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Abstract. We present work in progress on, verified, transformation of a
modeling language based on communicating concurrent state machines,
slco, to Java. Some concurrency related challenges, related to atomicity
and non-standard fairness issues, are pointed out. We discuss solutions
based on Java synchronization concepts.

1 Introduction

Model-Driven Software Engineering (MDSE) is gaining popularity as a method-
ology for developing software in an efficient way. In many cases the models can
be verified which leads to higher quality software. In MDSE, an abstract model is
made increasingly more detailed through model-to-model transformations, until
the model can be transformed to source code. This allows detecting defects in
the early stages of the development, which can significantly reduce production
costs and improve end product quality.

One of the challenges in MDSE is maintaining correctness during the develop-
ment. The correctness of model-to-model transformations is one of the research
topics of our group [6–8]. In this paper the correctness of model-to-code trans-
formations is addressed. We investigate automated Java code generation from
models in the domain specific language Simple Language of Communicating Ob-
jects (slco) [1]. slco was developed as a small modeling language with a clean
manageable semantics. It allows modeling complex embedded concurrent sys-
tems. slco models are collections of concurrent objects. The dynamics of the
objects is given by state machines that can communicate via shared memory
(shared variables in objects) and message passing (channels between objects).

In this paper, we present the current status of our work and how we envision
its continuation. We have defined a transformation from slco to Java code,

? This work was sponsored by the China Scholarship Council (CSC)
?? This work was done with financial support from the Netherlands Organisation for

Scientific Research (NWO).



and discuss in this paper the main complications as regards specifically efficient
communication via shared variables and channels. We have started proving that
this transformation is correct, i.e. that the semantics of slco models is preserved
under some assumptions. This reasoning requires tackling non-standard fairness
issues involving the built-in fairness assumptions in Java.

2 SLCO and its transformation to Java

SLCO In slco, systems consisting of concurrent, communicating objects can
be described using an intuitive graphical syntax. The objects are instances of
classes, and connected by channels, over which they send and receive signals.
They are connected to the channels via their ports.

slco offers three types of channels: synchronous, asynchronous lossless, and
asynchronous lossy channels. Furthermore, each channel is suited to transfer
signals of a predefined type.

Fig. 1. Behaviour diagram of an slco model

The behaviour of ob-
jects is specified using
state machines, such
as in Figure 1. As
can be seen in the
figure, each transi-
tion has a source and
target state, and a
list of statements that
are executed when
the transition is fired.
A transition is en-
abled if the first of
these statements is
enabled. slco supports a variety of statement types. For communication be-
tween objects, there are statements for sending and receiving signals. The state-
ment send T (s) to InOut , for instance, sends a signal named T with a single
argument s via port InOut . Its counterpart receive T (s) from InOut receives
a signal named T from port InOut and stores the value of the argument in vari-
able s. Statements such as receive P ([[false]]) from In1 offer a form of condi-
tional signal reception. Only those signals whose argument is equal to false will
be accepted. There is also a more general form of conditional signal reception.
For example, statement receive Q(m | m ≥ 0) from In2 only accepts those sig-
nals whose argument is at least equal to 0. Boolean expressions, such as m == 6 ,
denote statements that block until the expression holds. Time is incorporated
in slco by means of delay statements. For example, the statement after 5 ms
blocks until 5 ms have passed. Assignment statements, such as m := m + 1 ,
are used to assign values to variables. Variables either belong to an object or a



state machine. The variables that belong to an object are accessible by all state
machines that are part of the object.

Transformation from SLCO to Java The transformation from an slco
model to Java is performed in two stages. First the textual slco model is au-
tomatically transformed into an intermediate model, which is then translated
to Java. Recently we created a platform for the second stage in the Epsilon
Generation Language (EGL) [2], tailored for model-to-text transformation. The
execution of the generated Java code should reflect the semantics of slco. In
the sequel we present some important parts of the end-to-end transformation
from slco models to Java code.

State Machines Since slco state machines represent concurrent processes, each
state machine is mapped to a different thread in the Java implementation.

We use switch statements to represent the behavior of the state machine (List-
ing 1.1). Each case corresponds to one state of the state machine and comprises
a sequence of statements corresponding to the actions of a related outgoing state
transition. If a state has more than one transition, nested switch statements are
added in the generated code with a separate case for each transition.

Listing 1.1. Part of generated code for the state machine

1 currentState = "Com0";

2 while(true){

3 switch(currentState){

4 case "Com0":

5 String transitions[] = {"Com02Com1","Com02Com2"};

6 ...

7 int idx = new Random().nextInt(transitions.length);

8 String nextTransition = transitions[idx];

9 ...

10 switch(nextTransition){

11 case "Com02Com1":

12 ...//check whether the transition Com02Com1 is enabled or not

13 }

14 case "Com1":

15 ...

16 }

17 }

Shared Variables Since shared variables can be accessed and modified by multi-
ple state machines in one object, we need to consider synchronization constructs.
In our current implementation we use one writing lock and one reading lock to
control the access for all shared variables in one object. Both the reading and
writing locks operate in fair mode, using an approximate arrival-order policy. A
boolean expression statement using a reading lock is shown in Listing 1.2.



Listing 1.2. Part of generated code for the Boolean expression statement

1 boolean isExecutedExpression = false;

2 while(!isExecutedExpression){

3 r.lock();

4 try{

5 if((m.value==6)){

6 isExecutedExpression = true;

7 }

8 } finally { r.unlock(); }

9 }

10 ...

Channels Because lossy channels in slco are an undesired aspect of physi-
cal connections, these are not transformed to Java; hence the framework just
supports the synchronous and asynchronous lossless channel.

slco’s asynchronous channels have buffer capacity 1. The sender/receiver blocks
when the channel is full/empty - this is provided by a BlockingQueue with a
buffer capacity of 1 (from the package java.util.concurrent). In case of conditional
reception from an slco channel, the element will only be consumed if the value
satisfies the condition. This requires that the head of the queue is inspected
without taking the element, which is provided by BlockingQueue.

slco’s synchronous channels enable handshake-like synchronization between
state machines. Our current implementation again uses the BlockingQueue, with
additional ad hoc synchronization code.

In Listing 1.3 we give the generated Java code for sending a signal message
of state machine Com via port InOut as shown in Fig. 1. Notice that we add
the wait() method of Java to synchronize sending and receiving parties, if the
channel between two state machines is synchronous.

Listing 1.3. Part of generated code of channels for sending signal message

1 synchronized(port_InOut.channel.queue){

2 port_InOut.channel.queue.put(new SignalMessage("T",new Object[]{s}));

3 if(port_InOut.channel.isSynchronousChannel){

4 port_InOut.channel.queue.wait();

5 }...

6 }

3 Challenges

The challenges in the transformation from slco to Java as well as in the verifi-
cation of it mainly originate from the differences between the modeling-oriented
primitives in slco and their implementation-oriented counterparts in Java.



Shared variables – atomicity In slco assignments where multiple shared vari-
ables are involved are atomic, therefore we use Java variables together with locks
to guard the assignments. Instead of the built-in locks we use ReentrantRead-
WriteLock from the package java.util.concurrent.locks with concurrent read ac-
cess, which improves performance. Furthermore, in slco conditions on a transi-
tion may involve several shared variables. The aforementioned package enables
to create a condition object for each condition on a transition, that can be
used to notify waiting processes, which gives better performance than checking
with busy-waiting. Our current implementation uses ReentrantReadWriteLock,
but with a simple busy wait to simulate the slco blocking. Using the condition
objects whilst maintaining the slco semantics is the next step.

Channels – synchronization Other synchronization primitives from the package
java.util.concurrent are under investigation to replace the current ad hoc syn-
chronization code.

Choice between transitions – external/internal In case of several possibly block-
ing outgoing transitions of a state in slco, the state machine will only block if all
outgoing transitions are blocked. (This applies to shared variable access as well
as channel operations.) In a naive implementation, however, the disabledness of
a transition can only be assessed by initiating its execution and then blocking,
and waiting for the transition becoming enabled. Essentially, this means that an
external choice is turned into an internal choice, which is undesired. Here we face
a similar challenge as with conditions or assignments using several shared vari-
ables. This may be solved in a similar manner, namely with a condition object
dedicated to the state and cooperating processes that notify the waiting process
when one of the reasons for blocking might have changed.

We have solutions for specific cases and are investigating a generic solution for all
transitions that involve blocking and is orthogonal to other concurrency aspects
like conditional reading from a channel, synchronization of channels, etc.

Fairness – interleaving, resolving conflict The slco specification approach raises
non-standard fairness issues. In early usage of slco, no fairness was assumed for
slco specifications. If properties depended upon fairness, this meant taking this
into account for the implementation. The challenge is to advance the formal rigor
of the slco-approach by formally expressing fairness and have the generated
code together with the JVM ensure this fairness.

We use an interleaving semantics for slco with weak fairness: if at some time
point a transition becomes continuously enabled, this transition will at some later
time point be taken: in linear time temporal logic 2(2enabled(t)→ �taken(t)).

Because the granularity in Java is much finer than in slco, more progress is en-
forced by weak fairness in slco than in Java. Therefore we need stronger fairness
in Java. We aim to achieve this through a combination of fairness in scheduling
threads, obtainable by choosing the right JVM, and fair locks, obtainable from
the package java.util.concurrent.locks.



Verification We aim to partially verify the transformation. Our first approach
is that the generated code uses generic code that we provide as a library of
implementations for, e.g., channels. We annotate and verify this generic code.
To deal with pointers and concurrency in Java we will use Separation Logic [3]
in combination with the tool VeriFast [5] as we have applied to a preliminary
version of this research [4]. The report indicates that this is feasible. Our research
aims to incorporate more advanced library code from the java.util.concurrent
packages. A second, complementary, approach deals with specific code generated
in the transformation. From the slco model we generate annotation along with
the code, which captures what the code should satisfy to conform to the slco
semantics – whether it does is then verified using the techniques described above.

4 Conclusions

In the context of automated Java code generation we identified several challenges
involving shared memory communication and fairness. Our initial findings imply
that the verification of the generic Java code implementing shared memory com-
munication for safety properties is feasible using separation logic. As one of the
anonymous reviewers observed, it might be useful to identify Java patterns for
correctly capturing concurrent model semantics. Besides code generation, this
can be used as a basis for developing efficient simulation, formal verification and
other analysis tools.
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