
Integrating NLP and SW with the KnowledgeStore

Marco Rospocher, Francesco Corcoglioniti, Roldano Cattoni,
Bernardo Magnini, and Luciano Serafini

Fondazione Bruno Kessler—IRST, Via Sommarive 18, Trento, I-38123, Italy
{rospocher,corcoglio,cattoni,magnini,serafini}@fbk.eu

Abstract. We showcase the KnowledgeStore (KS), a scalable, fault-tolerant,
and Semantic Web grounded storage system for interlinking unstructured and
structured contents. The KS contributes to bridge the unstructured (e.g., tex-
tual document, web pages) and structured (e.g., RDF, LOD) worlds, enabling
to jointly store, manage, retrieve, and query, both typologies of contents.

1 Introduction: Motivations and Vision

Despite the widespread diffusion of structured data sources and the public acclaim of
the Linked Open Data (LOD) initiative, a preponderant amount of information remains
nowadays available only in unstructured form, both on the Web and within organiza-
tions. While different in form, structured and unstructured contents are often related in
content, as they speak about the very same entities of the world (e.g., persons, organi-
zations, locations, events), their properties, and relations among them. Despite the last
decades achievements in Natural Language Processing (NLP), now supporting large
scale extraction of knowledge about entities of the world from unstructured text, frame-
works enabling the seamless integration and linking of knowledge coming both from
structured and unstructured contents are still lacking.1

In this demo we showcase the KnowledgeStore (KS), a scalable, fault-tolerant, and
Semantic Web grounded storage system to jointly store, manage, retrieve, and query,
both structured and unstructured data. Fig. 1a shows schematically how the KS man-
ages unstructured and structured contents in its three representation layers. On the one
hand (and similarly to a file system) the resource layer stores unstructured content in
the form of resources (e.g., news articles), each having a textual representation and
some descriptive metadata. On the other hand, the entity layer is the home of structured
content, that, based on Knowledge Representation and Semantic Web best practices,
consists of axioms (a set of 〈subject, predicate, object〉 triples), which describe the enti-
ties of the world (e.g., persons, locations, events), and for which additional metadata are
kept to track their provenance and to denote the formal contexts where they hold (e.g.,
point of view, attribution). Between the aforementioned two layers there is the mention
layer, which indexes mentions, i.e., snippets of resources (e.g., some characters in a text
document) that denote something of interest, such as an entity or an axiom of the entity
layer. Mentions can be automatically extracted by NLP tools, that can enrich them with
additional attributes about how they denote their referent (e.g., with which name, quali-
fiers, “sentiment”). Far from being simple pointers, mentions present both unstructured

1 See [1] for an overview of works related to the contribution presented in this demo.

Resource Mention

has mention

Entity Axiom

Entity Mention

Relation Mention

source

target

refers to

described by

expressed by

. . .

Context

holds in

Resource Layer

dbpedia:United_Nations rdf:type yago:PoliticalSystems

dbpedia:United_Nations rdfs:label "United Nations"@en

dbpedia:United_Nations foaf:homepage <http://www.un.org/>

dbpedia:United_Nations

Entity Layer Mention Layer

Indonesia Hit By Earthquake

A United Nations assessment team
was dispatched to the province after
two quakes, measuring 7.6 and 7.4,
struck west of Manokwari Jan. 4. At
least five people were killed, 250
others injured and more than 800
homes destroyed by those temblors,
according to the UN.

(a)

(b)

(c)

Fig. 1: (a) The three KS layers; (b) Interactions with external modules; (c) Components.

and structured facets (respectively snippet and attributes) not available in the resource
and entity layers alone, and are thus a valuable source of information on their own.

Thanks to the explicit representation and alignment of information at different lev-
els, from unstructured to structured knowledge, the KS supports a number of usage
scenarios. It enables the development of enhanced applications, such as effective de-
cision support systems that exploit the possibility to semantically query the content of
the KS with requests combining structured and unstructured content, such as “retrieve
all the documents mentioning that person Barack Obama participated to a sport event”.
Then, it favours the design and empirical investigation of information processing tasks
otherwise difficult to experiment with, such as cross-document coreference resolution
(i.e., identifying that two mentions refer to the same entity of the world) exploiting the
availability of interlinked structured knowledge. Finally, the joint storage of (i) extracted
knowledge, (ii) the resources it derives from, and (iii) extracted metadata provides an
ideal scenario for developing, training, and evaluating ontology population techniques.

2 An overview of the KnowledgeStore

In this section we briefly outline the main characteristics of the KS. For a more exhaus-
tive presentation of the KS design, we point the reader to [1]. More documentation, as
well as binaries and source code,2 are all available on the KS web site [2].

Data Model The data model defines what information can be stored in the KS. It
is organized in three layers (resource, mention and entity), with properties that relate
objects across them. To favour the exposure of the KS content according to LOD prin-
ciples, the data model is defined as an OWL 2 ontology (available on [2]). It contains
the TBox definitions and restrictions for each model element and can be extended on a
per-deployment basis, e.g., with domain-specific resource and linguistic metadata.

API The KS presents a number of interfaces through which external clients may ac-
cess and manipulate stored data. Several aspects have been considered in defining them

2 Released under the terms of the Apache License, Version 2.0.

(e.g, operation granularity, data validation). These interfaces are offered through two
HTTP ReST endpoints. The CRUD endpoint provides the basic operations to access
and manipulate (CRUD: create, retrieve, update, and delete) any object stored in any of
the layers of the KS. Operations of the CRUD endpoint are all defined in terms of sets
of objects, in order to enable bulk operations as well as operations on single objects.
The SPARQL endpoint allows to query axioms in the entity layer using SPARQL. This
endpoint provides a flexible and Semantic Web-compliant way to query for entity data,
and leverages the grounding of the KS data model in Knowledge Representation and
Semantic Web best practices. A Java client is also offered to ease the development of
(Java) client applications.

Architecture At its core, the KS is a storage server whose services are utilized by ex-
ternal clients to store and retrieve the contents they process. From a functional point of
view, we identify three main typologies of clients (see Fig. 1b): (i) populators, whose
purpose is to feed the KS with basic contents needed by other applications (e.g., docu-
ments, background knowledge from LOD sources); (ii) linguistic processors, that read
input data from the KS and write back the results of their computation; and, (iii) appli-
cations, that mainly read data from the KS (e.g., decision support systems). Internally,
the KS consists of a number of software components (see Fig. 1c) distributed on a
cluster of machines: (i) the Hadoop HDFS filesystem provides a reliable and scalable
storage for the physical files holding the representations of resources (e.g., texts and
linguistic annotations of news articles); (ii) the HBase column-oriented store builds
on Hadoop to provide database services for storing and retrieving semi-structured in-
formation about resources and mentions; (iii) the Virtuoso triple-store stores axioms
to provide services supporting reasoning and online SPARQL query answering; and,
(iv) the Frontend Server has been specifically developed to implement the operations
of the CRUD and SPARQL endpoints on top of the components listed above, handling
global issues such as access control, data validation and operation transactionality.

User Interface (UI) The KS UI (see Fig. 2) enables human users to access and inspect
the content of the KS via two core operations: (i) the SPARQL query operation, with
which arbitrary SPARQL queries can be run against the KS SPARQL endpoint, obtain-
ing the results directly in the browser or as a downloadable file (in various file formats,
including the recently standardized JSON-LD); and, (ii) the lookup operation, which
given the URI of an object (i.e., resource, mention, entity), retrieves all the KS content
about that object. These two operations are seamlessly integrated in the UI, to offer a
smooth browsing experience to the users.

3 Showcasing the KnowledgeStore and concluding remarks
During the Posters and Demos session, we will demonstrate live how to access the KS
content via the UI (similarly to the detailed demo preview available at [3]), highlighting
the possibilities offered by the KS to navigate back and forth from unstructured to
structured content. For instance, we will show how to run arbitrary SPARQL queries,
retrieving the mentions of entities and triples in the query result set, and the documents
where they occur. Similarly, starting from a document URI, we will show how to access
the mentions identified in the document, up to the entities and triples they refer to.

Fig. 2: KS UI. Lookup of a mention. Note the three boxes (Mention resource, Mention
Data, Mention Referent) corresponding to the three representation layers of the KS.

In the last few months, several running instances of the KS were set-up (on a cluster
of 5 average specs servers) and populated using the NewsReader Processing Pipeline [4]
with contents coming from various domains: to name a few, one on the global automo-
tive industry [5] (64K resources, 9M mentions, 316M entity triples), and one related to
the FIFA World Cup (212K resources, 75M mentions, 240M entity triples). The latter,
which will be used for the demo, was exploited during a Hackathon event [6], where 38
web developers accessed the KS to build their applications (over 30K SPARQL queries
were submitted – on average 1 query/s, with peaks of 25 queries/s).

Acknowledgements The research leading to this paper was supported by the European
Union’s 7th Framework Programme via the NewsReader Project (ICT-316404).

References
1. Corcoglioniti, F., Rospocher, M., Cattoni, R., Magnini, B., Serafini, L.: Interlinking unstruc-

tured and structured knowledge in an integrated framework. In: 7th IEEE International Con-
ference on Semantic Computing (ICSC), Irvine, CA, USA. (2013)

2. http://knowledgestore.fbk.eu
3. http://youtu.be/if1PRwSll5c
4. https://github.com/newsreader/
5. http://datahub.io/dataset/global-automotive-industry-news
6. http://www.newsreader-project.eu/come-hack-with-newsreader/

http://knowledgestore.fbk.eu
http://youtu.be/if1PRwSll5c
https://github.com/newsreader/
http://datahub.io/dataset/global-automotive-industry-news
http://www.newsreader-project.eu/come-hack-with-newsreader/

	Integrating NLP and SW with the KnowledgeStore

