
Dexter 2.0 - an Open Source Tool for
Semantically Enriching Data

Salvatore Trani1,4, Diego Ceccarelli1,2, Claudio Lucchese1,
Salvatore Orlando1,3, and Raffaele Perego1

1ISTI–CNR, Pisa, Italy, 2IMT Lucca, Italy, 3Ca’ Foscari - University of Venice,
4University of Pisa

{name.surname}@isti.cnr.it

Abstract. Entity Linking (EL) enables to automatically link unstruc-
tured data with entities in a Knowledge Base. Linking unstructured data
(like news, blog posts, tweets) has several important applications: for ex-
ample it allows to enrich the text with external useful contents or to
improve the categorization and the retrieval of documents. In the latest
years many effective approaches for performing EL have been proposed
but only a few authors published the code to perform the task. In this
work we describe Dexter 2.0, a major revision of our open source frame-
work to experiment with different EL approaches. We designed Dexter
in order to make it easy to deploy and to use. The new version provides
several important features: the possibility to adopt different EL strate-
gies at run-time and to annotate semi-structured documents, as well as a
well-documented REST-API. In this demo we present the current state
of the system, the improvements made, its architecture and the APIs
provided.

1 Introduction

In the latest years many researchers proposed new techniques for performing
Entity Linking (or Wikification) that consists of enriching a document with the
entities that are mentioned within it. For example, consider the document in
Figure 1: an EL framework first detects the pieces of text that are referring to
an entity e.g., Maradona, Argentina, or Belgium, (usually called mentions
or spots); this step is known as mention detection or spotting. Then the sys-
tem performs the disambiguation step: each spot is linked to an entity chosen
from a list of candidates. The entity is represented by its URI or identifier in
a knowledge base, in our case Wikipedia. As an example, in Figure 1 the cor-
rect entity for the spot Argentina is http://en.wikipedia.org/wiki/Argentina_

national_football_team. Please note that linking the mention to the correct entity
is not a trivial task since often a mention is ambiguous: indeed in the previous
example Argentina is not referring to the most common sense (the country)
but rather to the national football team.

In this demo we present the current status of Dexter, our open source frame-
work for entity linking. We introduced Dexter one year ago [1] in order to provide

http://en.wikipedia.org/wiki/Argentina_national_football_team
http://en.wikipedia.org/wiki/Argentina_national_football_team


Maradona, [http://en.wikipedia.org/wiki/Diego_Maradona] played his first World Cup

tournament [http://en.wikipedia.org/wiki/FIFA_World_Cup] in 1982 when Argentina

[http://en.wikipedia.org/wiki/Argentina_national_football_team] played Belgium

[http://en.wikipedia.org/wiki/Belgium_national_football_team] in the opening game of the 1982 Cup

[http://en.wikipedia.org/wiki/1982_FIFA_World_Cup] in Barcelona

[http://en.wikipedia.org/wiki/Barcelona].

Fig. 1: Example of annotated document

a tool for implementing new EL methods, and for comparing or simply exploiting
the existing EL methods on a common platform.

We designed the framework for researchers and students; Dexter is easy to
deploy: it consists of a unique jar file without external dependencies, and some
binary files representing the model. The user only has to run the program that
will expose a web server providing both a Rest API and a web interface for
performing EL. The framework is highly modular and it allows the developers
to replace single parts of the EL process. It runs on commodity hardware and it
requires only 3 gigabytes of memory.

2 Dexter Framework

2.1 Architecture

Dexter1 is developed in Java, and is organized in several Maven2 modules (as
depicted in Figure 2):

Json-wikipedia3 This module converts the Wikipedia XML Dump in a JSON
Dump, where each line is a JSON record representing an article. The parser is
based on the MediaWiki markup parser UKP4. While DBpedia only contains
semistructured data extracted from the dump (mainly from the infoboxes) in
RDF format, JSON-Wikipedia contains other fields, e.g., the section headers,
the text (divided in paragraphs), the templates with their schema, text em-
phasized and so on. The module is designed to support different languages;

Dexter-Common Contains the domain objects, shared among all the modules
of Dexter;

Dexter-Core The core implements the EL pipeline (illustrated on the right
of Figure 2): the text is first processed by a Spotter, that produces a list
of spot matches. Each spot match contains the offset of the match in the
document, the list of entities that could be represented by the spot (produced
by an Entity Ranker) and other features useful to perform the linking. The
spot matches are then processed by a Disambiguator that for each spot
tries to select the correct entity in the list of candidates (often relying on
a Relatedness function, that estimates the semantic distance between two
entities);

1 The project page is http://dexter.isti.cnr.it, the website also presents a demo
2 http://maven.apache.org/
3 json-wikipedia is available at https://github.com/diegoceccarelli/json-wikipedia
4 http://www.ukp.tu-darmstadt.de/software/jwpl/

http://en.wikipedia.org/wiki/Diego_Maradona
http://en.wikipedia.org/wiki/FIFA_World_Cup
http://en.wikipedia.org/wiki/Argentina_national_football_team
http://en.wikipedia.org/wiki/Belgium_national_football_team
http://en.wikipedia.org/wiki/1982_FIFA_World_Cup
http://en.wikipedia.org/wiki/Barcelona
http://dexter.isti.cnr.it
http://maven.apache.org/
https://github.com/diegoceccarelli/json-wikipedia
http://www.ukp.tu-darmstadt.de/software/jwpl/


Dexter-Webapp exposes a REST API for performing the annotations. It
also implements a simple web interface for performing a demo. The current
version of the REST API is briefly described in Table 1, and it is organized in
4 logical categories: the Annotate API, used for annotating a document,
the Spot API that allows to retrieve the candidate spots in a document
and to visualize their features, the Graph API and the Category API
that allow to browse respectively the Wikipedia article’s link graph and the
category graph. The current API is available and testable. We provide a well
written documentation for each method, in a web page that also allows the
user to test the service;

Dexter-Client a simple client to perform EL from a client machine, implicitly
calling the REST API.

Spot Repository

Shingle
Extractor

Articles Index

Entity Link Graph

Shingles

Spot Match List

Entity Match List 

JSON Wikipedia

Dexter-Core

D
ex

te
r

C
om

m
on

Dexter-Webapp

Web
App

REST 
API

Dexter
Client

Entity
Ranker

Spot 
Filter

Spotter

Disambiguator

Relatedness

Fig. 2: Dexter Architecture

2.2 Novel Features

Since the first version we added the possibility to replace and combine different
versions of the components of the system (the spotter, the disambiguator, the
relatedness function etc.). An EL annotation can then be performed providing to
the linker the symbolic names of the components that the developer wants to use
(the spotter x, the disambiguator y . . . ). More in detail, in the annotate REST
API the spotter and the disambiguator components are parameters, allowing to
make use of different EL techniques at run-time. Another interesting feature is
the possibility to annotate semi-structured documents; the previous version, as
well as other EL frameworks, annotates only flat text, i.e., a plain string. In
the new version we added the possibility to annotate documents composed by
several fields (e.g., title, headlines, paragraphs); when developing a new spot-
ter/disambiguator, a researcher can exploit this information about the structure



of a document. It is worth to observe that in the new version each candidate
spot contains also the field where the match was performed. The system also
offers a Category API (extracted from the DBpedia categories).

Annotate API
api/rest/annotate Performs the EL on a given text
api/rest/get-desc Given the Wikipedia Id of an entity, returns an object describing

the entity (title, short description, . . . )
Spot API

api/rest/spot Performs only the spotting step on the document, returning a list
of mentions detected in the document, and for each mention some
useful features and the list of possible candidate entities

api/rest/get-spots Given an entity returns all the spots used in the Wikipedia dump
for referring to the entity, for example given the entity Mona lisa,
it returns mona lisa,gioconda, la joconde . . .

Graph API
api/rest/get-target-entities Returns the entities linked by the given entity
api/rest/get-source-entities Returns the entities that link to the given entity
api/rest/relatedness Returns the semantic relatedness between two entities (by default

using the Milne and Witten formula [2])
Category API

api/rest/get-parent-categories Given an category, returns its parent categories
api/rest/get-child-categories Given an category, returns its child categories
api/rest/get-entity-categories Given an entity, returns its categories
api/rest/get-belonging-entities Given a category, returns the entities belonging to the category

Table 1: The current version of the Dexter’s REST-API

Finally, we released a framework for evaluating the quality of the annotations
and comparing our framework with the others5. We are also planning to integrate
our tool with the NERD framework [3].

The demonstration will present the main functionalities provided by our sys-
tem. We will illustrate how to use the API, how to deploy the system on a server,
how to extend the components, and we will show some applications built on top
of Dexter.

Future work. We are planning to add several disambiguators and spotters
proposed in literature, and produce a performance comparison on different types
of datasets.

Acknowledgements This work was partially supported by the EU project E-CLOUD

(no. 325091), the Regional (Tuscany) project SECURE! (POR CReO FESR 2007/2011),

and the Regional (Tuscany) project MAPaC (POR CReO FESR 2007/2013).

References

1. D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani. Dexter: an open
source framework for entity linking. In ESAIR, 2013.

2. D. Milne and I. H. Witten. Learning to link with wikipedia. In Proceedings of
CIKM, 2008.

3. G. Rizzo and R. Troncy. Nerd: a framework for unifying named entity recognition
and disambiguation extraction tools. In Proceedings of EACL, 2012.

5 https://github.com/diegoceccarelli/dexter-eval

https://github.com/diegoceccarelli/dexter-eval

	Dexter 2.0 - an Open Source Tool for Semantically Enriching Data

