
Unit Testing of Model to Text Transformations

Alessandro Tiso, Gianna Reggio, Maurizio Leotta

DIBRIS – Università di Genova, Italy
alessandro.tiso | gianna.reggio | maurizio.leotta@unige.it

Abstract. Assuring the quality of Model Transformations, the core of Model
Driven Development, requires to solve novel and challenging problems. Indeed,
testing a model transformation could require, for instance, to deal with a complex
software artifact, which takes as input UML models describing Java applications
and produces the executable source code for those applications. In this context,
even creating the test cases input and checking the correctness of the output
provided by the model transformation are not easy tasks. In this work, we focus on
Model to Text Transformations and propose a general approach for testing them at
the unit level. A case study concerning the unit testing of a transformation from
UML models of ontologies into OWL code is also presented.

1 Introduction

Model to Text Transformations (shortly M2TTs) are not only used in the last steps of
a complete model driven software development process to produce the code and the
configuration files defining a new software system, but can be the way to allow any kind
of user to perform tasks of different nature using visual models instead of the scarcely
readable text required by software tools (e.g. the textual input for a simulator of business
processes may be generated by a UML model made of class and activity diagrams).

Testing model transformations is a complex task [6], since the complexity of the
inputs and the time required to produce them (e.g. complete UML models instead of
numbers and strings), and the difficulties in building an effective oracle (e.g. it may have
to provide whole Java programs instead of a result of such programs). Selecting input
models for model transformations testing is harder than selecting input for programs
testing because they are more difficult to be defined in an effective way. Hence, also
giving adequacy criteria for model transformations is again more difficult than in the
case of programs. Furthermore, also the well-established kinds of tests, e.g. acceptance
and system, are either meaningless for model transformations or have to be redefined.

M2TTs may be quite complex and large. For example, a transformation from UML
models composed of class diagrams and state machines, where the behaviour of any
element is fully defined by actions and constraints, to running Java applications built
using several frameworks (e.g. Hibernate, Spring, JPA). Thus, it is important to be able
to perform tests also on subparts of an M2TT. First, we need to identify the nature of
such subparts, and then define what testing them means. Using the classical terminology,
we need to understand whether a form of unit testing is possible for M2TTs.

In this paper we present a proposal for testing M2TTs at the unit level. We then
indicate how to implement the executions of the introduced unit tests for M2TTs coded
using Acceleo [1], and how this form of unit testing may be integrated in the development
method for model to text transformation MeDMoT proposed by some of the authors
in [10, 11, 12].

We use the M2TT U-OWL as running example to illustrate our proposal. It is a trans-
formation from profiled UML models of ontologies to OWL definitions of ontologies. An
ontology model is composed by a class diagram (the StaticView) defining the structure of
the ontology in terms of categories (plus specializations and associations among them),
and possibly by an object diagram (the InstancesView) describing the information about
the instances of the ontology (i.e. which are the individuals/particulars of the various
categories, the values of their attributes, and the links among them). The U-OWL targets
are text files describing an ontology using the RDF/XML for OWL concrete syntax. This
transformation has been developed following MeDMoT . Specifically, we have given
the U-OWL requirements, designed the transformation and then implemented it using
Acceleo. It is composed by 8 modules, 21 templates and 8 queries.

The paper is structured as follows. In Sect. 2 we present our proposal for M2TTs unit
testing including suggestions for implementing their execution and getting a report, and
in Sect. 3 how this kind of testing may be integrated within MeDMoT . The results of the
unit testing of U-OWL are summarized in Sect. 4. Finally, related work and conclusions
are respectively in Sect. 5 and 6.

2 Unit Testing of Model to Text Transformations

2.1 Testing Model to Text Transformations

The Model to Text Transformations considered in this paper map models1 (both graphical
and textual) to Structured Textual Artifacts (shortly STAs) having a specific form. An
STA is a set of text files, written using one or more concrete syntaxes, disposed in a
well-defined structure (physical positions of the files in the file system).

In previous works [10,11,12] we have proposed new kinds of tests suitable for model
to text transformations.
– Conformance tests are made with the intent of verifying whether the M2TT results

comply the requirements imposed by the target definition. Generally this means that
the produced STA has the required structure and form. Considering the U-OWL case
this means that the files produced can be loaded into a tool for OWL like Protege2

without errors (because it accepts only well-formed OWL files).
– Semantic tests are made with the intent of verifying whether the target of the M2TT

has the expected semantics. In the U-OWL case a semantic test may check, for example,
if an OWL class has all the individuals represented in the UML model, or that an OWL
class is a sub-class of another one iff such relationship was present in the UML model.

– Textual tests are made with the intent of verifying whether the STAs produced by the
M2TT have the required form considering both the structuring in folders and files and
the textual content of the files.

1 conform to a meta-model
2 http://protege.stanford.edu/

2.2 Unit Tests for Model to Text Transformations

M2TTs may be quite large and complex. For this reason, they may be composed of
several sub-transformations. Each sub-transformation may be in turn composed of other
sub-transformations, each of them taking care of transforming some model elements.
The various sub-transformations may be arranged in a call-graph (we use a diagram
similar to the structure chart, that we call functional decomposition diagram), where the
nodes are labelled by the sub-transformations themselves and the arcs represent calls
between sub-transformations (see, e.g. Fig. 1).

In what follows, we consider only M2TTs equipped with a functional decompo-
sition diagram; moreover, we assume that their design specifications, which provide
information on the STAs produced by their sub-transformations, are available.

To perform the unit testing of an M2TT we must identify the units composing it.
That will be the subjects of the unit tests. It is natural to choose as subject of unit tests the
various sub-transformations of the M2TT, introduced by the functional decomposition
diagram, considered in isolation.

In the context of testing classical software, the parts considered by unit tests, in
general, cannot be run (e.g. a method or a procedure), thus special stubs have to be
built (e.g. JUnit test cases for Java class methods). In general, in the case of M2TTs
the “parts” composing a transformation return STA fragments that in many cases do
not even correspond to well-formed constructs in the transformation target; to build
some stubs for them to be able to perform conformance and semantic testing may be
utterly complex and time consuming (think for example what does it mean to build a
stub for a configuration file for the Spring framework, or referring to the U-OWL case
study, to build a stub for an RDF/XML definition of an individual). To propose a general
technique for unit testing of M2TTs, we should consider the sub-transformation results
as purely textual artifacts, and so we use only textual tests, which is one of the proposed
new kinds of tests (see Sect. 2.1).

To build a unit test for a given sub-transformation, say ST , we need other ingredients:
the test input and the oracle function.

The test inputs for ST are model elements. For example, the sub-transformation of
U-OWL TAttribute (see Fig. 1) transforms a UML class attribute into an OWL fragment

TOntology

TStaticView TInstanceView

TAttribRestrictions TAssocRestrictions TAssociations TAttributes TSubclasses TInstance

TAttribRestriction TAssocRestriction TAssoc TAttribute TSubclass

TType

TSlots TLinks

TSlot TLink

TMinCardinality TMaxCardinality

TCategory

Fig. 1. Functional decomposition diagram for the U-OWL M2TT

(more precisely, in the definition of an OWL data type property). Thus, to test TAttribute
we need to use as inputs UML attributes.

There are substantially two ways to obtain the model elements to be used in the unit
tests: (i) they can be built by instantiating the right meta-class (in the case TAttribute, the
meta-class in the UML meta-model which represents class attributes) or (ii) they can be
extracted from a model using an appropriate query. We opted for (ii) because in this way
input models can be easily written by the tester. Furthermore, if the model considered
contains more than one model element of the desired type (e.g. class attribute), it is
possible to easily improve the test coverage of the input space. Indeed, we can retrieve
all these elements in only one query, and thus test the sub-transformation using different
values.

The oracle function has to evaluate the correctness of the result of ST on the chosen
input. Usually, this is done by comparing the actual output given by the ST with the
expected output. In the case of the M2TTs the expected output of a sub-transformation
is a fragment of an STA (for example some text files arranged in different folders, a
text file, a text fragment). It is clear that generating this kind of expected outputs is
very difficult and time consuming if not almost impossible; consider the case of the
transformation from UML models to Java applications, the expected outputs may be
sets of files containing the complete code of various Java classes or long and cryptic
configuration files needed by the used framework (e.g. Hibernate).

Thus, we formulate the oracles in terms of properties on the expected STA fragments.
These properties are about the structure of the STA fragment, for example which files
and folders must be present and how they are named, and about the text files content.
The latter may just require that the output text matches a given regular expression.

Following the classical testing techniques, we define a test case for a sub-transformation
as a pair consisting of a specific input and a property on the expected output; we have
preferred instead to define generic test cases that are properties on the expected output
parameterized on the input of ST . To allow the expression of more powerful tests, we then
decided that an oracle is composed by one or more conditions on the ST parameters that
allow to select the proper parameterized regular expression for checking the correctness
of the ST output.

A test suite is composed by a set of input models and by a list of test specifications
(written by the tester), one for each ST , such as the one shown in Fig. 2. Obviously,
at each test specification corresponds a test case in the test suite implementation. For
simplicity in this case, we adopted a simplified regular expression language in which

Sub-Transformation

 TAttribute(attrName:String,OwnerClassName:String)

Verification Pattern

 <owl:DatatypeProperty rdf:ID = 'attrName'>

 <rdfs:domain rdf:resource = '#OwnerClassName'/>

 <rdfs:range rdf:resource = ***/>

 </owl:DatatypeProperty>

Fig. 2. Unit Test Specification for TAttribute

the text that must be ignored is marked by a string containing three “*” characters (see
Fig. 2).

2.3 Unit Tests Implementation

In what follows we assume that the considered M2TTs (and their sub-transformations)
are implemented using the Eclipse Platform [4], taking advantage of the features offered
by the Eclipse Modeling Project [3], such as:
– the Eclipse Modeling Framework [2] (EMF) that provides tools and runtime support
for viewing and editing models, and
– Acceleo [1] that is an implementation of the OMG MOF Model to Text Language [5]
plus an IDE and a set of tools to simplify the production of M2TTs.

Each M2TT is implemented as an Eclipse plugin, and it is composed by a set
of Acceleo templates, which correspond to the sub-transformations appearing in the
functional decomposition diagram.

The test suite is implemented as an Acceleo transformation, built by defining a
template for each test case (thus, it is an Eclipse plugin). Obviously, the Eclipse plugin
implementing the unit test suite must have a dependency to the plugin which implements
the M2TT, so that a test case for ST can invoke the template corresponding to ST .

Let TC be the test case for the sub-transformation ST . The template implementing
TC is defined as follows.

Fig. 3 shows the four logical steps performed by the Acceleo transformation imple-
menting the test suite during its execution. First, an OCL query over the input model
extracts the model elements suitable to be used as input for ST (e.g. TAttribute, see point

Sub-Transformation Input
(fragment of a UML model)

Instantiate Parametric Regular Expression
(parameters: attribute=’attr14’, attribute.class.name=’Cat1’)

\s*<owl:DatatypeProperty rdf:ID = 'attr14'>\s*
<rdfs:domain rdf:resource = '#Cat1'/>\s*
<rdfs:range rdf:resource = \s*(.*)\s*/>\s*
</owl:DatatypeProperty>\s*

Execute Sub-Transformation

(output: OWL fragment for the Selected Attribute)

<owl:DatatypeProperty rdf:ID = 'attr14'>
 <rdfs:domain rdf:resource = '#Cat1'/>
 <rdfs:range rdf:resource = 'http://www.w3.org/2001/XMLSchema#integer'/>
</owl:DatatypeProperty>

Verify Regular Expression Matching on the Output

Select Fragment to Transform
(OCL query)

1

2

3

4

Fig. 3. Unit Test Logical Schema

Fig. 4. HTML Unit Test Report: no failed tests Fig. 5. HTML Unit Test Report: failed tests

1 in Fig. 3). Then, for each model element, a special kind of Acceleo query, called Java
Services wrapper3, is invoked. This kind of Acceleo query can call a Java method as if
it was a simple query. The service wrapper implements the oracle of TC. It takes the
following parameters: a string obtained by invoking ST , that is the actual output of the
ST , and the same parameters (model elements) used by ST . The service wrapper, using
the parameters representing the model element, builds the appropriate regular expression
(point 2 of Fig. 3, the parametric portion of the regular expression is depicted as red
text) by instantiating the general parametric regular expression appearing in TC (see, e.g.
Fig. 2). Then, the service wrapper, using the instantiated regular expression, checks if
the output of ST (point 3) is correct (point 4).

Fig. 3 bottom, shows the actual output of the TAttribute sub-transformation and the
green text represents the correct match of the regular expression shown above while
black text represents text that is not checked (e.g. in the considered case study, the type
of the attributes is managed by the TType sub-transformation and thus is not checked
during the unit testing of the TAttribute sub-transformation).

The result of the oracle function is then used to build a HTML report as it is shown in
Fig. 4 and 5. In detail, Fig. 4 shows a report of a unit test over a ST successful on all the
elements, meanwhile Fig. 5 shows a report of a unit test failing on some elements. In the
latter case on the rightmost column there is a hyper-link to the text fragment generated
by the sub-transformation under test. Thus, the developer can inspect the problematic
output.

Summarizing, each unit test, which has as subject one of the sub-transformations:
(1) selects the model elements composing the test input using appropriate queries over the
input models, and for each model element (2) calls the oracle function that, invokes the
sub-transformation under test obtaining the actual output that is verified using a regular
expression built in conformance to what is defined by the M2TT design specification for
the sub-transformation parameterized with the actual values of the sub-transformation
parameters. As last step, using the oracle function result, we produce a report of the unit
test, in a form suitable to be easily readable from the transformation developer, such as a
HTML report.

Obviously, the plugin containing the test suite can be executed using different models
as input.4

3 see http://www.obeonetwork.com/page/acceleo-user-guide
4 It can be done by configuring in an appropriate way Eclipse run-configurations.

3 Model to Text Transformations Unit Testing within MeDMoT

In the previous section we described a general approach for testing at the unit level
an M2TT. This approach can be integrated within MeDMoT , our general method for
developing M2TTs. Each instance of MeDMoT is a method to develop a model to text
transformations (e.g. U-OWL). It is briefly described in [11, 12], and more details can
be found in the Ph.D. thesis of one of the authors [10]. Here, we summarize the main
concepts and phases of MeDMoT .

The input of a transformation (e.g. U-OWL) is a set of UML models conform to the
UML meta-model extended with a specific profile (e.g. a profile for UML models of
ontologies). The form of the source models is defined by a conceptual meta-model, i.e. a
UML class diagram with a class whose instances correspond to all the possible source
models. That meta-model is constrained by a set of well-formedness rules that precisely
define the set of acceptable models. The target of a transformation is always an STA
having a specific form (e.g. for U-OWL a set of text files describing an ontology).

In MeDMoT an M2TT is structured as a chain of transformations of different types,
some from model to model and one from model to text. The input model is verified
by a model to model transformation that checks if the input model satisfies the well-
formedness rules constraining the transformation source (i.e. the input model). If the
input model is well-formed, then it is refactored by one or more model to model trans-
formations in an equivalent simplified model. This step helps to maintain the subsequent
and last M2TT as simple as possible, for instance, by reducing the number of different
constructs used in the model. Finally, the refactored model is transformed into an STA
using an M2TT. We call the last transformation of this chain the Text Generation Trans-
formation (shortly TGT), which is precisely the M2TT on which we perform the unit
tests.

The design of each sub-transformation of the TGT is specified by means of relevant
source-target pairs. Each pair is composed by a left side, that shows a template for the
sub-transformation inputs, and a right side that shows the result of the application of
this sub-transformation on model elements obtained instantiating such template, see e.g.
Fig. 6.

Fig. 6. Example of source-target pair defining the TCategory sub-transformation

Fig. 7. Model 1 used to test U-OWL

Model Classes Attributes Gen-Specs Associations Objects Slots Links
Model 1 12 10 5 4 0 0 0
Model 2 7 3 3 3 0 0 0
Model 3 2 10 0 2 4 20 4

Table 1. Simple Metrics of Test Models

To select the set of model elements to be used as input in our unit tests, we use an
adequacy criteria defined as follows: at least an instance of the various templates of the
M2TT design and at least an occurrence of all UML constructs used to build the source
model must appear in the input models5.

For example the model shown in Fig. 7 contains an instance of the pattern shown in
the definition of TCategory (see Fig. 6). As we can see, class attributes are instantiated
in the model with all the permitted primitive types, the multiplicities of the association
ending roles (m1, mM) are instantiated in the model using different values such as 0..*,
1..* and 1..10.

4 Unit Testing of U-OWL

To perform the unit test of U-OWL we used three models, created in order to satisfy the
adequacy criteria described in Sect. 3. One of these input models is shown in Fig. 7. The
figures in Tab. 1 allow to grasp the size of the three models.

A summary of the results of the execution of all the unit tests (i.e. for the three
models) is shown in Tab. 2. For each model we have reported the number of test cases
executed on each sub-transformation and how many have failed. There are failed tests for
the following sub-transformations: TType, TOntology, TCategory, TAttribRestriction
and TAssociation. In the majority of the cases, all the tests have failed; this is due to the
fact that some sub-transformations erroneously transform any possible input.

For the failed tests, by navigating the hyper link shown in the rightmost column of
the HTML report (see Fig. 5) we can examine the output of the sub-transformations not
satisfying the condition expressed by the tests, and thus we were facilitated to understand
what the problem in their definitions is. TType does not produce any output when the
type of an attribute is double. A quick inspection of the code implementing TType allows
us to discover the error, TType does not transform double. In the same way, we are
able to discover the reasons of the failure of the other tests. For instance, in the case
of TCategory, the owl:Class tag is not closed in the proper way, while in the case

5 This is a slightly different version of the criteria defined in our previous work [12].

Model 1 Model 2 Model 3
ST Under Test Num. Tests Num. failed Num. Tests Num. failed Num. Tests Num. failed
TType 10 2 5 1 30 6
TOntology 1 1 1 1 1 1
TCategory 12 12 7 7 2 2
TAttribRestriction 10 10 5 5 10 10
TAssocRestriction 4 0 3 0 2 0
TMinCardinality 4 0 3 0 2 0
TMaxCardinality 4 0 3 0 2 0
TAttribute 10 0 5 0 10 0
TAssociation 4 4 3 0 2 2
TSubClass 5 0 3 0 - -
TInstance - - - - 5 0
TSlot - - - - 20 0
TLink - - - - 4 0

Table 2. Tests and Errors

of TOntology one of the name space declaration contains an URI different from the
expected one. Finally, in the case of TAssociation the domain and range references are
inverted in the generated OWL code.

Some of these errors cannot be revealed by the other kind of tests (such as the
conformance and semantic test). Indeed, the error revealed by the unit test on TOntology
cannot be revealed by any other kind of test (given that name space can be defined using
any URI), meanwhile the error revealed by the unit test on TAssociation can be revealed
only by a semantic test (given that, this kind of error produce a correct RDF/XML
specification of an OWL object property, but it is not semantically compliant with the
input model). All the material related (e.g. input models and HTML reports) can be
found at http://sepl.dibris.unige.it/2014-OWLTest.php.

5 Related Work

Wimmer et al. [13] propose a technique to test model to text transformations based on
tracts, that requires to transform an M2TT into a model to model one, by transforming
what we have called STAs into models defined by a specific meta-model with meta-
classes corresponding to folders, text files and their lines. The tests derived by tracts
use the OCL extended with a “grep” function to define their oracles. The intent of this
approach is quite similar to our since it consists in checking that the text produced by
the M2TT has the required form. Moreover, tracts defined for sub-transformations may
be used to build unit tests as those considered by our approach.

García-Domínguez et al. [7] present an approach for testing “model management
tasks” within the Epsilon platform based on the unit testing framework EUnit; differently
from our proposal, [7] does not consider model to text transformations, and, despite the
name, does not seem to introduce any kind of “unit testing” not even for model to model
transformations.

At the best of our knowledge there are no other works which deal specifically with
M2TT testing or unit level model transformation testing (except our previous work [11]).

Esther Guerra in her work [8] considers model to model transformations and starting
from a formal specification written using a custom specification language can derive
oracle functions and generate a set of input test models that can be used to test the model
transformation written using transML [9], a family of modelling languages proposed by
the same author and others.

6 Conclusion

In this paper, we have presented an approach for the unit testing of model to text
transformations, and up to our knowledge no other ones have been already proposed. The
only requirement of our approach is that the transformation must be provided of: (1) a
functional decomposition diagram showing the various sub-transformations composing
it, and (2) a design specification for each sub-transformation reporting information on the
textual artifacts it produces. Moreover, we have also presented a case study concerning
the unit testing of a transformation from UML models of ontologies into OWL code
performed following the proposed method.

As future work we plan to validate the power of the proposed unit testing approach
for model to text transformations, together with the other kind of tests introduced in
previous works, such as semantic and conformance (see [12]), by means of empirical
experiments, for example based on fault-injection, and by applying them to other case
studies concerning transformations larger and more complex than U-OWL.

References

1. Acceleo. http://www.eclipse.org/acceleo/.
2. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/.
3. Eclipse Modeling Project. http://www.eclipse.org/modeling/.
4. Eclipse platform. http://www.eclipse.org/.
5. OMG MOF model to text transformation language (MOFM2T). http://www.omg.org/

spec/MOFM2T/1.0/.
6. B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J.-M. Mottu. Barriers to

systematic model transformation testing. Communications of the ACM, 53(6):139–143, 2010.
7. A. García-Domínguez, D. S. Kolovos, L. M. Rose, R. F. Paige, and I. Medina-Bulo. EUnit: A

unit testing framework for model management tasks. In Proceedings of 14th International
Conference on Model Driven Engineering Languages and Systems, MODELS 2011, pages
395–409. Springer, 2011.

8. E. Guerra. Specification-driven test generation for model transformations. In Z. Hu and
J. Lara, editors, Theory and Practice of Model Transformations, volume 7307 of LNCS, pages
40–55. Springer Berlin Heidelberg, 2012.

9. E. Guerra, J. Lara, D. Kolovos, R. Paige, and O. Santos. Engineering model transformations
with transml. Software & Systems Modeling, 12(3):555–577, 2013.

10. A. Tiso. MeDMoT: a Method for Developing Model to Text Transformations. PhD thesis,
University of Genova, 2014.

11. A. Tiso, G. Reggio, and M. Leotta. Early experiences on model transformation testing. In
Proceedings of 1st Workshop on the Analysis of Model Transformations (AMT 2012), pages
15–20. ACM, 2012.

12. A. Tiso, G. Reggio, and M. Leotta. A method for testing model to text transformations. In
Proceedings of 2nd Workshop on the Analysis of Model Transformations (AMT 2013), volume
1077. CEUR Workshop Proceedings, 2013.

13. M. Wimmer and L. Burgueño. Testing M2T/T2M transformations. In A. Moreira, B. Schätz,
J. Gray, A. Vallecillo, and P. J. Clarke, editors, Proceedings of 16th International Conference
on Model-Driven Engineering Languages and Systems (MODELS 2013), volume 8107 of
LNCS, pages 203–219. Springer, 2013.

