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Abstract

Propensity score matching (PSM) is a widely
used method for performing causal inference
with observational data. PSM requires fully
specifying the set of confounding variables
of treatment and outcome. In the case of
relational data, this set may include non-
intuitive relational variables, i.e., variables
derived from the relational structure of the
data. In this work, we provide an automated
method to derive these relational variables
based on the relational structure and a set of
naive confounders. This automatic construc-
tion includes two unusual classes of variables:
relational degree and entity identifiers. We
provide experimental evidence that demon-
strates the utility of these variables in ac-
counting for certain latent confounders. Fi-
nally, through a set of synthetic experiments,
we show that our method improves the per-
formance of PSM for causal inference with
relational data.

1 INTRODUCTION

Propensity score matching (PSM) [Rosenbaum and
Rubin, 1983] is a widely used tool for determining
causal effects from observational data. Propensity
scores summarize the effects of a potentially large num-
ber of confounding variables by creating a predictive
model of treatment. The computation of a propensity
score requires specifying a set of potentially confound-
ing variables. This task is relatively straightforward
for propositional (i.i.d.) data. However, many causal
analyses consider data in which treatment, outcome,
and potential confounders can arise from the inter-
actions among multiple types of interrelated entities.
Propensity score matching becomes substantially more
challenging in such relational data.
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Figure 1: Example of relational data: users are friends
with other users, each user comes from a hometown,
and users check-in at places.

To illustrate this, consider the example domain shown
in Figure 1, depicting a plausible relational domain.
Foursquare is an example of a real system that could
produce this sort of data. Suppose a researcher is inter-
ested in using data from this domain to assess whether
smoking causes a user to gain weight. One approach
would be to construct a propensity score model with
user attributes that the researcher believes could be
causes of whether a user smokes and the user’s weight,
such as alcohol consumption and ethnicity:

[User ].Smokes ∼ [User ].Drinks + [User ].Ethnicity .

While this accounts for attributes associated with the
user, it fails to account for possible confounders de-
rived from relational variables. For example, it is plau-
sible that the alcohol consumption of a user’s friends is
a common cause of [User ].Weight and [User ].Smokes.
To account for these effects, the corresponding rela-
tional variables should be included in the propensity
score model.

It is not difficult to envision more complicated rela-
tional variables having an effect. In fact, as previous
work has shown [Maier et al., 2013b], the number of
relational variables can be arbitrarily large depending
on how many entity and relationship types exist in the
network, the size of the network, and the length of the
longest path (the largest degree of separation) in the
network where direct dependence exists.

An additional level of complexity introduced by rela-



tional data is that relational structures may result in
multiple instances of a given variable. For example, a
user with multiple friends could be influenced by the
drinking behaviour of each of those friends. Typically,
an aggregation function, such as mean, is used to com-
bine this set of values into a single value. Properly
conditioning on a relational variable entails choosing
the correct set of aggregation functions to represent
the distribution of values contained in the set. For ex-
ample, in order to condition on a relational variable, it
may be necessary to condition on multiple aspects of
the distribution of those values, such as the mean and
the standard deviation (stdev).

To address these issues, we introduce relational
propensity score matching (RPSM), a method that
applies propensity score matching to relational do-
mains. RPSM leverages the framework of relational
models [Getoor and Taskar, 2007, Maier et al., 2013b]
to automatically construct the set of possible relational
confounders given a simpler specification of the as-
sumed dependency structure. RPSM also identifies op-
portunities to use relational degree variables and entity
identifiers, which, as we show empirically, can reduce
the bias arising from latent relational confounders. We
evaluate RPSM via a set of synthetic experiments us-
ing the relational structure of a real-world relational
domain, Foursquare.

2 BACKGROUND

In this section we provide a brief overview of matching
methods and propensity scores. We then introduce the
relational concepts necessary to formalize RPSM.

2.1 MATCHING

In the framework of potential outcomes [Rubin, 1974],
estimating the causal effect of treatment T on variable
Y is formalized as a comparison of potential outcomes.
More formally, let Ti be a binary treatment variable
for unit i and let Yi be the outcome variable for unit i,
where i ∈ {1, . . . , n}. Yi(Ti = 0) denotes the value of
Yi that would be observed if no treatment was applied
to unit i. Similarly, Yi(Ti = 1) is the value of Yi that
would be observed if unit i had received treatment.
The causal effect of T on Y is estimated by comparing
the difference Yi(Ti= 1)−Yi(Ti=0) across all units i.

In practice, a specific unit either receives treatment or
not. Therefore, for a given value of i we never know
both Yi(T = 1) and Yi(T = 0). Experimental studies
often randomly assign units to treatment and control
groups, so that the expected distribution of the co-
variates in these groups is identical. In observational
studies, where randomization is not possible, matching

can be used to pair similar samples from the treated
and the control groups. Matching can be generally de-
fined as a method that aims to approximate random
assignment by equating the distribution of covariates
in the treated and control group [Stuart, 2010].

Matching requires a measure quantifying how similar
two individuals are. This is achieved by (1) selecting
a set of features to be used in the computation of sim-
ilarity, and (2) choosing a similarity function to apply
on those features (for example Mahalanobis distance,
propensity score, etc.). Once a similarity measure has
been chosen, individuals are matched based on this
measure. There are multiple methods for performing
matching (see Stuart [2010] and Ho et al. [2007] for a
survey of matching methods). In this paper, we em-
ploy full matching [Hansen and Klopfer, 2006], which
creates a collection of matched sets (the size of the
collection is chosen automatically). Each matched set
contains at least one treated and one control unit. Full
matching has been shown to be optimal with respect
to similarity within matched sets [Rosenbaum, 1991].

Matching methods make the assumption of ignorable
treatment assignment, i.e., treatment assignment is in-
dependent of the outcome given the observed covari-
ates. This assumption guides the selection of appro-
priate covariates for the computation of similarity.

2.2 PROPENSITY SCORE

The propensity score [Rosenbaum and Rubin, 1983] is
the probability of receiving treatment, given the ob-
served covariates Xi

ei(Xi) = P (Ti = 1|Xi).

Propensity scores are a form of dimensionality re-
duction that projects the original covariates down to
a single value which preserves distance with respect
to the likelihood of treatment. Matching can then
be performed on the propensity score, as opposed to
the covariates directly. The prevailing explanation
for why propensity scores are appropriate for match-
ing is that they are balancing scores (given the value
of the propensity score, the treatment and control
groups have the same distribution of covariates), and
they preserve ignorability of treatment assignment (if
treatment assignment is ignorable given the covariates,
then treatment assignment is also ignorable given the
propensity score) [Stuart, 2010].

Any method that models the conditional probability
of a binary variable given a set of predictors can be
used to estimate a propensity score. In this work, we
employ logistic regression, a widely used method for
obtaining a propensity score. However, other mod-
els (such as boosted trees, support vector machines,
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Figure 2: Relational model for the Foursquare do-
main. The underlying relational schema (ER diagram)
is shown in black. The attributes on the entities are
fictional. The relational dependency is shown in gray.

and neural networks) have been explored in the liter-
ature [Westreich et al., 2010, McCaffrey et al., 2004,
Lee et al., 2010].

A key advantage of propensity scores is their robust-
ness to model misspecification [Drake, 1993], i.e., in-
cluding irrelevant variables1 in the calculation of the
propensity score. Because the propensity score model
is built upon a predictive rather than causal model of
treatment, many of the issues that arise with tradi-
tional regression modeling, such as multicollinearity,
are no longer a threat to validity. Further, in con-
trast to matching directly on the covariates, propen-
sity scores can down-weight or disregard variables that
are not associated with treatment and have been er-
roneously included in the propensity model. How-
ever, as Pearl [2009] has observed, common effects of
the treatment and outcome must not be included in
the propensity score model. In general, the set of
d-connecting paths between treatment and outcome
needs to be considered. The propensity score model
must include a (not necessarily minimal) separating
set of treatment and outcome. One approach to elim-
inating variables that are potential common effects of
treatment and outcome is the injunction of Rosenbaum
and Rubin [1983] to restrict the set of covariates to pre-
treatment variables (variables whose values are mea-
sured prior to treatment).

2.3 RELATIONAL CONCEPTS

Propositional representations, such as Bayesian net-
works, describe domains with a single entity type.
However, many real-world systems involve multiple
types of entities that interact with each other. Data
produced by such systems are called relational or net-
work data. In this section, we introduce the basic rela-
tional concepts, following the notation and terminol-
ogy of Maier et al. [2013b].

A relational schema S = (E ,R,A, card) specifies the
set of entity, relationship, and attribute classes of a

1Variables that are marginally independent of treat-
ment or outcome.
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Figure 3: Example relational skeleton for the
Foursquare domain. This could be a small fragment
of a (potentially) larger skeleton.

domain. It includes a cardinality function that im-
poses constraints on the number of times an entity
instance can participate in a relationship. A rela-
tional schema can be graphically represented with an
Entity-Relationship (ER) diagram. Figure 2 shows
the ER diagram for the Foursquare domain. In this
example, there are three entity classes (User , Place,
Hometown), and three relationship classes, (Friends ,
ChecksIn, From). The entity class User has three at-
tributes: Smokes, Weight , and Drinks. The cardinal-
ity constraints are depicted using crow’s feet notation.
For example, the cardinality of the From relationship
is one-to-many, indicating that one user has one home-
town, but many users can be from the same hometown.

A relational skeleton is a partial instantiation of a re-
lational schema that specifies the set of entity and re-
lationship instances that exist in the domain. Fig-
ure 3 depicts an example relational skeleton for the
Foursquare domain. The network consists of two User
instances, Alice and Bob, who are friends with each
other and come from the same hometown. There are
two Place instances, Hillside Diner and Corner Cafe.

Given a relational schema, one can specify rela-
tional paths, which intuitively correspond to pos-
sible ways of traversing the schema (see Maier
et al. [2013b] for a formal definition). For the
schema shown in Figure 2, possible paths in-
clude [User ,Friends ,User ] (a person’s friends), and
[User ,Friends ,User ,From,Hometown] (the home-
towns of a person’s friends). Relational variables con-
sist of a relational path and an attribute that can be
reached through that path. For example, the relational
variable [User ,Friends ,User ].Drinks corresponds to
the alcohol consumption of a person’s friends. Prob-
abilistic dependencies can be defined between rela-
tional variables. In this work, we consider dependen-
cies where the path of the outcome relational variable
is a single item. In this case, the path of the treat-
ment relational variable describes how dependence is
induced. For example, the relational dependency

[User ,Friends ,User ].Drinks ! [User ].Weight



states that the alcohol consumption of a user’s friends
affects that user’s weight.

A relational model M = (S,D,Θ) is a collection of
relational dependencies D defined over a relational
schema along with their parameterizations Θ (a condi-
tional probability distribution for each attribute given
its parents). The structure of a relational model can
be depicted by superimposing the dependencies on
the ER diagram of the relational schema, as shown
in Figure 2, and labeling each arrow with the depen-
dency it corresponds to. If labels are omitted, the
resulting graphical representation is known as a class-
dependency graph.

Recent work by Maier et al. [2013b] provides a frame-
work that enables reasoning about d-separation in re-
lational models. Toward that end, they introduce ab-
stract ground graphs (AGGs), a graphical structure
that captures relational dependencies and can be used
to answer relational d-separation queries. Abstract
ground graphs are defined from a given perspective,
the base item of the analysis, and include nodes that
correspond to relational variables. For practical appli-
cations, the size of abstract ground graphs is limited
by a (domain dependent) hop-threshold, which con-
strains the length of relational paths that will be con-
sidered. Intuitively, the hop-threshold corresponds to
the relational “distance” of a cause from its effect.

2.4 NEW TYPES OF VARIABLES

In this section we present the new types of variables
that are enabled by relational domains: (1) Relational
variables (a way of defining a larger number of poten-
tial confounders) and aggregation; (2) Degree variables
(a type of confounder not available without relational
data); (3) Entity identifiers (which enable blocking, a
way to account for latent confounders only available
within relational data). Those types of variables are
used in the calculation of relational propensity scores
and are referred to as relational covariates.

2.4.1 Aggregation Functions

A fundamental characteristic of relational data is the
heterogeneity of the underlying relational structure.
For example, a person can have many friends, differ-
ent people have different sets of friends, and those sets
can overlap to varying degrees. This implies that when
constructing relational variables for a specific individ-
ual, the construction process will often return a set of
values rather than a single value. For instance, the re-
lational variable “friends’ age” for a person consists of
a set of values containing the age of each one of that
person’s friends. In the field of statistical relational
learning, aggregation functions are commonly used to
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Figure 4: Relational schema that depicts a hierarchy.
A state has many towns, but each town is in one state,
and many people are from the same town, but each
person is from one town.

summarize the values of related instances into a single
value, representative of the distribution. Common ag-
gregation functions include mean, stdev, mode, count,
sum, min, max, and median. Researchers have also de-
fined more complex aggregation methods [Perlich and
Provost, 2006].

2.4.2 Degree Variables

Other work has pointed out that variation in the size of
the set of values for a relational variable can strongly
affect the distribution of the observed values of many
aggregation functions [Jensen et al., 2003]. Jensen et
al. call the size of this set the “degree” and it is equiv-
alent, in the terminology of Maier et al. [2013b], to
the size of the terminal set of a relational path. To
account for the effects of degree on aggregated values,
RPSM includes degree variables in the calculation of
propensity scores.

2.4.3 Entity Identifiers

Blocking designs are widely used in experimental stud-
ies to account for latent confounders [Fisher, 1935].
Rattigan et al. [2011] formalized relational blocking as
an operator that can be used to infer causal depen-
dence in observational data expressed in a relational
representation. By blocking on the identifier of an en-
tity, relational blocking accounts for the effect of la-
tent variables associated with that entity. Blocking
is uniquely available for relational data. Moreover,
since blocking on an entity appears to avoid inducing
dependence due to colliders on that entity, blocking
may partially alleviate a key threat to validity noted
by Pearl [2009].

In this work, we incorporate relational blocking with
propensity scores by including entity identifiers as co-
variates in the calculation of propensity scores. We
restrict the use of blocking to hierarchies, i.e., parts
of the relational schema that are connected through a
series of many-to-one relationships. An example hier-
archy is shown in Figure 4. In this case, blocking on
the identifier for towns (i.e., grouping users based on
their hometown) accounts for the effect of latent vari-
ables associated with Hometown, and for the effect of
latent variables associated with the State within which



each town is located. More generally, blocking on the
identifier of an entity in a hierarchy accounts for the
effect of latent confounders that reside in that entity
and in entities that appear higher up in the hierarchy.

3 RELATIONAL PROPENSITY

SCORE MATCHING

We consider the following problem: given an entity E

and two attributes on that entity, treatment [E].T and
outcome [E].O, we seek to decide between [E].T !
[E].O and [E].T 6! [E].O. For notational convenience,
we restrict our attention to cases where the treatment
and outcome are on the same entity. In practice,
RPSM can be applied to any treatment and outcome
lying on entities that are connected through one-to-one
relationships. We assume that the relational skeleton
has been given a priori, i.e., all entity and relationship
instances have been fully and correctly specified. Ad-
ditionally, we assume that the effects of all latent vari-
ables can be accounted for by using relational blocking
(in other words, latent variables exists only on paths
that can be blocked on).

Relational propensity score matching (RPSM) pro-
vides an automatic method for constructing the set
of aggregated relational variables, degree variables
and entity identifiers (i.e., the relational covariates)
to perform propensity score matching on relational
data. The procedure for RPSM is described in Al-
gorithm 1. RPSM takes as input a data-set X , a rela-
tional schema, the treatment and outcome attributes,
a set of possible confounding attributes, a set of ag-
gregation functions, and a hop-threshold h. The algo-
rithm constructs the set of relational covariates based
on the confounding attributes, the aggregation func-
tions, and hop-threshold (line 2, discussed below in
detail). The propensity score of the treatment given
the covariates is then computed (line 3) and matching
is performed based on the propensity score (line 4).

The construction of relational covariates is presented
in Algorithm 2. The algorithm first constructs all
potential relational variables for the confounding at-
tributes from the given perspective, up to the speci-
fied hop-threshold (line 1).2 This is the set of relational
confounders. Then, for each relational confounder, it
creates the appropriate relational covariates by apply-
ing the given aggregation functions (lines 7-8). A de-
gree variable is then added for the paths of the re-
lational confounders (line 9). Finally, the algorithm
identifies parts of the schema that form a hierarchy and
adds identifier variables for the schema item lowest in
the hierarchy to perform blocking (lines 10-14). Rela-
tional covariates that were constructed from relational
variables that are now determined by the blocking path

Algorithm 1: RPSM (X , schema, treatment , outcome,

confoundingAttrs, aggrFunctions, h)

1 perspective ← item class of treatment , outcome
2 covariates ← GetRelationalCovariates (schema,

perspective, confoundingAttrs, aggrFunctions, h)
3 propensityScore ← Calculate propensity score for

treatment ∼ covariates using X
4 matches ← Match (propensityScore, treatment , X )
5 return matches

Algorithm 2: GetRelationalCovariates (schema,

perspective, confoundingAttrs, aggrFunctions, h)

1 relationalConfounders ← relational variables with
attributes in confoundingAttrs from perspective
perspective up to hop-threshold h

2 relCovariates ← ∅
3 for P.X in relationalConfounders do
4 if P == [perspective] then
5 relCovariates ← relCovariates ∪ P .X

6 else
7 for agg in aggrFunctions do
8 relCovariates ← relCovariates∪agg(P .X )
9 relCovariates ← relCovariates ∪ degree(P)

10 for P.X in relationalConfounders do
11 if P is valid blocking choice for perspective then
12 controlled ← relational variables that P

controls for
13 relCovariates ← relCovariates \ controlled
14 relCovariates ← relCovariates ∪ P .id

15 return relCovariates

are removed from the list of covariates (line 13).

Example 3.1. Consider our earlier scenario of assess-
ing the effect of smoking on a user’s weight. The treat-
ment is User .Smokes and the outcome is User .Weight
(the perspective of the analysis is the User entity
class). If Drinks is given as a possible confounding
attribute and the hop-threshold is 4, the algorithm
will add the following relational variables to the set of
relational confounders:

[User ].Drinks

[User ,Friends ,User ].Drinks

[User ,Friends ,User ,Friends ,User ].Drinks

[User ,ChecksIn,Place,ChecksIn,User ].Drinks

[User ,From,Hometown,From,User ].Drinks

The next step is to create relational covariates based
on the above relational variables. First, relational vari-
ables that only involve the User entity, in this case
[User ].Drinks, are added to the set of relational co-

2The algorithm can be trivially extended to exclude cer-
tain relational paths. For example, if the user has domain
knowledge that would exclude specific relational paths or
relational variables from the list of potential confounders.



variates. Because these covariates are propositional,
aggregation functions are not applied.

The aggregation functions are then applied to rela-
tional variables that cross the boundaries of the User
entity. If the set of aggregation functions is {mean},
the algorithm will add the following to the set of rela-
tional covariates:

mean
(

[User ,Friends ,User ].Drinks
)

,

mean
(

[User ,Friends ,User ,Friends ,User ].Drinks
)

,

mean
(

[User ,ChecksIn,Place,ChecksIn,User ].Drinks
)

,

mean
(

[User ,From,Hometown,From,User ].Drinks
)

The set of relational covariates is augmented by in-
cluding the degree of the relational paths that involve
more than one entity classes:

degree
(

[User ,Friends ,User ]
)

,

degree
(

[User ,Friends ,User ,Friends ,User ]
)

,

degree
(

[User ,ChecksIn,Place,ChecksIn,User ]
)

,

degree
(

[User ,From,Hometown,From,User ]
)

Finally, id variables are added to the relational paths.
In this case, there exists a hierarchy expressed by the
relational path [User ,From,Hometown]. Therefore,
the algorithm adds the following relational covariate:

[User ,From,Hometown].id

In practice, the hop-threshold should be chosen on
a case by case basis, using expert knowledge of the
application domain. The choice of aggregation func-
tions can be guided by an analysis of each variable’s
marginal distribution from the perspective of the treat-
ment and outcome.

4 SYNTHETIC EXPERIMENTS

To evaluate the performance of RPSM we examine the
following hypotheses:

1. Propensity score matching models that are lim-
ited to simplistic relational attributes (h = 2) fail
to fully account for confounding network effects
(h = 4) (Section 4.1).

2. Traditional aggregates for relational data, such as
mean, when used in isolation do not sufficiently
condition on the distribution of confounding rela-
tional variables (Section 4.2).

3. The inclusion of identifiers for entities that lie
along valid blocking paths accounts for latent con-
founders on those entities as well on entities con-
nected to them. That is, including entity identi-
fiers in the propensity model performs an implicit
causal blocking design (Section 4.3).

For all experiments we used the structure derived from
a sample of a real-world network, Foursquare [Gao

Table 1: Descriptive statistics for the Foursquare rela-
tional skeleton used in the synthetic experiments.

Aggregate Friends Check-Ins
mean 9.45 120.09
median 5 73
min 1 1
max 3674 2477

et al., 2012], augmented with synthetic attributes on
the entities. This allows for controlling the dependen-
cies between attributes as well as the marginal and
conditional distributions, while leveraging relation-
ships from a real-network. The relational schema for
the Foursquare network is shown in Figure 2. The re-
lational skeleton consists of 9,599 users, 47,164 friend-
ships, 182,968 locations where users “checked-in” via
the mobile application, 1,360,123 check-ins, and the
users’ hometowns. Aggregate statistics for the net-
work are shown in Table 1.

For our experiments we generated data from multi-
ple models to test each hypothesis individually. In all
experiments, the treatment is [User ].Smokes and the
outcome [User ].Weight . Each model was parameter-
ized as follows: The value of the treatment was drawn
from a logistic model parametrized using coefficients
drawn from U(−2, 2) and interaction terms increasing
in degree from 1 (no interaction) to 10 (up to 10 inter-
acting covariates, not necessarily distinct, per term).
We refer to this varying degree as “covariate complex-
ity”. The value of outcome was drawn from a linear
model with coefficients drawn from U(−2, 2) and an
error distribution drawn from N (0, 1). Marginal dis-
tributions for each variable were drawn from N (µ, σ),
with µ and σ sampled for each variable individually
from U(0, 5) and U(1, 3), respectively.

We used logistic regression to calculate the propen-
sity score and then performed full matching using the
optmatch package [Hansen and Klopfer, 2006]. A lin-
ear model was applied using treatment and matching
assignment as covariates and outcome as the response
variable to assess statistical significance, with an α

value of 0.01 for determining dependence. In this set-
ting, we would expect a low error rate for linear log-
odds functions (covariate complexity is 1), given the
perfect correspondence between the generating mod-
els and the estimation methods when the set of co-
variates is correctly specified (no interaction terms).
Adding interaction terms renders the models progres-
sively less appropriate. We report Type I and Type
II errors. Type I error corresponds to cases where a
valid causal dependence exists between treatment and
outcome and RPSM incorrectly concludes that there
exists no such dependence. Type II error corresponds
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Figure 5: Class-dependency graph for the models used
to evaluate the effect of using relational variables with
longer hop-thresholds as covariates.

to cases where RPSM incorrectly concludes that there
exists a dependency between treatment and outcome.

4.1 SIMPLE NETWORK DEPENDENCIES

We examine the first hypothesis, whether propensity
score models limited to simplistic relational attributes
fail to fully account for confounding network effects, by
generating data from two models. Both models have
the same class-dependency graph, shown in Figure 5,
but differ in the length of the longest true dependency.

In the first model (World2), the true relational con-
founders are at most two hops away from the treat-
ment and outcome entity. This corresponds to depen-
dencies that can be read directly from the class depen-
dency graph, e.g., the places a user checks in to. The
set of true relational confounders for the model is:

[User ].Drinks

[User ,From,Hometown].SchoolQuality

[User ,ChecksIn,Place].PriceRange

In the second model (World4), the set of true con-
founders is extended to include relational variables up
to four hops away, e.g., other users that check in to the
same places as a user. The set of confounders includes
all of the confounders of the first model as well as:

[User ,Friends ,User ].Drinks

[User ,ChecksIn,Place,ChecksIn,User ].Drinks

[User ,From,Hometown,From,User ].Drinks

[User ,Friends ,User ,Friends ,User ].Drinks

[User ,Friends ,User ,ChecksIn,Place].PriceRange

[User ,Friends ,User ,From,Hometown].SchoolQuality

Using the above procedure we ran 100 trials. For each
trial we considered two cases, one in which treatment
and outcome are conditionally independent and one
in which there is a direct effect between them. We
then compared two methods for creating the relational
covariates for propensity score matching:

1. RPSM using mean, stdev, max, min as aggregation
functions and h = 2 without blocking or degree
variables (RPSM2)

RPSM2: all aggregations, h=2 RPSM4: all aggregations, h=4
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Figure 6: Percentage of Type I and II error when
RPSM2 and RPSM4 are applied to data generated by
World2 and World4 models with increasing covariate
complexity, averaged over 100 trials.

2. RPSM using mean, stdev, max, min as aggregation
functions and h = 4 without blocking or degree
variables (RPSM4)

The results are shown in Figure 6. Along the diagonal
the RPSM model is consistent with the world config-
uration. When models are over-specified, for instance
RPSM4 in the World2 configuration, RPSM4 achieves
comparable performance to RPSM2. However, when
models are underspecified, for instance RPSM2 in the
World 4 configuration, a spurious effect is inferred be-
tween treatment and outcome in the conditionally in-
dependent case. These results also demonstrate a case
in which RPSM can successfully tolerate large num-
bers of irrelevant covariates.

4.2 COMPLEX NETWORK

DEPENDENCIES

In this section, we examine the second hypothesis re-
garding the effect of using complex aggregation func-
tion in the construction of relational covariates. We
generated data from models with the same class-
dependency graph as in Section 4.1. We used World2
and World4, as before, and two simplified models
which consider only mean as an aggregate, with hop-
thresholds of 2 (World2-) and 4 (World4-). We then
used the RPSM2 and RPSM4 methods for construct-
ing relational covariates and two simpler propensity
score models that only include mean as an aggregate
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Figure 7: Type I and Type II error when RPSM2-, RPSM2, RPSM4-, and RPSM4 are applied to data generated
by World2-, World2, World4-, and World4 models with increasing covariate complexity, averaged over 100 trials.

(RPSM2- with h=2 and RPSM4- with h=4).

The results are shown in Figure 7. Along the main
diagonal, the assumptions of the RPSM model are
consistent with the true world configuration. In cases
where the employed model uses mean as the sole ag-
gregation function but distributional dependencies are
more complex, RPSM commits a large number of Type
I errors. However, the over-specified models (e.g.,
RPSM4 in World2) maintain accuracy levels that are
consistent with the most efficient RPSM configuration.

4.3 ENTITY IDENTIFIERS

The final experiment examines the third hypothesis re-
garding the effect of including entity identifiers in the
relational propensity score model. We generated data
from a model similar to that of Figure 5, with an addi-
tional latent confounder on the Hometown entity. We
then created relational covariates using four strategies:

1. Use all observed variables and hop-threshold of 2
(RPSM2) and 4 (RPSM4).

2. Use degree variables and entity-identifiers for all
eligible blocking paths with either h = 2 or h = 4
(RPSM2+ and RPSM4+ respectively).

The results are shown in Figure 8. RPSM2 and
RPSM4 perform poorly, because of the bias induced
by unconditioned confounders. RPSM2+ performs

well when true relational dependencies are limited to
h = 2. RPSM4+ performs well in all cases. This
is an indication that including the entity identifiers
in the propensity model performs blocking, producing
effects similar to the explicit conditioning performed
by Rattigan et al. [2011]. This also strengthens the
connection between relational blocking and a conjec-
ture made by Perlich and Provost [2006] that the in-
clusion of identifier variables in a non-causal setting
can be used to create a relational fixed or random ef-
fects model. Given these results, the ability to auto-
matically identify and utilize entity identifiers provides
a strong argument for using RPSM as opposed to a
propositional approach. While blocking accounts for
a relatively small subset of all possible confounders, it
provides a substantial improvement over the alterna-
tive of assuming no latent confounders.

5 RELATED WORK

Multi-level propensity score models [Hong and Rau-
denbush, 2006, Li et al., 2013] provide a method for
accounting for group or cluster level effects. This
corresponds to a one-to-many relationship in a rela-
tional schema. RPSM can be seen as an extension
of the multi-level setting, capturing not only one-to-
many group level effects, but also many-to-many ef-
fects. There has also been significant progress in un-
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Figure 8: Type I and Type II error when RPSM2, RPSM2+, RPSM4, and RPSM4+ are applied to data generated
by World2, World2+, World4, and World4+ with increasing covariate complexity, averaged over 100 trials.

derstanding the consequences of the stable unit treat-
ment value assumption (SUTVA)3 for matching and
propensity models in the fields of statistics, epidemi-
ology and econometrics [Hudgens and Halloran, 2008,
Tchetgen and VanderWeele, 2012, Manski, 2013]. This
work does not address SUTVA violations, but exten-
sions to that setting are a focus of future work.

Perlich and Provost [2006] introduced relational fixed
and random effects models using identifier attributes
as features in the ACORA framework. RPSM differs
in two important aspects. First, the aim of the afore-
mentioned work is predictive, rather than causal. Sec-
ond, RPSM incorporates degree variables and provides
an algorithm for deciding which relational variables
should be included, rather than assuming the correct
set of relational variables and aggregating.

In the area of relational causal discovery, Maier et al.
[2013a] introduced a constraint-based algorithm, RCD,
that leverages relational d-separation [Maier et al.,
2013b] to learn causal models from relational data.
RCD learns a joint causal model of a relational domain
and abstracts away the mechanics of performing indi-
vidual tests of conditional independence, while RPSM
focuses on evaluating a single causal dependence and
the conditioning mechanism.

3SUTVA states that the outcome of an individual is
independent of the treatment status of other individuals.

6 FUTURE WORK

We plan on examining RPSM further, using more com-
plex synthetic data and real-world data. An interest-
ing avenue for future research is extending RPSM to
the case where the treatment or outcome lies along a
one-to-many relational path (e.g., the effect of a treat-
ment performed on an individual on an aggregate at-
tribute of the individual’s friends). There are also a
number of methods for performing matching without a
propensity score, such as matching on the full set of co-
variates [Stuart, 2010], coarsened exact matching [Ia-
cus et al., 2012], and entropy balancing [Hainmueller,
2012]. Extending these methods to the relational set-
ting would allow practitioners flexibility in terms of the
set of assumptions required for a given causal analysis.

7 CONCLUSIONS

Propensity score matching provides a powerful and ro-
bust method for causal inference on propositional data.
However, naively applying PSM to relational data ig-
nores both new challenges and opportunities presented
by this richer type of data. RPSM automatically con-
structs the set of relational covariates to be used in
the propensity score model given a set of confounding
attributes, a set of aggregation functions, and a hop
threshold. Further, it exploits the relational structure
by identifying degree variables and entity identifiers,
which can account for latent relational confounders.
We evaluate its efficacy via synthetic experiments that
leverage a real-world relational skeleton.



References

C. Drake. Effects of misspecification of the propensity
score on estimators of treatment effect. Biometrics,
49(4):1231–1236, 1993.

R. A. Fisher. The Design of Experiments. Oliver and
Boyd, Edinburgh, 1935.

H. Gao, J. Tang, and H. Liu. gSCorr: Modeling geo-
social correlations for new check-ins on location-
based social networks. In Proceedings of the 21st
ACM International Conference on Information and
Knowledge Management, pages 1582–1586. ACM,
2012.

L. Getoor and B. Taskar. Introduction to statistical
relational learning. MIT press, 2007.

J. Hainmueller. Entropy balancing for causal effects:
A multivariate reweighting method to produce bal-
anced samples in observational studies. Political
Analysis, 20(1):25–46, 2012.

B. B. Hansen and S. O. Klopfer. Optimal full matching
and related designs via network flows. Journal of
Computational and Graphical Statistics, 15(3):609–
627, 2006.

D. E. Ho, K. Imai, G. King, and E. A. Stuart. Match-
ing as nonparametric preprocessing for reducing
model dependence in parametric causal inference.
Political Analysis, 15(3):199–236, 2007.

G. Hong and S. W. Raudenbush. Evaluating kinder-
garten retention policy. Journal of the American
Statistical Association, 101(475), 2006.

M. G. Hudgens and M. E. Halloran. Toward causal
inference with interference. Journal of the American
Statistical Association, 103(482), 2008.

S. M. Iacus, G. King, and G. Porro. Causal inference
without balance checking: Coarsened exact match-
ing. Political Analysis, 20(1):1–24, 2012.

D. D. Jensen, J. Neville, and M. Hay. Avoiding bias
when aggregating relational data with degree dispar-
ity. In Proceedings of the Twentieth International
Conference on Machine Learning, pages 274–281.
AAAI Press, 2003.

B. K. Lee, J. Lessler, and E. A. Stuart. Improving
propensity score weighting using machine learning.
Statistics in Medicine, 29(3):337–346, 2010.

F. Li, A. M. Zaslavsky, and M. B. Landrum. Propen-
sity score weighting with multilevel data. Statistics
in Medicine, 32(19):3373–3387, 2013.

M. Maier, K. Marazopoulou, D. Arbour, and
D. Jensen. A sound and complete algorithm for
learning causal models from relational data. In Pro-
ceedings of the Twenty-Ninth Conference on Un-
certainty in Artificial Intelligence, pages 371–380,
2013a.

M. Maier, K. Marazopoulou, and D. Jensen. Rea-
soning about independence in probabilistic models
of relational data. arXiv preprint arXiv:1302.4381,
2013b.

C. F. Manski. Identification of treatment response
with social interactions. The Econometrics Journal,
16(1):S1–S23, 2013.

D. F. McCaffrey, G. Ridgeway, and A. R. Morral.
Propensity score estimation with boosted regression
for evaluating causal effects in observational studies.
Psychological Methods, 9(4):403, 2004.

J. Pearl. Remarks on the method of propensity score.
Statistics in Medicine, 28(9):1415–1416, 2009.

C. Perlich and F. Provost. Distribution-based aggrega-
tion for relational learning with identifier attributes.
Machine Learning, 62(1-2):65–105, February 2006.

M. J. Rattigan, M. Maier, and D. Jensen. Relational
blocking for causal discovery. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intel-
ligence, pages 145–151, 2011.

P. R. Rosenbaum. A characterization of optimal de-
signs for observational studies. Journal of the Royal
Statistical Society. Series B (Methodological), 53(3):
597–610, 1991.

P. R. Rosenbaum and D. B. Rubin. The central role
of the propensity score in observational studies for
causal effects. Biometrika, 70(1):41–55, 1983.

D. B. Rubin. Estimating causal effects of treatments
in randomized and nonrandomized studies. Journal
of Educational Psychology, 66(5):688–701, 1974.

E. A. Stuart. Matching methods for causal inference:
A review and a look forward. Statistical Science, 25
(1):1–21, 2010.

E. J. T. Tchetgen and T. J. VanderWeele. On causal
inference in the presence of interference. Statistical
Methods in Medical Research, 21(1):55–75, 2012.

D. Westreich, J. Lessler, and M. J. Funk. Propensity
score estimation: Neural networks, support vector
machines, decision trees (cart), and meta-classifiers
as alternatives to logistic regression. Journal of Clin-
ical Epidemiology, 63(8):826–833, 2010.


