

Exploration of Semi-Structured Data Sources

Thiago Nunes, Daniel Schwabe

Department of Informatics
Pontifical Catholic University of Rio de Janeiro

R.M.S. Vicente 225
Gávea Rio de Janeiro, RJ, Brazil

+55 21 3527-1500

{tnunes, dschwabe}@inf.puc-rio.br

Abstract. There has been a large growth of available semi-structured data on
the Web, spurred both by governmental requirements for publishing public da-
ta, and by private sector, for various purposes. One such large initiative is the
Linked Open Data Cloud. An increasingly important activity is to make sense
of such published data, often exploring it as a prelude or as initial steps to per-
form some information-processing task. Exploration is then a generalization of
the traditional search task, as it involves other operations beyond finding specif-
ic information. The design and evaluation of exploratory frameworks is a com-
plex, multi-disciplinary endeavor, with important challenges for both aspects. In
this paper, we will argue the need to separate the conceptual exploratory opera-
tions users may carry out over semi-structured data from the particular interface
designs used to give users access to such operations. We illustrate the problems
using practical examples and state-of-the-art tools and discuss how this separa-
tion of concerns allows more accurate evaluation of the relevant aspects of any
proposed tool or framework that aims at supporting Explorations.

1 Introduction

The exploration of (semi) structured data is a highly interdisciplinary research area
[23] where the goal is learning something from successive data manipulation and
cognitive activities [15, 18, 22, 24, 25]. It covers aspects that range from algorithmic
issues of the information retrieval system, dealing with Human-Computer Interaction
(HCI) aspects, and visualization techniques. The exploration phenomenon is frequent-
ly referred as “Exploratory Search” in the literature, a term introduced by Marchionini
[15] in 2006.

Exploratory Search is usually considered a process that combines searching and
browsing activities aiming at knowledge acquisition [24]. However, in our vision, the
exploration of semi-structured information goes beyond searching and browsing,
involving also management of the knowledge acquired along the process, as well as
reuse and sharing of exploration solutions, preferably leveraged by a formal explora-
tion model. For this reason we refer to the process of exploration of (semi) structured
datasets as Information Exploration.

Despite the attempts to identify the various concerns in Information Exploration,
such as operations, interaction patterns and visualizations [6, 23, 24], the evaluation
of the exploration tools does not consider or discuss the influences of each aspect in
isolation. Analyzing the evaluations of the exploration tools, we observe that the re-
sults in general support the hypothesis of the presumed benefits, but lack proper as-
sessment of both the outcomes and of the exploration process. It is also hard to figure
out the range of tasks for which the tools are more suitable since the authors usually
use as measures the task completion and learnability of interface mechanisms [8, 10,
18] but don’t discuss interaction dialogue structures or the available functions and
their applications to solve exploration problems.

In this work we will shed some light on how to adopt a pragmatic model-driven
separation of concerns in order to characterize the information exploration tools by
both the set of operations they provide and the physical interface dialogue structure
that support the execution of those operations.

2 Different Concerns in Information Exploration

Although the separation of user tasks, operations and goals from interface design
details has been widely recognized as valuable approach in HCI since the existence of
task models, such as the Goals, Operations, Methods and Selection rules (GOMS)
family [14], it has not been applied in the context of exploration tools. One of the
consequences is the difficulty to assess both to which range of exploration tasks the
tools are suitable and how well they support the user during an exploration task.

The separation of concerns in information exploration proposed in this paper is
consistent with Norman’s theory of gulf traversal [17], which separates the user-
system interaction in two major phases: the “execution gulf” and the “evaluation
gulf”. The “execution gulf” covers all the way starting with the user’s intention of
executing an action and ends with the translation of this intention in terms of interface
controls. The “evaluation gulf” concerns the interpretation and assessment of the re-
sults generated by the “execution gulf”. The semantic and articulatory distances gov-
ern the gulf traversals. While the semantic distance is the distance between the user’s
intention and the actual system operations set, the articulatory distance stands be-
tween the meaning of those operations and the physical means to execute them
through the system interface. In this work, we propose the assessment of the semantic
distance concern of exploration tools through the available exploration functions set.
The articulatory distance is assessed through the user-system interaction dialogue
structure required to execute those operations.

2.1 Exploration Functions

As mentioned previously, the user’s intentions and actions at the cognitive level
can be captured as exploration functions. Our research is based on Pirolli’s levels of
explanation of the user’s interaction with information [18]. As an example, consider
the cognitive functions of Pivoting and Querying. Pivoting is an action that allows the

user to change the context or the focus of exploration, e.g. a user changing the analy-
sis of a musical artist to one of his compositions. We define Querying as the action of
specifying the characteristics of the desired items to be retrieved by the system. Simi-
lar to Pivoting and Querying, there are other functions that capture the user’s intended
exploration actions. The complete description of the whole set of exploration func-
tions is beyond the scope of this paper, but still we briefly describe here the most
common:

• KeywordSearch(Keywords): perform a search for the occurrence of the
provided keywords over the dataset and returns the set of items matching
the keywords;

• Pivot: changes the focus of exploration to another related item, or adds a
pivot to the current focus in case of multi-pivoting exploration. In the
simplest case, the Pivot operation just puts another related element as the
pivot of exploration in a one-to-one style similar to the traditional hyper-
link navigation between web pages (for example, American President to
birth place). In more advanced forms, Pivot can express many-to-many
pivoting from a set of items to another related set of items – Pivot(Items,
relation) –, e.g., Pivot(AmericanPresidents, wife) returns the set of
American President’s wives;

• Query(Characteristics): retrieves information items through the specifi-
cation of their characteristics. For example, consider a user retrieving all
theaters in London by specifying the type of the element and the loca-
tion: Query(type:Theater, location:London);

• Project(Items,Characteristic): projects some set of results along a prop-
erty. For example, projecting a set of works by the year of publication to
be plotted over a line chart: Project(Works, publicationYear);

• GroupBy(Items, Characteristic): groups a result set based on the values
of some characteristic of the information items. As an example, consider
a user grouping European companies by their areas of expertise;

• Refine(Items, Filters): refines a set of items through the application of
filters received as parameters, e.g., Refine(Publications, {year > 2004});

• FindPath: finds structural connections between sets of information items
[1, 11, 19] . Consider a user trying to find how a company “A” is related
to company “B”, for instance, because they actually share a field of ex-
pertise. FindPath(CompanyA, CompanyB) can be used to discovery such
hidden relationship.

We can model the process as functional compositions by considering the explora-
tion process as a sequence of function applications over a dataset, where the output of
one function is used as input of the next,. The extent of possible functional composi-
tions that is supported by some exploration tool depends on the set of primitive func-
tions it implements, ultimately determining its expressivity to support Information
Exploration. We expect that comparisons addressing expressivity issues would shed
some light on how well the exploration tools assist the user during the task execution
as well as the types of tasks that are better supported. The more expressive is the set

of exploration functions for a given task, the shorter is the semantic distance to bridge
in both the execution and the evaluation gulfs.

2.2 Exploration Functions Vs. Interaction Patterns

In this section we will illustrate and discuss how the same functions can be articu-
lated differently in different tools, and how we can capture those differences in a con-
versational model for qualitative comparisons. For this discussion we selected the
Pivot and Query functions and show how they can be composed through several in-
teraction patterns. To illustrate our point, we examined two state-of-the-art tools –
Liquid Query [7] and SeCo tool [6] – and specified interaction diagrams using the
Modeling Language for Interaction as Conversation (MoLIC) model [3]. Fig. 1 and
Fig. 2 show the diagrams for the Pivot and Query exploration functions for Liquid
Query and SeCo.

MoLIC interaction diagrams are organized around dialogues between the user and
the system, considered as the designer’s deputy, and dialogue scenes, which represent
user-system dialogues about a certain topic. There are also transition utterances,
which represent the turn taking in the conversation. The scenes are represented as
white named boxes. The user-system utterances are represented as labeled arrows and
usually cause scene transitions. Utterances emitted from the user have “u:” indication
while the designer’s deputy utterances have a “d:” indication. The black boxes repre-
sent a system processing step. Inside the scene boxes the information items involved
in the user-system dialogue are presented.

Fig. 1. Liquid Query dialogue structure for Query and Pivot functions.

 21

other four. Figure 14 shows the exploration scenes and their dialogue structures and
transitions.

u: I want to define a Query about Topic X

u: No results found, I’ll redefine the query
pre: {source: Define Query}

d: Here are the possible ways to search for Topic X

u:Define Query for Topic X by Characteristic or related Topic Y
pre: {there are parameters to be defined}

u: find the results matching the Query
perl: {source: Define Query}

u: choose another search option

d: Here are the results you asked

u: expand the results by selecting a related topic

u: select a topic

Select a
Topic

Select Search
Option

Define Query

Explore
Results

u: I want to issue a query

u: Find the items for these set of input values

u: No results found, I’ll redefine my query

u: redefine query

d: Here are the results that you asked

Define Query

u: Find data related to keyword X.

d: Here are the Topics which contain the keyword X in his name.

u: I want to explore Topic X

u: no topics for keyword x

Select a
Topic

Edit Query

Dialogues
d+u: Query{set(restrictions{label}),
set(Variable{name}),
set(LogicalOperator),
set(Query)}

u: open sewelis and list all topics and properties

u: edit query textually

u: modify the results

Explore Results

Dialogues
d+u: set(Topic{name, set(Item{set(Characteristic{name, set(value))})
d: TopicRelation{title}
d: set(VisualizationOption{name})
d: set(Filter{Characteristic, value})

u: expand the results for set(Item) using TopicRelation X

A) Liquid Query

B) SeCo Tool

C) Parallax

D) Sewellis

Search

u: start the exploration

Explore
Results

Explore
Results

u: find the results matching the Query
pre: {no search option available}
pre: {no parameters for the topic}

u: Define query parameters for Topic X
pre: {there are parameters for the topic X}

pre: {no search option available}

Figure 14 - Exploration scenes and transitions from A) Liquid Query, B) SeCo tool, C) Paral-

lax, and D) Sewelis.

The major part of the data processing dialogues of ES tools are presented in the “Ex-
plore Results” scene. In this scene, the designer’s deputy offers a set of information
items and processing options. In Liquid query and SeCo tool, we can observe that the
user can process the current result set by asking for some filtering options, grouping,
and ordering by some characteristic or relationship. SeCo tool and its previous version,
Liquid Query, provides the same dialogue options for the “Explore Results” scene ex-
cept one. In Liquid Query, the user asks for an expansion informing the set o items to
be joined and a relationship with the target topic without causing a scene transition.

The interaction with both tools starts through some ubiquitous access (gray ellip-
ses). In Liquid Query (Fig. 1) the user first executes the Query in the “Define Query”
scene. After that, the user can Pivot in the “Explore Results” scene by asking the de-
signer’s deputy to expand the result set using some topic relationship between sets of
information items (utterance “u: expand the results for set(Item) using TopicRelation
X” in Fig. 1). In SeCo, the execution of the Query function in the “Define Query”
scene can only be achieved before the user selects a topic of search (“Select a Topic”
scene in Fig. 2) and how the information items will be queried (“Select Search Op-
tion” scene in Fig. 2). The Pivot function in SeCo is also revealed through a different
interaction pattern. In SeCo the user can ask the system to pivot through a result set
expansion (utterance “u: expand the results by selecting a related topic” in Fig. 2).
This solicitation causes a scene transition that leads the user-system dialogue to the
topic selection and search option scenes. From this example, we conclude that both
the exploration functions and the way they can be composed can assume different
interaction patterns that clearly influence the articulatory distance to bridge the gulfs.

Fig. 2. SeCo dialogue structure for Query and Pivot functions

 21

other four. Figure 14 shows the exploration scenes and their dialogue structures and
transitions.

u: I want to define a Query about Topic X

u: No results found, I’ll redefine the query
pre: {source: Define Query}

d: Here are the possible ways to search for Topic X

u:Define Query for Topic X by Characteristic or related Topic Y
pre: {there are parameters to be defined}

u: find the results matching the Query
perl: {source: Define Query}

u: choose another search option

d: Here are the results you asked

u: expand the results by selecting a related topic

u: select a topic

Select a
Topic

Select Search
Option

Define Query

Explore
Results

u: I want to issue a query

u: Find the items for these set of input values

u: No results found, I’ll redefine my query

u: redefine query

d: Here are the results that you asked

Define Query

u: Find data related to keyword X.

d: Here are the Topics which contain the keyword X in his name.

u: I want to explore Topic X

u: no topics for keyword x

Select a
Topic

Edit Query

Dialogues
d+u: Query{set(restrictions{label}),
set(Variable{name}),
set(LogicalOperator),
set(Query)}

u: open sewelis and list all topics and properties

u: edit query textually

u: modify the results

Explore Results

Dialogues
d+u: set(Topic{name, set(Item{set(Characteristic{name, set(value))})
d: TopicRelation{title}
d: set(VisualizationOption{name})
d: set(Filter{Characteristic, value})

u: expand the results for set(Item) using TopicRelation X

A) Liquid Query

B) SeCo Tool

C) Parallax

D) Sewellis

Search

u: start the exploration

Explore
Results

Explore
Results

u: find the results matching the Query
pre: {no search option available}
pre: {no parameters for the topic}

u: Define query parameters for Topic X
pre: {there are parameters for the topic X}

pre: {no search option available}

Figure 14 - Exploration scenes and transitions from A) Liquid Query, B) SeCo tool, C) Paral-

lax, and D) Sewelis.

The major part of the data processing dialogues of ES tools are presented in the “Ex-
plore Results” scene. In this scene, the designer’s deputy offers a set of information
items and processing options. In Liquid query and SeCo tool, we can observe that the
user can process the current result set by asking for some filtering options, grouping,
and ordering by some characteristic or relationship. SeCo tool and its previous version,
Liquid Query, provides the same dialogue options for the “Explore Results” scene ex-
cept one. In Liquid Query, the user asks for an expansion informing the set o items to
be joined and a relationship with the target topic without causing a scene transition.

Looking only at the Pivot function we can observe that it may be defined in differ-
ent ways, such as one-to-one [5], where the user pivots from one item to another
(from the artist to one composition), one-to-many (from the artist to the set of his/her
compositions), and many-to-many [2, 13, 19] (from the set of Brazilian composers to
the set of their compositions). Hence, a designer should address the design of the
Pivot function both at the cognitive and semantic levels by deciding whether it re-
ceives and returns single or multiple items, and at the articulatory level by deciding
which interaction pattern will be adopted for both the concrete execution of the action
and the composition with the ensuing exploration functions. These design decisions
should be guided by the environment and tasks for which the system will be used, as
well as by the target users’ profile and background.

2.3 Exploration Case: Patent Analysis

Patent Analysis is a kind of activity that can often be characterized as an explora-
tion task [9] according to the characteristics described in [25]. Patent analysis can be
carried out for different purposes, such as granting intellectual property rights to an
applicant, describing tendencies of technological advancement in a specific area, min-
ing relationships of a company and its competitors, or tracing the profile of companies
with regards to technological innovation investments. In order to accomplish these
tasks, patent analysts usually have to analyze manually hundreds of patents retrieved
by a patent database query [16]. Therefore, we choose patent analysis tasks for our
use case due to the high demand on the set of exploration functions in order to aid the
performance of the analysts.

Consider the following scenario:

“Company X is aiming to invest in a different area of its current investments in order
to diversify its activities. A promising area of investment is the development of Lithi-
um-ion traction batteries. However, Company X lacks knowledge in the area and
decided to hire a patent analyst to trace a profile of the main players in the area in
order to better understand it. The patent analyst should prepare a report containing
the following information:

• Trace and compare the activity of each company in the last 10 years.
• What are other areas of investment in addition to Lithium-ion Traction

Batteries that the players are addressing? What are the activities in those
areas?”

In order to analyze how well is the support of an exploration tool for the execution
of the scenario, we selected one of the state-of-the-art tools for patent exploration, the
Patent Lens system1. First we simulate the ideal execution in Patent Lens and then we
show how we can improve the process by augmenting the expressivity of its set of
functions.

Patent Lens is a faceted system with many visualization options, such as line
charts, pie charts, and bar charts. The facets available for exploration, among others,

1 http://www.lens.org/lens/search

are: Date, Jurisdiction, Inventor, Owner, Applicant and Classification. In order to
explore the dataset, users have to select one or more values for the facets and refine
the current result set. When the user selects one of the facets, the current result set is
grouped by the possible values of the selected facet. Fig. 3 shows some possible val-
ues for the Jurisdiction and Owner facets along with the number of results they
achieve. We capture the intention of grouping the result set along the facet values in
the GroupBy exploration function.

Fig. 3. Example of two facets in Patent Lens.

In order to solve the first problem of tracing the activity of each player the shortest

strategy the user can employ is:

1. KeywordSearch (“Lithium-ion Traction Batteries”)
2. Refine({year > 2004, year <= 2014});
3. GroupBy(Owner);
4. For each owner o;

Project(Refine(Owner = o), Year)

As we can observe, it is only possible to project one result set at a time, generating
a loop on the set of patent owners. If we extend the expressivity of the Project func-
tion to receive one or many sets of items to project, the task would have lower costs in
terms of number of actions.

Another interesting example is the problem of tracing other areas of investment of
the Lithium-ion traction battery players. Using Patent Lens, the shortest execution
strategy is:

1. KeywordSearch (“Lithium-ion Traction Batteries”)
2. For each owner in GroupBy(Owner)

Annotate owner using an external tool
3. For each class in GroupBy(Classification)

Annotate class using an external tool

4. Return to the starting point: All Patents
5. GroupBy(owner)
6. For each annotatedOwner in AnnotatedOwners

Refine(Owner = annotatedOwner)
7. For each class in GroupBy(Classification)

If (class not in AnnotatedClasses): Refine(Classification =
class)

The key strategy to solve this subtask is to find the disjoint classes from the classes

of patents related to the keyword “Lithium-ion Traction Batteries”. First the user has
to annotate the owners and the classifications using an external tool. After that, the
user has to clean all filters and return to the initial state, which contains all patent
documents. Next, he has to refine the result set to keep just the patents of the previ-
ously annotated Lithium-ion traction battery players since the tool does not feature
any function to save and reuse the set of owners found in previous steps. Finally the
user has to refine the set for each classification that was not in the set of annotated
classes related to Lithium-ion traction batteries. As a conclusion, we can observe that
the higher cost actions are the ones that involve loops for each information item. We
can minimize the cost by adding some set-based functions to the set of exploration
functions of Patent Lens.

If we improve the expressivity of the set of exploration functions by adding Pivot
and set difference – Diff – functions, we can reduce drastically the complexity of find-
ing the disjoint classes by eliminating the loop. Therefore, the actions could have the
following structure:

1. KeywordSearch (“Lithium Traction Batteries”): R1
2. Pivot (R1, classification) -> R2
3. Pivot (R1, owner) -> R3
4. Pivot(R3, hasPatent) -> R4
5. Pivot(R4, classification) -> R5
6. Diff(R5, R2) -> DisjointClasses

The Pivot function changes the focus of exploration by generating a set of related

information items, such as the set of classifications of patents related to the keywords
in step 2. The Diff function generates the difference between two sets and is applied in
the last step to extract all classes that are not in the set of classifications of patents
related to “Lithium-ion Traction Batteries” keyword.

From the examples above, we conclude that it is possible to improve the expressive
power of an exploration tool by adding new primitives to the set of exploration func-
tions. Once an adequate functional model is devised for the target exploration tasks
and the target users, the system interface should be modeled to aid the translation of
the functions in interface controls. In the next section we will show the benefits of
modeling the information exploration as a composition of functions.

3 A Functional Model for Information Exploration

In the previous section we have argued for the existence of two layers that are usu-
ally addressed indiscriminately: the functional layer and the interaction layer. In the
functional layer the users’ cognitive exploration actions and strategies can be modeled
as functions and functional compositions, respectively. The interaction layer is con-
cerned with the translation of those functions in interface controls. In this section we
give more details of the functional layer showing the benefits of addressing it formal-
ly and separately from interface design and implementation concerns. We also illus-
trate how a framework of exploration functions can enable comparisons and evalua-
tions of information exploration tools.

3.1 Evaluation and Comparisons of Exploration Tools

The most frequent problem in the experiments addressing the exploration tools is
the inability of assessing the exploration process. It is not possible to assess to what
extent and how good is the tool support for exploring information. As an example, we
selected different tools to analyze only their functional aspect. For demonstration
purposes, consider the following exploration task, which is an extension of the prob-
lem presented in [13]:

“Finding Schools of Republican American Presidents’ children. Which schools have
received both the Presidents and their children?”

The cost of the process required to solve this task can be significantly different de-

pending on the expressivity of the set of exploration primitives available in explora-
tion tools. Fig. 4 shows the steps required to solve the task with Explorator.

Fig. 4. Graphical representation of the functional composition required to solve an exploration
task with Explorator

In Fig. 4 the user starts with a keyword search for the topic “American Presidents”
(step 1) and refines the set of presidents by their party (step 2). Next, the user pivots
from the set of presidents to the set of presidents’ children (step 3). In order to find
the schools the presidents’ children have attended, the user pivots again using the
“School” relationship (step 4). At this step, the user recognizes the need to also add
the set of presidents’ schools as another pivot (step 5). Finally the schools who have
received both presidents and presidents’ children is achieved in the step 6 by inter-
secting the set of schools achieved in step 4 with the set of schools achieved in step 5.

Multi-pivoting can be defined as the possibility of adding distinct sets of elements
as the focus of exploration, hence, leveraging operations over multiple pivots, such as
finding relations between them [19]. We address the multi-pivoting as a characteristic
of the Pivot operation. An environment features multi-pivoting when the execution of
the Pivot operation adds an element, or a set of elements, to the current exploration
focus instead of replacing the current focus.

In the execution presented in Fig. 4, while in Explorator the set of primitives in-
cludes set operations and multi-pivoting, which allows the user to intersect the results
of two pivoting operations in steps 4 and 5, Parallax [13], gfacet [10], and /facet [12]
have more restricted expressive power. In Parallax, it is not possible to work with
multiple pivots since the Pivot operation was designed to replace the current focus of
exploration. Therefore, the user has to backtrack from step 4 to step 2 in order to
achieve the results of step 5. Moreover, there are no set operations in Parallax, which
forces the user to calculate the intersection in step 6 manually. gfacet do allow multi-
pivoting, hence, steps 4 and 5 can be achieved without backtracking. However, there
are no available operations to process multiple sets of elements, hence, the explora-
tion trail can only assume the format of a tree. Therefore, in gfacet, step 6 also re-
quires a lot of manual effort for large result sets. /facet is even more restricted in
terms of expressive power since it is not possible to pivot through a specific relation-
ship, as in steps 4 and 5. It should be noted that the system in [8] enables a form of
filtering that also allows avoiding backtracking.

As a conclusion, we showed that it is possible to compare exploration tools just
considering the available set of exploration functions. By doing this, we reinforce
both the existence of an additional layer that should be considered in the design pro-
cess independently of interface concerns and the benefits that a formal exploration
framework can bring for tool evaluation and comparison concerns.

4 Conclusion and Future Directions

Although the separation of the conceptual model of user operations from the inter-
face details is a widely accepted principle in HCI design, it has hitherto not been
properly applied in the context of information exploration tools. Consequently, the
evaluations and experiments usually fail in explaining the reasons of observed suc-
cesses or failures. Moreover, it is difficult to compare these tools regarding the ade-
quacy for information exploration tasks without a common framework of operations.
Given this scenario, the contributions of this paper are two fold. First, we demonstrate

through use cases how exploration tools can be assessed both in terms of the opera-
tions set and in terms of the dialogue structure present in the user interface. Second,
we propose new usage of two distinct models for qualitative evaluation and compari-
son of exploration tools. The first model, which is still in construction, is a framework
of exploration operations. The second model is the Modeling Language for Interac-
tion as Conversation, which is an abstraction to analyze tools regarding their conver-
sational structure.

Modeling the user’s exploration as a nested sequence of function applications over
a dataset allows us to represent the process as functional compositions. We claim that
the expressivity of exploration tools can be assessed by the range of functional com-
positions that can be formed using the set of primitive exploration functions offered.
Therefore, a formal framework of exploration operations would leverage the usage of
expressivity to more accurately evaluate and compare exploration tools independently
of interface design issues. In order to illustrate this position we used examples of real
exploration problems and showed how the same exploration functions can be present-
ed with different interaction patterns and how we can improve the exploration process
simply by evolving the set of primitive functions.

As future work, we plan to elaborate a formal description of a framework of explo-
ration operations and evaluate how well it leverages the description and representation
of the Information Exploration process. We will evaluate and compare exploration
tools regarding the expressivity of the set of primitive exploration functions. We also
plan to study how the same framework can be used as a formal base for reuse of ex-
ploration patterns and knowledge sharing among communities of users.

Acknowledgement

The authors were partially supported by CNPq project 557128/200-9 National Sci-
ence, Technology Institute on Web Science, CAPES, and Google Research Program.

5 References

1. Araujo, S. et al.: Fusion - Visually Exploring and Eliciting Relationships in Linked Data.
Proceedings of the 9th International Semantic Web Conference on The Semantic Web -
Volume Part I. pp. 1–15 Springer-Verlag, Berlin, Heidelberg (2010).

2. Araújo, S. De, Schwabe, D.: Explorator: a tool for exploring RDF data through direct
manipulation. Linked data on the web WWW2009 workshop (LDOW2009). (2009).

3. Barbosa, S.D.J., Greco, M. de P.: Designing and Evaluating Interaction as Conversation: A
Modeling Language Based on Semiotic Engineering. Interactive Systems. Design,
Specification, and Verification. pp. 16–33 Springer Berlin Heidelberg (2003).

4. Bates, M.J.: Information search tactics. J. Am. Soc. Inf. Sci. 30, 4, 205–214 (1979).
5. Berners-lee, T. et al.: Tabulator  : Exploring and Analyzing linked data on the Semantic

Web. 3rd International Semantic Web User Interaction Workshop. Vol. 2006. (2006).
6. Bozzon, a et al.: Exploratory search framework for Web data sources. VLDB J. 22, 5, 641–

663 (2013).

7. Bozzon, A. et al.: Liquid Query  : Multi-Domain Exploratory Search on the Web. Proc.
19th Int. Conf. World wide web. 161–170 (2010).

8. Buschbeck, S. et al.: Parallel faceted browsing. CHI ’13 Extended Abstracts on Human
Factors in Computing Systems on - CHI EA '13. p. 3023 ACM Press, New York, New
York, USA (2013).

9. Forti, E., Toschi, L.: Patents as Measure of Exploration and Exploitation Strategy  : The
Case of CVC Investments.

10. Heim, P. et al.: gFacet  : A Browser for the Web of Data. International Workshop on
Interacting with Multimedia Content in the Social Semantic Web (IMC-SSW’08), Vol.
417, (2008).

11. Heim, P. et al.: Interactive Relationship Discovery via the Semantic Web. Proc. 7th Ext.
Semant. Web Conf. (ESWC 2010). 6088, C, 303–317 (2010).

12. Hildebrand, M. et al.: /facet: A Browser for Heterogeneous Semantic Web Repositories
Michiel. The Semantic Web-ISWC 2006. Springer Berlin Heidelberg, 272-285. (2006).

13. Huynh, D., Karger, D.: Parallax and companion: Set-based browsing for the data web.
WWW Conf. C, (2009).

14. John, B. E., Kieras, D. E.: The GOMS family of user interface analysis techniques:
comparison and contrast. ACM Transactions on Computer-Human Interaction, 3(4), 320–
351, (1996), doi:10.1145/235833.236054

15. Marchionini, G.: Exploratory Search: from finding to understanding. Commun. ACM. 49,
4, 41–46 (2006).

16. Mukherjea, S. et al.: Information retrieval and knowledge discovery utilizing a biomedical
patent semantic Web. IEEE Trans. Knowl. Data Eng. 17, 8, 2005–2008 (2005).

17. Norman, D.A., Draper, S.W.: User Centered System Design; New Perspectives on Human-
Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA (1986).

18. Pirolli, P.: Information Foraging Theory: Adaptive Interaction with Information. Oxford
University Press, Inc., New York, NY, USA (2009).

19. Popov, I. et al.: Connecting the dots: a multi-pivot approach to data exploration.
International Semantic Web Conference - ISWC 553–568 (2011).

20. Patient protection and affordable care act. Public Law. 111–148 (2010).
21. De Souza, C.S. et al.: The Semiotic Inspection Method. Proceedings of VII Brazilian

Symposium on Human Factors in Computing Systems. pp. 148–157 ACM, New York,
NY, USA (2006).

22. Vakkari, P.: Exploratory Searching As Conceptual Exploration. Proc. Symp. Human-
Computer Interact. Inf. Retr. - HCIR ’10. 3–6 (2010).

23. White, R.W. et al.: Exploratory search interfaces: Categorization, Clustering and Beyond.
ACM SIGIR Forum. 39, 2, 52 (2005).

24. White, R.W., Roth, R.A.: Exploratory Search: Beyond the Query-Response Paradigm.
Synth. Lect. Inf. Concepts, Retrieval, Serv. 1, 1, 1–98 (2009).

25. Wildemuth, B.M., Freund, L.: Assigning search tasks designed to elicit exploratory search
behaviors. Proc. Symp. Human-Computer Interact. Inf. Retr. - HCIR ’12. C, 1–10 (2012).

