, BH, BLBC, BLBU, BUBU, BUBL
Cosine UBC, UBH

3. CONTROLLING META-PATH
GENERATION

There is no requirement that meta-paths be simple: nodes
and edges can be revisited, as seen in components like kNNUBLB,
where the meta-path loops from businesses to locations and
back to businesses again. Component generation could in
theory continue indefinitely. However, there are significant
computational costs in generating components and in opti-
mizing a hybrid with a large number of components. More-
over, some components will make only a minor contribution
to recommendation performance. It is therefore important
to control this process. Ideally, we would like to be able
to estimate in advance what components are likely to make
a substantial contribution to the hybrid and make an in-
formed decision to trade off expected accuracy against the
computational costs of additional components.

We have developed a measure based on mutual information
for each meta-path to estimate the utility of recommenda-
tion components. For a given two-dimensional projection
AB, the mutual information can be calculated as

I(A,B) = H(A)−H(A|B)

where H(A) is entropy of dimension A and H(A|B) is the
conditional entropy. Entropy is defined as

H(A) = −
∑
i

p(ai)log(p(ai))

The entropy is therefore a function of the probability of oc-
currence of nodes in each dimension. In our networks, we
define probability of node ai from dimension A based on the
node degree:

p(ai) =
Degree(ai)∑
iDegree(ai)

The intuition behind this measure comes from results re-
lated to random walks. As the length of a random walk
approaches infinity, the probability of hitting a node con-
verges to its normalized degree [?].

Conditional entropy measures the uncertainty of one dimen-
sion given another dimension, computed by summing up in-
dividual conditional probabilities. In our networks, we de-
fine the conditional probability PM (bi|aj) as the fraction of
meta-paths of type M leaving node ai and arriving at bj out
of all meta-paths of type M .

PM (bi|aj) =
|aj −→

M
bi|∑

k

|aj −→
M

bk|



For example, consider the user-business-category meta-path
and associated recommendation component. The values for
H(U) and HUBC(U |C) can be calculated using the formu-
las above. If these values were roughly the same then the
IUBC(U,C) will be around zero. This suggests that the
meta-path does not add much information beyond what is
already contained in the U dimension and that the UBC
meta-path is unlikely to give rise to a useful recommenda-
tion component. The same principle can be applied to any
user-based or item-based component. For the cosine com-
ponents, we used the minimum information gain from either
constituent meta-path. For the popularity component, we
used minimum information gain across all components.

In our previous experiments, we found that there was a sig-
nificant correlation between the information gain associated
with a meta-path and the learned α weight for a component
built using that meta-path [4]. In this work, we sought to
build on that result by substituting our measure of meta-
path information for weights learned through optimization.
We use a simple normalization of the information gain mea-
sure, so the contribution of ith component can be calculated
as:

αi =
InformationGain(i)
k∑

j=1

InfomationGain(j)

(1)

Figure 2: F1 values for each hybrid model

Another way to use the information gain is as a filter con-
trolling which components are incorporated into the hybrid.
In these experiments, we used two different thresholds (0.1
and 0.2) for rejecting components with low information gain.
Table 2 shows which components were dropped in each case:
the only difference between the lower threshold and the
higher one was the exclusion of the BUBU component at
the higher threshold.

The results below report on four different configurations of
the system: HM-1, a hybrid model including all the com-
ponents discussed in Section 2 with the weights learned
through optimization; HM-IGW, a hybrid including the same
components as HM-1 but with weights calculated as normal-
ized information gain; HM-T0.1 and HM-T0.2, hybrids with
learned weights but components with low information gain
filtered out using thresholds of 0.1 and 0.2, respectively. Ta-
ble 2 shows which components were removed in each case.

3.1 Methodology
For the experiments reported here, we used the Yelp Aca-
demic Dataset, and followed the four fold cross validation
methodology described in [4]. The α weights were learned
using Particle Swarm Optimization (PSO) [9] with recall
as the optimization objective. In order to compare hybrid
model performance, we calculate recall and precision at list
sizes from 1 to 10. These are averaged for each partition
and then averaged over all partitions. We also calculate F1

at list size 10, the harmonic mean of precision and recall.
We also measured the diversity of the results returned by
these recommendations, but omit these results for reasons
of space.

4. RESULTS
Figure 3 shows the recall-precision curve for the top indi-
vidual recommendation component (kNNUB) and the four
hybrids. There are several points to note here. One is there
is a relatively small difference between the performance of
hybrid with learned weights HM-1 (dashed line) and the hy-
brid with weights estimated from our information gain mea-
sure HM-IGW (solid line with diamond marks) and indeed,
some data points of the HM-IGW curve are above those of
the learned hybrid. The results for the thresholded hybrids
(HM-T0.1 and HM-T0.2) are generally lower except at list
size of 1 and list size of 10.

Figure 2 shows a different perspective on these experiments
with the F1 measure computed at a recommendation list size
of 10. Again, the hybrid with the learned weights shows the
top performance with the other hybrids about 6-7% below.

What we find therefore is that there is a modest trade-off be-
tween recommendation performance with a fully-optimized
hybrid and with weights computed using information gain.
As the number of components increases the dimensionality
of the optimization space increases, making the optimization
step more time-consuming and more prone to over-fitting.
Information gain can be computed directly from the meta-
path expansions used to create the recommendation compo-
nents and so is essentially free.

We also see that information gain may be useful in con-
trolling the size of the hybrid. HM-T0.2 has one third fewer
components than the full hybrid and approximately 6% lower
F1 performance. This suggests a process whereby meta-
paths are generated and their information gain assessed be-
fore components are constructed, thus saving both off-line
optimization time and run-time computation.

5. CONCLUSIONS
A key challenge in social media recommendation is to in-
tegrate the different types of information available in such
systems to enhance recommendations and to offer recom-
mendations of multiple types. The WHyLDR approach has
been demonstrated to be successful in both of these respects.
As there are an unbounded number of possible components
in a WHyLDR hybrid, the questions arise of how to choose
components for a hybrid and when to stop adding to it.
In this paper, we show that our information gain measure
shows promise for controlling hybrid creation and possibly
for estimating component weights. While the full hybrid
with learned weights showed the strongest performance, the



Table 2: Removed components at each threshold
Threshold Components removed
0.1 UBH, UBHB, BLBC, BUBC, BUBL
0.2 Above, plus BUBU

Figure 3: Recall vs. Precision

versions where our information gain heuristic was applied
offered comparable results at lower computational cost.

One of the key problems unaddressed by this work is the in-
fluence of recommendation task. We know from prior work
that, for most recommendation problems, the most strongly-
contributing component is the one that directly maps to the
recommendation task. For example, in this paper, kNNUB

is the most important single component because we are rec-
ommending businesses to users. If on the other hand, we
were recommending locations, we would expect the kNNUBL

component to be a stronger contributor. This effect is not
captured by our information gain measure, which is a func-
tion of the network structure alone. In future work, we will
examine additional recommendation tasks and try to deter-
mine how to modify our information gain measure to take
the task into account. We will also be experimenting with
other heterogeneous network data sets to understand the
generalizability of these results.

6. REFERENCES
[1] https://www.yelp.com/academic dataset.

[2] R. Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted
Interaction, 12(4):331–370, 2002.

[3] R. Burke and F. Vahedian. Social web
recommendation using metapaths. In RSWeb@RecSys,
2013.

[4] R. Burke, F. Vahedian, and B. Mobasher. Hybrid
recommendation in heterogeneous networks. In
Proceedings of the 22nd Conference on User Modeling,
Adaptation and Personalization, 2014, to appear.

[5] C. Desrosiers and G. Karypis. A comprehensive survey

of neighborhood-based recommendation methods. In
F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages
107–144. Springer, 2011.

[6] J. Gemmell, T. Schimoler, B. Mobasher, and
R. Burke. Recommendation by example in social
annotation systems. E-Commerce and Web
Technologies, pages 209–220, 2011.

[7] J. Gemmell, T. Schimoler, B. Mobasher, and
R. Burke. Tag-based resource recommendation in
social annotation applications. User Modeling,
Adaption and Personalization, pages 111–122, 2011.

[8] J. Gemmell, T. Schimoler, B. Mobasher, and
R. Burke. Resource recommendation in social
annotation systems: A linear-weighted hybrid
approach. Journal of Computer and System Sciences,
78(4):1160–1174, 2012.

[9] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proceedings of the IEEE International
Conference on Neural Networks, pages 1942–1948,
1995.

[10] Y. Sun and J. Han. Mining Heterogeneous Information
Networks: Principles and Methodologies. Synthesis
Lectures on Data Mining and Knowledge Discovery.
Morgan & Claypool Publishers, 2012.


