
Crawl Me Maybe: Iterative Linked Dataset
Preservation

Besnik Fetahu, Ujwal Gadiraju, and Stefan Dietze

L3S Research Center, Leibniz Universität Hannover, Germany
{fetahu, gadiraju,dietze}@L3S.de

Abstract. The abundance of Linked Data being published, updated,
and interlinked calls for strategies to preserve datasets in a scalable
way. In this paper, we propose a system that iteratively crawls and
captures the evolution of linked datasets based on flexible crawl defi-
nitions. The captured deltas of datasets are decomposed into two con-
ceptual sets: evolution of (i)metadata and (ii)the actual data covering
schema and instance-level statements. The changes are represented as
logs which determine three main operations: insertions, updates and
deletions. Crawled data is stored in a relational database, for efficiency
purposes, while exposing the diffs of a dataset and its live version in
RDF format.

Keywords: Linked Data; Dataset; Crawling; Evolution; Analysis

1 Introduction

Over the last decade there has been a large drive towards publishing structured
data on the Web. A prominent case being data published in accordance with
Linked Data principles [1]. Next to the advantages concomitant with the dis-
tributed and linked nature of such datasets, challenges emerge with respect to
managing the evolution of datasets through adequate preservation strategies.
Due to the inherent nature of linkage in the LOD cloud, changes with respect
to one part of the LOD graph, influence and propagate changes throughout the
graph. Hence, capturing the evolution of entire datasets or specific subgraphs is a
fundamental prerequisite, to reflect the temporal nature of data and links. How-
ever, given the scale of existing LOD, scalable and efficient means to compute
and archive diffs of datasets are required.

A significant effort towards this problem has been presented by Käfer et al.[2],
with the Dynamic Linked Data Observatory: a long-term experiment to monitor
a two-hop neighbourhood of a core set of diverse linked data documents.

The authors investigate the lifespan of the core set of documents, measuring
their on and off-line time, and the frequency of changes. Furthermore, they delve
into how the evolution of links between dereferenceable documents over time.
An understanding of how links evolve over time is essential for traversing linked
data documents, in terms of reachability and discoverability. In contrast to the
previous initiatives, in this work we provide an iterative linked dataset crawler.



2 Besnik Fetahu, Ujwal Gadiraju, and Stefan Dietze

It distinguishes between two main conceptual types of data: metadata and the
actual data covering schema and instance-level statements.

In the remainder of this paper, we explain the schema used to capture the
crawled data, the workflow of the iterative crawler and the logging states which
encode the evolution of a dataset.

2 Iterative Linked Dataset Crawler

The dataset crawler extracts resources from linked datasets. The crawled data
is stored in a relational database. The database schema (presented in Figure 1)
was designed towards ease of storage and retrieval.

Fig. 1. Conceptual schema for the iteratively crawled linked datasets. Logs are rep-
resented with dashed lines (e.g. triple insertion: 〈s, p, o〉) of the various conceptual
classes of data within linked datasets.

The crawler is designed with the intent to accommodate methods for assess-
ing the temporal evolution of linked datasets. A dataset which has not been
crawled before will thereby be crawled completely and all corresponding data
will be stored in a database. This would thereby correspond to a dump of that
dataset, stored according to the database schema. In case a dataset has al-
ready been crawled, the differences between the previously crawled state of the
dataset and the current state are determined on-the-fly. Such ∆s or diffs, are
then stored. Therefore, for any dataset that has been crawled multiple times at
different crawl-points1, it is possible to reconstruct the state of the dataset at
any of the given crawl-points.

2.1 Computation of Diffs

The differences between the state of a dataset at different crawl-points can
be captured efficiently using the dataset crawler. Evolution of datasets can be

1 The time at which a given crawl operation is triggered.



Crawl Me Maybe: Iterative Linked Dataset Preservation 3

computed at different levels. Each crawl explicitly logs the various changes at
schema and resource-levels in a dataset as either inserted, updated or deleted.
The changes themselves are first captured at triple-level, and then attributed to
either schema-level or resource instance-level. The following log operators with
respect to dataset evolution are handled by the dataset crawler.

– Insertions. New triples may be added to a dataset. Such additions intro-
duced in the dataset correspond to insertions.

– Deletions. Over time, triples may be deleted from a dataset due to various
reasons ranging from persisting correctness to detection of errors. These
correspond to deletions.

– Updates. Updates correspond to the update of one element of a triple <
s, p,>.

Figure 2 presents an example depicting the computation of ∆ between a
previously crawled dataset at crawl-point t0 and a fresh crawl at crawl-point t1.

Fig. 2. Computation of diffs on-the-fly.

First, assume a change in the ‘live dataset’ in the form of an insertion of the
triple corresponding to the URI resource_uri_2. Thus, the triple describing the
city Madras is added. Consequently, if the value of the property dbpedia-owl:

city is updated, then a subsequent crawl would capture this difference in the
literal value of the property as an update to Chennai. Similarly, deletions made
are also detected during the computation of diffs. Thus, computing and storing
diffs on-the-fly in accordance with the log operators is beneficial; we avoid the
overheads emerging from storing dumps of entire datasets.

2.2 Web Interface for the Iterative Dataset Crawler

We present a Web interface (accessible at http://data-observatory.org/

dataset_crawler) that provides means to access the crawled resources, given
specific crawl-points of interest from the periodical crawls. The interface allows
us to filter for specific datasets and resource types. The Web application has
three main components (see Figure 3): (i) displaying metadata of the dataset, (ii)
dataset evolution, showing summaries of added/updated/deleted resources for



4 Besnik Fetahu, Ujwal Gadiraju, and Stefan Dietze

the different types, and (iii) dataset type-specific evolution, showing a summary
of the added/updated/deleted resource instances for a specific resource type and
corresponding to specific crawl time-points. In addition, the crawler tool is made
available along with instructions for installation and configuration2.

Fig. 3. Functionalities of the Dataset Crawler Web Interface.

3 Conclusion

In this paper, we presented a linked dataset crawler for capturing dataset evolu-
tion. Data is preserved in the form of three logging operators (insertions/updates/
deletions) by performing an online ∆ computation for any given dataset with
respect to the live state of the dataset and its previously crawled state (if avail-
able). Furthermore, the crawled and computed ∆ of a dataset can be used to
assess its state at any given crawl-point. Finally, we provided a web interface
which allows the setup of the crawler, and facilitates simple query functionalities
over the crawled data.

References

1. C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far. Int. J.
Semantic Web Inf. Syst., 5(3):1–22, 2009.

2. T. Käfer, A. Abdelrahman, J. Umbrich, P. OByrne, and A. Hogan. Observing linked
data dynamics. In The Semantic Web: Semantics and Big Data, pages 213–227.
Springer, 2013.

2 https://github.com/bfetahu/dataset_crawler


